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Abstract Given polyhedron P and and a point x∗, the separation problem for polyhe-
dra asks to certify that x∗ ∈ P and if not, to determine an inequality that is satisfied by
P and violated by x∗. This problem is repeatedly solved in cutting plane methods for
Integer Programming and the quality of the violated inequality is an essential feature
in the performance of such methods. In this paper we address the problem of finding
efficiently an inequality that is violated by x∗ and either defines an improper face or a
facet of P . We show that, by solving a single linear program, one almost surely obtains
such an improper face or facet.

Keywords Integer programming · Separation problem · Polyhedra · Extended
formulations · Facets · Cutting plane algorithm · Split inequalities
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1 Introduction

Given a polyhedron P and a point x∗, the separation problem asks to either certify that
x∗ ∈ P or to find an inequality γ x ≤ γ0 that is valid for P such that γ x∗ > γ0. The
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separation problem is solved at each iteration of a cutting plane phase of algorithms
for pure or mixed integer programming and is therefore crucial for the performance
of such methods.

A most important consequence of the Ellipsoid method for linear programming
states that, assuming P satisfies some natural conditions, the separation problem can
be efficiently solved if and only if one can efficiently optimize a linear function over
P . In this paper we focus on the following aspect of this problem:

If x∗ /∈ P , we insist on finding an inequality γ x ≤ γ0 that is violated by x∗ and
has “strong” geometric properties: Either γ x = γ0 holds for all x ∈ P (i.e. γ x ≤ γ0
induces an improper face of P) or γ x ≤ γ0 induces a facet of P .

Of course, the above problem can be efficiently solved by inspection if P is
described by an irredundant system of equations and inequalities and this system
is small. However we investigate here the case in which either P or the cone Γ (P)

that contains the vectors (γ, γ0) that define inequalities that are valid for P is described
in an extended space by a system of inequalities that uses additional variables, or in
the original space but with redundant inequalities. The former is most often the case
for instance, in cutting plane methods based on split or lift-and-project cuts and in
Benders’ method. There is an extensive literature on the merits and weakness of the
cuts generated and the need to find the “correct” normalization (if it exists) when
reducing optimization over a cone to a bounded linear program. We believe our result
is relevant to such approaches.

We show that with an appropriate normalization of the cone Γ (P) the position of
P with respect to the origin is crucial to the solution of the above problem with a
single LP. Motivated by a simple geometric interpretation, our main result, presented
in Sect. 3, is to show that with an appropriate normalization a single LP suffices when
the origin is in the relative interior of P whatever the position of x∗. In Sect. 4 we
prove a slightly more general version of this result and also argue that the LP almost
surely generates a violated facet or an improper face of P . In Sect. 5 we discuss how
to find a point in the relative interior of P , again by solving a single LP, and what can
happen when the origin is not on the relative interior of P .

In Sect. 6 we illustrate our approach on two examples that arise in Integer Pro-
gramming: split disjunctions and fixed charge networks. We conclude in Sect. 7 with
further remarks and some questions suggested by some preliminary computations.

1.1 Relation to earlier work

Walter [27] in his doctoral dissertation, addresses the problem of finding a facet of
polytope P that is violated by a given point outside P . He recognizes the importance
of placing the origin in the interior of P in formulating an LP whose basic optimal
solution gives a violated facet. He extends this result to the case when P is not full-
dimensional.

Balas [2] introduced the concept of disjunctive programming in the early 70’s,
which studies optimization over the union of polyhedra. Split disjunctions and the
lift-and-project approach developed by Balas et al. [4] study optimization over the
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“Facet” separation with one linear program 363

union of two polyhedra, which in the 0–1 case are two faces of the same polyhedron.
More generally, the theory of multi-row cuts derived from lattice-free convex sets
introduced by Andersen et al. [1] fits this framework.

Balas and Perregard [5] survey the area of disjunctive programming, and among
others discuss the question of different normalizations of the cone of valid inequalities
in order to obtain a “good” valid inequality by linear programming for the lift-and-
project approach. This question is also addressed in Fischetti et al. [14]. They show that
even when P ⊂ R

2, the inequalities generated by using different normalizations can
be very weak. They also propose a different normalization and compare its behavior
to some of the alternatives. A core point in the relative interior of P is used in Fischetti
and Salvagnin [15] in an attempt to speed up the convergence of the cutting plane
algorithm.

Benders’ algorithm [7] canbeviewedas a separation algorithm inwhich an extended
formulation of P is given explicitly. Magnanti and Wong [19] present a modification
designed to generate “pareto-optimal” cuts, see also Papadakos [22]. Their approach
is also based on the use of a core point in the relative interior of P . Fischetti et al. [16]
discuss the normalization problem as it arises in Benders’ algorithm.

We finally point out that the separation problem for convex sets is a central problem
in Convex Analysis, see e.g. Chapter A4 in [18] and Convex Programming, see e.g.
[8]. In this context, quality of separation is mostly measured in terms of maximizing
a given norm.

Cornuéjols and Lemaréchal [12] study the problem of separation of the origin from
a closed convex set Q from a convex analysis perspective and apply it to the polyhedral
case, most notably to the disjunctive programming case. They point out the relevance
of the reverse polar introduced by Balas, that contains the inequalities that are valid
for Q and are violated by the origin (the point to be cut off, in this case).

Cadoux [10] takes a convex analysis/geometric approach concerning the depth/
strength of a cut. He shows how a cut that maximizes a given norm can be decomposed
into a conic combination of facet-inducing inequalities by solving a series of linear
programs.

2 Discussion of the separation problem for polyhedra

In this section we discuss the properties of the cone of valid inequalities Γ (P) and the
problem of its normalization. We then provide a small instance of the lift-and-project
approach indicating what happens when using some standard normalizations.

Given a polyhedron P ⊆ R
n , Γ (P), called the the f-cone of P in [11], is the

polyhedral cone

Γ (P) =
{(

γ

γ0

)
: γ x ≤ γ0 ∀x ∈ P

}
.

(We use basic results from the theory of polyhedra, whichmay be found e.g. in Ch. 3
of [11]. Given a polyhedron P , we denote by dim(P), aff(P), lin(P), rec(P), int(P),

relint(P), bd(P) its dimension, affine hull, lineality space, recession cone, interior,
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relative interior and boundary). The following proposition, see e.g. Proposition 5.1,
Chapter I.4 in [21], gives a minimal set of generators of Γ (P):

Proposition 1 Let P ⊂ R
n be a nonempty polyhedron and let γ i x = γ i

0 , i ∈ I= and
γ i x ≤ γ i , i ∈ I< be respectively irredundant representations of aff(P) and of the set
of facets of P. Then

Γ (P) = cone

((
0
1

)
,

(
γ i

γ i
0

)
, i ∈ I<

)
+ lin

((
γ i

γ i
0

)
, i ∈ I=

)
. (1)

Furthermore

(
γ i

γ i
0

)
i ∈ I< and

(
γ i

γ i
0

)
i ∈ I= are always necessary in the above

representation.

The following proposition gives a minimal set of equations and inequalities that
defines Γ (P).

Proposition 2 Given a nonempty polyhedron P ⊂ R
n, let (bk, k ∈ B) be a basis of

lin(P), (vi , i ∈ V ) and (r j , j ∈ R) be the vertices and extreme rays of the projection
of P on the orthogonal complement of lin(P). Then

Γ (P) =
{(

γ

γ0

)
: γ vi − γ0 ≤ 0, i ∈ V ; γ r j ≤ 0, j ∈ R; γ bk = 0, k ∈ B

}
(2)

Furthermore the above linear system provides an irredundant representation ofΓ (P).

Remark 1 It follows from Propositions 1 and 2 that Γ (P) is a pointed cone if and
only if dim(P) = n and dim(Γ (P)) = n if and only if P is pointed.

Whenever P �= ∅ is represented by a linear system, Γ (P) can be expressed using
the Farkás multipliers that certify the validity for P of an inequality. More precisely,
if P = {x : ∃y s.t. Ax + By ≤ d}, then

Γ (P) =
{(

γ

γ0

)
: ∃u ≥ 0 s.t. γ = uA, 0 = uB, γ0 ≥ ud

}
. (3)

In this paperwe address the following separation problem for P thatwe (informally)
state as follows:

Given a criterion and a point x∗, certify that either x∗ ∈ P or select an inequality

(
γ

γ0
) ∈ Γ (P) with γ x∗ > γ0 that optimizes the given criterion.

Even if this “criterion” is a linear function, this is a challenging problem, first
because Γ (P) is a cone and also because, in the applications we consider, Γ (P) is
represented as in (1), (2) or (3). We now elaborate on these points and survey the
existing literature.

SinceΓ (P) is a cone, the maximum of a linear function overΓ (P) is either 0 or∞.
Usually this problem is overcome by normalizing Γ (P), i.e. adding inequalities that
make sure the given objective is bounded. Ideally, one would like to truncate Γ (P):
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“Facet” separation with one linear program 365

that is add a set of inequalities that transforms Γ (P) into a polytope. A most desirable
truncation is one using a single inequality. Note that such a truncation exists if and
only if Γ (P) is a pointed cone.

When Γ (P) is truncated by adding a single inequality, the set of extreme rays of
Γ (P) is in one-to-one correspondence with the newly created vertices, and this is a
desirable feature. However, the added inequality introduces a ranking of the vertices
that determines which one optimizes the objective. Indeed one can choose any extreme
ray r of Γ (P) and construct a truncation so that the vertex that corresponds to r is
optimal with respect to the given linear criterion.

There is a further, important issue: the truncation with a single inequality is usually
performed on a cone C that projects onto Γ (P), such as the cone described by the
inequalities in (3). Since Γ (P) is the projection of C in the (γ, γ0)-space, even if C is
truncated with a single inequality, the projected truncation ofC does not usually result
in the truncation of Γ (P) with a single inequality and a ray that is extreme in C , but
whose projection is not extreme in Γ (P), may be truncated to a vertex of the projected
polyhedron that optimizes a given linear objective function, but whose corresponding
inequality is very weak.

Finally, even if P is represented by a linear system with few inequalities, P may
have exponentially many vertices and extreme rays. So the size of the representation
of Γ (P) in (2) is too large.

In this paper we address the following criterion:

When x∗ /∈ P , select an inequality (
γ

γ0
) ∈ Γ (P) with γ x∗ > γ0 that defines an

improper face or a facet of P .

The importance of finding violated facets has been recognized by various authors.
Cadoux’s approach, cited above, involves the solution of a series of linear programs
and Cornuéjols and Lemaréchal present an approach due to Bonami [9] that also
involves solving several linear programs. Padberg et al. in their work on 0–1 integer
programs and on combinatorial optimization problems, such as the travelling salesman
problem, argued strongly for the importance of violated facet-defining inequalities,
see for example [13,23].

2.1 Disjunctive programming, lift-and-project, split inequalities

We illustrate the above questions on a problem that is of importance in integer pro-
gramming, see e.g. [4], or Chapter 5 in [11]. Given polyhedron P = {x : Ax ≤ b}
and π ∈ Z

n , π0 ∈ Z, we define

P0 := P ∩ {x : πx ≤ π0} P1 := P ∩ {x : πx ≥ π0 + 1}.

Let P(π,π0) := conv(P0 ∪ P1). Then P(π,π0) ⊆ P and P ∩ Z
n = P(π,π0) ∩ Z

n .
Furthermore (assuming P pointed) if x∗ is a vertex of P and π0 < πx∗ < π0+1, then
x∗ /∈ P(π,π0). In this case P(π,π0) is a better approximation than P of conv(P ∩ Z

n).
In the lift-and-project method with P ⊂ [0, 1]n , π is a unit vector and π0 = 0.
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366 M. Conforti, L. A. Wolsey

By Lemma 4.45 in [11], P(π,π0) is a polyhedron which can be obtained as the
projection in the x-space of the polyhedron defined by the following system:

Ax0 ≤ bλ
πx0 ≤ π0λ

Ax1 ≤ b(1 − λ)

πx1 ≥ (π0 + 1)(1 − λ)

x0 + x1 = x
0 ≤ λ ≤ 1

(4)

An inequality is valid for P(π,π0) if and only if it is valid for both P0 and P1, so
assuming that P0, P1 are both nonempty, let C be the cone defined by the following
system:

uA + u0π = γ

vA − v0π = γ

ub + u0π0 ≤ γ0
vb − v0(π0 + 1) ≤ γ0

u, u0, v, v0 ≥ 0

(5)

Then by (3), we have that Γ (P(π,π0)) = {(γ, γ0) : ∃(u, u0, v, v0) s.t. (u, u0, v, v0,

γ, γ0) ∈ C}.
Since max{x∗γ − γ0 : (u, u0, v, v0, γ, γ0) ∈ C} = ∞ if and only if x∗ /∈ P(π,π0),

some normalizations of C have been introduced and studied in the literature.

• In the context of lift-and-project, Balas et al. [4] present three normalizations
γ0 ∈ {−1, 1}, −1 ≤ γi ≤ 1 for i ∈ 1, . . . ,m and

∑m
i=1 |γi | ≤ 1. Citing Balas

[2,3], they observe thatwith the normalizationγ0 ∈ {−1, 1} the separation problem
over the polyhedron (5) is finite valued if and only if λx∗ ∈ P(π,π0) for some λ > 0
and use the other two normalizations in their computational study.

• Balas and Perregaard [6] mention γ0 ∈ {−1, 1} as an effective normalization for
covering and packing problems. The normalization γ0 ∈ [−1, 1] is also studied
and will be important in this paper.

∑n
i=1 |γi | = 1 is a normalization that needs the

2n inequalities that define the octahedron and may introduce additional vertices.
They also introduce a generic normalization with a single inequality aγ ≤ b and
mention that when P is full-dimensional and the separation LP produces a finite
solution which is extreme, then a violated facet is produced.

• u0+v0 = 1Balas and Perregaard [5,6] show that finding amost violated inequality
(i.e. one that maximizes the objective function) can be reformulated as an LP on
n variables and corresponds to a (possibly infeasible) basis of the system Ax ≤ b
defining P , see also [11] Ch.5.

Fischetti et al. (Theorem 2 in [14]) show that if x∗ is a vertex of P , a most
violated inequality can be read from a basis defining x∗.

• 1u + u0 + 1v + v0 = 1 This normalization produces a truncation of C and has
been introduced by Balas and has been studied by Balas and Perregaard among
others. Fischetti et al. report better computational results than for the previous
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“Facet” separation with one linear program 367

normalization. However, the performance is obviously tied to the scaling of the
constraints defining P .

Although a cut-generating LP is solved, the cut obtained fails to have strong geo-
metric properties. It is neither an implicit equation nor a facet of P(π,π0). To illustrate
this point, the following 2-variable example is taken from Fischetti et al. [14].

Example 1 The problem is max{x1 + 2x2 : x ∈ P ∩ Z
2} where P ⊂ [0, 1]2 is the

polytope:

−4x1 + 4x2 ≤ 2

2x1 + 2x2 ≤ 3

−8x1 + 4x2 ≤ 1

x1 ≤ 1

x2 ≤ 1

−x1 ≤ 0

−x2 ≤ 0.

The unique optimal LP solution is x∗ = (0.5, 1). Taking (π, π0) = ((1, 0), 0), namely
the disjunction x1 ≤ 0 or x1 ≥ 1, one obtains P0 = {x : x1 = 0, 0 ≤ x2 ≤ 0.25}
and P1 = {x : x1 = 1, 0 ≤ x2 ≤ 0.5} and P(π,π0) = {x : 0 ≤ x1 ≤ 1, x2 ≥
0,−x1 + 4x2 ≤ 1}.

Solving the cut generating LP max{γ x∗ − γ0 : (5)} with either the normalization
1u + u0 + 1v + v0 = 1 or u0 + v0 = 1 leads to the violated inequality x2 ≤ 0.5.
If the constraint x2 ≤ 1 is rescaled as kx2 ≤ k with k ≥ 8 both normalizations give
the violated inequality −x1 + 2x2 ≤ 1. Neither of these inequalities defines a facet of
P(π,π0).

On the other hand we will show below why, given the relative positions of P , 0 and
the point x∗ to be cut off, using the normalization −1 ≤ γ0 ≤ 1, the cut generation
LP produces the only facet −x1 + 4x2 ≤ 1 of P(π,π0) that is violated by x∗.

3 Outline of the main results

We summarize here the main results in this paper. Given polyhedron P and x∗, we
consider the “separation LP”

max{x∗γ − γ0 s.t. (γ, γ0) ∈ Γ (P),−1 ≤ γ0 ≤ 1}

whose “dual LP” is the 1-dimensional LP

min{|ψ − 1| s.t. Ax∗ ≤ bψ, ψ ≥ 0}

where Ax ≤ b is a system defining P . In Propositions 4 and 5 below we characterize
feasibility, boundedness and the optimal solutions of the above LPs.
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If P contains the origin 0 in its relative interior and (
γ

γ0
) ∈ Γ (P), then γ0 ≥ 0.

Furthermore γ0 = 0 if and only if γ x = γ0 for all x ∈ P and γ0 > 0 if γ x < γ0 for
some x ∈ P .

Therefore given x∗, the above “separation LP” is unbounded (and the “dual LP” is
infeasible) if and only if x∗ is not in affine hull of P . Any unbounded ray yields an
improper face of P whose corresponding hyperplane does not contain x∗.

In this case, the “dual LP” can be interpreted as follows: If x∗ lies in the affine hull
of P , then the segment S connecting 0 to x∗ traverses the boundary of P in a point y∗
that is in the relative interior of S and also in the relative interior of a proper face f
of P and almost surely f is a facet of P . This is Theorem 1 and the “almost surely”
is argued in Proposition 6. This is illustrated in Fig. 1.

Getting 0 in the relative interior of P (with a linear transformation) is crucial to the
above approach. In Sect. 5.1 we discuss how to achieve this in an efficient manner and
in Sect. 5.2 we look at alternative strategies for the placement of 0.

4 Analysis of the separation LPs

Given polyhedron P , let Γ <>(P) = {( γ

γ0
) ∈ Γ (P),−1 ≤ γ0 ≤ 1} and given x∗,

consider the LP

ζ = max x∗γ − γ0(
γ

γ0

)
∈ Γ <>(P).

(6)

Let Ax ≤ b be a system of inequalities defining P . Then, using (3), we have that
program (6) is equivalent to the following:

ζ = max x∗γ − γ0
uA − γ = 0
ub − γ0 ≤ 0
−1 ≤ γ0 ≤ 1

u ≥ 0.

(7)

Fig. 1 a Line joining the origin
and x∗ intersects boundary(P) in
y∗, b x∗ /∈ aff(P). The line hits
aff(P) at y∗ = 0

0

x∗

P

y∗

f 0,y∗

x∗

P

(a) (b)
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“Facet” separation with one linear program 369

The dual of (7) is

min |ψ − 1|
Ax∗ ≤ bψ
ψ ≥ 0.

(8)

Since the LP (7) is always feasible, it admits a finite optimum if and only if (8) is
feasible. We characterize when this happens. We assume P is nonempty, and consider
the following cones.

– home(P) := {(x, ψ) : Ax ≤ bψ, ψ ≥ 0}.
– conee(P) := {(x, ψ) : ∃z ∈ P s.t. x = ψz, ψ ≥ 0}.

Proposition 3 Given a nonempty polyhedron P, let home(P), conee(P) be the cones
defined above:

1. conee(P) ⊆ home(P) and home(P) \ conee(P) = (rec(P), 0) \ (0, 0)
2. (rec(P), 0) is the face of home(P) induced by ψ = 0
3. home(P) = cl(conee(P)), where cl(·) denotes the closure operator.
Proof Let (x, ψ) ∈ conee(P). Then x = ψz, where ψ ≥ 0 and Az ≤ b. Therefore
Ax ≤ bψ and this shows conee(P) ⊆ home(P). Let now (x, ψ) ∈ home(P) \
conee(P). Then ψ = 0, since otherwise z := x

ψ
∈ P and x = ψz. Furthermore

x �= 0, since otherwise P �= ∅, x = 0z for any z ∈ P . This shows that (x, 0) ∈
(rec(P), 0) \ (0, 0) and this proves 1.

Since P �= ∅, (rec(P), 0) = ({r : Ar ≤ 0}, 0) and this proves 2.
By 1. and 2., we have that conee(P) ⊆ home(P) and home(P) \ conee(P) ⊆

bd(home(P)). Since home(P) is a closed set, this proves 3. ��
Corollary 1 Given a nonempty polyhedron P, let

hom(P) := {x : ∃ψ s.t. (x, ψ) ∈ home(P)},
cone(P) := {x : ∃ψ s.t. (x, ψ) ∈ conee(P)}.

Then hom(P) = cone(P) ∪ rec(P).

Proposition 4 Given nonempty polyhedron P, the LP (8) is feasible if and only if
x∗ ∈ hom(P). Let ψ∗ be an optimal solution of (8). Then

1. ψ∗ = 1 if and only if x∗ ∈ P
2. ψ∗ = 0 if and only if x∗ /∈ P and x∗ ∈ (rec(P) \ cone(P)) ∪ {0}
3. ψ∗ �= 0, 1 if and only if x∗ ∈ cone(P) \ (P ∪ {0}) and:

– If { x∗
ψ

,ψ > 1} ∩ P �= ∅, then 1 < ψ∗ = min{ψ : x∗
ψ

∈ P}
– If { x∗

ψ
,ψ < 1} ∩ P �= ∅, then 1 > ψ∗ = max{ψ : x∗

ψ
∈ P}.

Proof By Corollary 1, (8) is feasible if and only if x∗ ∈ hom(P).
Now 1. is immediate, so we assume x∗ /∈ P . If x∗ ∈ (rec(P) \ cone(P)) ∪ {0},

since x∗ /∈ P , by Proposition 3, ψ = 0 is the only value for which (x∗, ψ) ∈ hom(P)

and this proves 2.
Assume finally x∗ ∈ cone(P) \ (P ∪ {0}). Then ψ∗ �= 0, 1. Therefore exactly one

of { x∗
ψ

,ψ < 1} ∩ P , { x∗
ψ

,ψ > 1} ∩ P is nonempty and we have 3. ��
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370 M. Conforti, L. A. Wolsey

Proposition 5 Assume (8) admits a finite optimimum ψ∗ �= 0, 1. Then y∗ := x∗
ψ∗ ∈

bd(P) and F := {( γ

γ0
) ∈ Γ <>(P) : γ y∗ = γ0} is the optimal face of the LP (7).

Furthermore γ0 = 1 for every (
γ

γ0
) ∈ F if ψ∗ > 1 and γ0 = −1 for every

(
γ

γ0
) ∈ F if ψ∗ < 1.

Proof By Proposition 4 , (8) admits a finite optimum ψ∗ �= 0, 1 if and only if x∗ ∈
cone(P)\(P∪{0}), and case 3. of the same proposition applies. Letψ∗ be the optimal
value of ψ in (8) and let

F :=
{(

γ

γ0

)
∈ Γ <>(P) : γ x∗ = γ0 + |ψ∗ − 1|

}

be the optimal face of the LP (7). Since max{0, ψ∗ − 1} and max{0,−(ψ∗ − 1)} are
the optimal values taken by the dual variables associated with constraints γ0 ≤ 1 and
γ0 ≥ −1 in (7) respectively, then complementary slackness shows that γ0 = 1 for

every

(
γ

γ0

)
∈ F when ψ∗ > 1 and γ0 = −1 for every (

γ

γ0
) ∈ F when ψ∗ < 1.

Assume ψ∗ > 1. Then γ x∗ = γ0 + ψ∗ − 1 for every (
γ

γ0
) ∈ F and γ x∗ <

γ0 + ψ∗ − 1 for every (
γ

γ0
) ∈ Γ <>(P) \ F . Since γ0 = 1 for every (

γ

γ0
) ∈ F and

x∗ = ψ∗y∗, then F := {( γ

γ0
) ∈ Γ <>(P) : γ y∗ = γ0}. When ψ∗ < 1, the proof is

the same. ��

Now we state and prove our main result.

Theorem 1 If 0 ∈ relint(P), then:

1. The LP (8) is infeasible if and only if x∗ /∈ aff(P). In this case, let (
γ

γ0
) be an

unbounded ray of (7). Then γ0 = 0, γ x∗ > 0 and γ x = 0 for all x ∈ P.
2. If the LP (8) is feasible, let ψ∗ be a optimal solution of (8). ψ∗ = 1 if and only

if x∗ ∈ P and ψ∗ > 1 if and only if x∗ ∈ aff(P) \ P. In this latter case, let

F := {( γ

γ0
) ∈ Γ <>(P) : γ x∗ = γ0 + ψ∗ − 1} be the optimal face of the LP (7)

and let y∗ = x∗
ψ∗ . Then y∗ ∈ bd(P) and F := {( γ

1
) ∈ Γ <>(P) : γ y∗ = 1}

Proof Since 0 ∈ relint(P), we have that aff(P) = hom(P). Therefore Proposition 4
shows that (8) is infeasible (and (7) is unbounded) if and only if x∗ /∈ aff(P). Assume

this is the case and let (
γ

γ0
) an unbounded ray of Γ <>(P). Then γ x∗ > γ0 and
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“Facet” separation with one linear program 371

(
λγ

λγ0
) ∈ Γ <>(P) for every λ > 0. Therefore γ0 = 0. Since 0 ∈ relint(P) and

γ 0 = 0, then γ x = 0 for all x ∈ P . This proves 1.
Assume now that (8) is feasible, i.e. x∗ ∈ aff(P). By Proposition 4 ψ∗ = 1 iff

x∗ ∈ P . Assume x∗ ∈ aff(P) \ P . Since 0 ∈ relint(P), then rec(P) ⊆ P and
since x∗ /∈ P , ψ∗ > 0. Therefore case 3. of Proposition 4 applies and again since
0 ∈ relint(P), we must have ψ∗ > 1. Therefore |ψ∗ − 1| = ψ∗ − 1. Now 2. follows
from Proposition 5. ��

4.1 Obtaining a facet-inducing inequality almost surely

Proposition 6 When the LP (8) admits a finite optimum ψ∗ �= 0, 1, then an optimal
solution of the LP (7) almost surely defines a facet-inducing inequality when x∗ ∈
aff(P) \ P and almost surely defines an improper face of P when x∗ /∈ aff(P).

Proof By Proposition 4 we have that (8) admits a finite optimum and ψ∗ �= 0, 1 if
and only if x∗ ∈ cone(P) \ (P ∪ {0}), so case 3. of the same proposition applies. Let
y∗ := x∗

ψ∗ . Since for the Lebesgue measure restricted to the boundary of P the set of
all faces with dimension at most dim(P)−2 is negligible when P is full-dimensional,
and the set of all faces with dimension at most dim(P) − 1 is negligible when P is
not full-dimensional, a random point on the boundary of P almost surely lies in the
relative interior of a facet of P when P is full-dimensional and lies in the relative
interior of P when P is not full-dimensional.

By Proposition 5 {( γ

γ0
) ∈ Γ <>(P) : γ y∗ = γ0} is the optimal face of the LP

(7). Therefore when x∗ /∈ aff(P) ∪ {0}, almost surely y∗ ∈ relint(P) and F contains

vectors (
γ

γ0
) that represent improper faces of P that are violated by x∗.

When x∗ ∈ aff(P) \ (P ∪ {0}), we may assume P full-dimensional. Almost surely

y∗ ∈ relint( f ), where f is a facet of P and in this case F contains all vectors (
γ

γ0
)

that represent f . ��

Remark 2 When the description {x : Ax ≤ b} of P contains an inequality ai x ≤ bi
that is not facet-defining, there exist points x∗ for which at least one of the optimal
solutions of the separation LP (7) gives the face f = {x ∈ P : ai x = bi }, that is not
a facet of P .

Remark 3 Walter (Theorem2.5.4 in [27]) provides anLPwhose basic optimal solution
gives a violated inequality that induces a facet or an improper face.

5 Further aspects

Here we discuss how to obtain a point x̂ ∈ relint(P) . We then consider what happens
using the separation LPs when the origin does not lie in relint(P).
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5.1 Computing aff(P) and x ∈ relint(P)

Theorem 1 requires that 0 ∈ relint(P). This poses the following question:
Let Ax ≤ b be a system of inequalities that defines polyhedron P . Determine

whether P = ∅ and if P �= ∅, compute aff(P) and x̂ ∈ relint(P).
When x̂ ∈ relint(P) is found, we can apply a linear transformation that maps x̂ into

0. Freund, Roundy and Todd [17] show that this question can be answered by solving
a single LP:

Proposition 7 Given P = {x ∈ Rn : Ax ≤ b}, consider the following LP:

max 1t
Ay + t ≤ bλ

0 ≤ t ≤ 1
λ ≥ 1

(9)

1. The LP (9) is bounded and is feasible if and only if P �= ∅.

2. Let

⎛
⎝ ŷ

t̂
λ̂

⎞
⎠ be an optimal solution to (9). Then x̂ := ŷ

λ̂
∈ relint(P), and t̂ ∈ {0, 1}m.

Furthermore the i th constraint in the system Ax ≤ b defines an improper face of
P if and only if t̂i = 0.

Proof 1. is straightforward.We prove 2. Let

⎛
⎝ ŷ

t̂
λ̂

⎞
⎠ be an optimal solution to (9). Since

t̂ ≥ 0, we have that x̂ := ŷ
λ̂

∈ P and since 1t is maximized, then t̂i = 0 if and only if
x̂ satisfies the i th constraint in Ax ≤ b at equality. Furthermore, since λ is unbounded
from above and 0 ≤ t ≤ 1, then t̂i = 1 if and only if x̂ satisfies the i th constraint
with strict inequality. Therefore the LP (9) finds a point x̂ ∈ P that satisfies strictly
the largest number of inequalities in Ax ≤ b, namely a point in relint(P). ��

There are alternative linear programming methods that solve the above problem.
These methods typically find a strictly complementary solution or need the computa-
tion of a tolerance ε that depends on the system defining P , see e.g. [20]. The LP (9)
avoids these issues.

Remark 4 If P := projx (Q) and Q := {(x, y) : Ax + By ≤ d}, then applying the
LP (9) to the system defining Q, one gets a point (x̂, ŷ) ∈ relint(Q) and a system
A=x + B=y = d= of equations defining aff(Q). Then x̂ ∈ relint(P) and aff(P) =
{x : uA=x = ud= ∀u ∈ N (B)}, where N (B) is a basis of the space {u : uB = 0}.

Furthermore given x∗, one can decide if x∗ ∈ aff(P) or find an improper face of P
that is violated by x∗ by checking uA=x∗ = ud= ∀u ∈ N (B). Therefore by solving a
single LP to determine aff(Q) and eventually finding a basis of a linear space (when
Q �= P) one can check whether x∗ ∈ aff(P).
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5.2 Keeping the origin, or placing 0 outside relint(P)

Here we consider what happens if one maintains the normalization (γ, γ0) ∈ Γ <>(P)

but does not impose 0 ∈ relint(P). This may arise when either one does not wish to
change the origin or some other choice appears appropriate, thus we are interested in
sufficient conditions that guarantee that the LP (8) is feasible and ψ∗ �= 0, 1.

Given polyhedron P and x∗, the penumbra of P with respect to x∗ is the set

Sh(P, x∗) = {x∗ + λ(P − x∗), λ ≥ 1}. (10)

The reverse cone of P with respect to x∗ is the set

Rcone(P, x∗) = {x∗ − λ(P − x∗), λ ≥ 0}. (11)

Proposition 8 Given a nonempty polyhedron P and x∗ /∈ P, if 0 ∈ relint(Sh(P, x∗))⋃
relint((Rcone(P, x∗)), then the LP (8) is feasible and ψ∗ �= 0, 1.

Proof Assume 0 ∈ relint(Sh(P, x∗)). Then 0 = x∗ + λ(y − x∗) where y ∈ P and
λ > 1. Let ψ := λ

λ−1 . Then ψ > 1 and y = x∗
ψ

∈ P . Therefore x∗ ∈ cone(P) and,
since x∗ /∈ P ∪{0}, case 3. of Proposition 4 applies. When 0 ∈ relint(Rcone(P, x∗)),
the proof is similar. ��

In Fig. 2 we show the behaviour of the separation LP when 0 /∈ relint(P). In Fig. 3,
we illustrate the different regions arising in Proposition 8 and the behavior of the LP
(8) as a function of the position of 0.

Note that the definition of penumbra and reverse cone dependon the relative position
of x∗ with respect to P and Proposition 8 requires 0 ∈ relint(Sh(P, x∗))

⋃
relint

((Rcone(P, x∗)). On the other hand Theorem 1 shows that when 0 ∈ relint(P) and
x∗ /∈ P , the separation LP (6) almost surely returns an inequality that is violated by
x∗ and it either induces a facet or an improper face of P .

Returning to Example 1, remark that 0 ∈ relint(Sh(P, x∗)). The line from 0 to x∗
traverses the boundary of P in the interior of the facet −x1 + 4x2 ≤ 1 of P(π,π0), so
by Proposition 8, ψ∗ > 1 and the optimal solution of the LP (6) generates this facet.

x∗

0 Origin

P
ψP

Fig. 2 Scaling P to include x∗. The case when 0 /∈ P , but x∗ ∈ cone(P)
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x∗

P

Sh(P, x∗) \ P

Rcone(P, x∗) \ {x∗}
ψ∗ = 0

ζ = ∞

0 < ψ∗ < 1

ψ∗ > 1

ψ∗ > 1

ζ = ∞

ζ = ∞

Fig. 3 Behaviour of the separation LP (8) as a function of the position of the origin (ζ = ∞ implies
infeasible)

6 Applications in integer programming

Here we present the potential interest of our approach in cutting plane methods for
solving structured and unstructured integer programs.

– For 0–1 integer or mixed integer programs, one approach is to use cutting planes
based on split disjunctions (or more generally unions of polyhedra) of which an
example was presented above.

– For uncapacitated fixed charge network flow problems, there is multi-commodity
extended formulation that can be used to generate cutting planes in the space of
the original arc variables.

For both applications we consider the form taken by the separation LP (6) and present
a small example.

6.1 Split disjunctions

Given polyhedron P = {x : Ax ≤ b} and (π, π0) ∈ Z
n+1, let P0, P1 and P(π,π0) be

defined as in Sect. 2.1. Given x∗ /∈ P(π,π0), when 0 ∈ relint(P(π,π0)) by Theorem 1,
the LP (6) returns an inequality that almost surely either induces an improper face or
a facet of P(π,π0).

As this problem is repeatedly solved in a cutting plane algorithm, and at each
iteration P and (π, π0) change, one wants to find a point x̂ that can be mapped into 0
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and does not depend on the current P and (π, π0), so that the LP (9) does not have to
be solved repeatedly.

When conv(P ∩ Z
n) is not a face of P , the ideal choice is x̂ ∈ relint(conv(P ∩

Z
n)) and for some structured problems such a point can be found by inspection,

without solving the LP (9). For instance, this is easily achieved for a polytope P of the
submissive type, such as the knapsack polytope. As 0 and the n unit vectors typically
belong to P ∩ Z

n , we have that x̂ := ( 1n , . . . , 1
n ) ∈ relint(conv(P ∩ Z

n)).
When such a point x̂ is found and mapped into 0, the separation LP (6) for P(π,π0)

becomes
ζ = max γ (x∗ − x̂) − γ0

uA + u0π = γ

vA − v0π = γ

u(b − Ax̂) + u0(π0 − π x̂) ≤ γ0
v(b − Ax̂) − v0(π0 + 1 − π x̂) ≤ γ0

−1 ≤ γ0 ≤ 1
u, u0, v, v0 ≥ 0

This LP is used to treat the following example.

Example 2 (Example 2 from Fischetti et al. [14]).
max{x1 + 2x2 : x ∈ P ∩ Z

2} where P ⊂ [0, 1]2 is the polytope:

−2x1 + 2x2 ≤ 1

2x1 + 2x2 ≤ 3

−4x1 − 4x2 ≤ −3

x1 ≤ 1

x2 ≤ 1

−x1 ≤ 0

−x2 ≤ 0

The unique optimal solution of the LP relaxation is x∗ = (0.5, 1). Let (π, π0) =
((1, 0), 0). In this case P0 and P1 are the faces of P defined by the inequalities x1 ≥ 0
and x1 ≤ 1 respectively. Since P0 = ∅ and P1 = {x : x1 = 1, 0 ≤ x2 ≤ 1/2}, we
have that P(π,π0) = conv(P0 ∪ P1) = P1.

Consider the transformation that maps x̂ = (1, 0.25) ∈ relint(P(π,π0)) into 0. Since
(0.5, 1) /∈ aff(P(π,π0)), by Theorem 1, the separation LP (6) is unbounded and the
unique unbounded ray produces the inequality −x1 ≤ −1 that defines aff(P(π,π0)).

Consider the penumbra Sh(P(π,π0), x∗) and the linear transformation that maps
x̂ = (1.01, 0.25) ∈ relint(Sh(P(π,π0), x∗)) into 0. By Proposition 8, the LP (6) has a
finite optimal solution and the optimal face produces the inequality −x1 ≤ −1. The
same happens when x̂ = (0, 1.75) ∈ relint(Rcone(P, x∗)) is mapped into 0.

On the other hand, if 0 is not changed, the LP (6) is unbounded and the unbounded
ray produces the inequality −x1 + 0.5x2 ≤ 0 that is valid, but not facet defining for
P(π,π0).
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6.2 Multi-commodity reformulation of incapacitated fixed charge network flow

We consider a single source uncapacitated network flow problem for which there is
a multicommodity extended formulation, see Rardin and Choe [25]. We present the
original and extended formulations, demonstrate in detail how to derive the separation
LP (6) and then present a small example indicating the behavior of the facet separation
algorithm.

Given a network D = (V, A)where V = {0, 1, . . . , n} and A = {1, . . . ,m}, source
node 0 and demands bi ≥ 0 for i ∈ V \ {0} where b0 = −∑

i∈V \{0} bi , and for each
e ∈ A we are given a unit flow cost pe and a fixed cost fe per (large capacity M) arc.
The Fixed Charge Network Flow Problem is to find a feasible flow of minimum cost
(i.e. flow costs plus fixed cost).

The following is a mixed integer programming formulation. We define xe to be the
flow value in arc e, ye to be the binary variable indicating if arc e carries positive flow.

min
∑

e∈A pexe + ∑
e∈A fe ye∑

e:h(e)=i xe − ∑
e:t (e)=i xe = bi i = 1, . . . , n

xe ≤ Mye e = 1, . . . ,m
x ∈ R

m+, y ∈ Z
m .

(12)

where M is a very large number. Assuming pe, fe ≥ 0 for all e ∈ A, one notes that
there is always an optimal solution with ye ∈ {0, 1} and that the big M can be replaced
by −b0.

To obtain the multi-commodity reformulation, let K = {i ∈ V \ {0} : bi > 0} be
the set of terminals. We represent the flow as the sum of |K | distinct flows from 0 to
k for k ∈ K . We define the variable wk

e to be the flow in arc e with destination node
k. it can be shown that the following is an equivalent MIP formulation:

min
∑

e∈A pexe + ∑
e∈A fe ye∑

e:h(e)=i w
k
e − ∑

e:t (e)=i w
k
e = 0 i = 1, . . . , n, k ∈ K , k �= i∑

e:h(e)=k wk
e − ∑

e:t (e)=k wk
e = bk k ∈ K

wk
e ≤ bk ye e = 1, . . . ,m, k ∈ K∑

k wk
e ≤ xe e = 1, . . . ,m,

w ∈ R
m(|K |)
+ , y ∈ Z

m, x ∈ R
m .

(13)

Let Q be the polyhedron defined by the constraints of (13) by dropping the inte-
grality requirement on y and let P = {(x, y) : ∃w s.t. (x, y, w) ∈ Q}.

It is known that the linear programming relaxation of (12) is in general considerably
weaker than that obtained from solving the linear program over P . In particular for
uncapacitated lot-sizing with or without backlogging [24], that is a special case of
the fixed charge network flow problem, P is known to provide the convex hull of
the feasible solutions of (12). Though a complete description of P in the original
space is not known in general, Rardin andWolsey [26] show that all the facet-defining
inequalities of P belong to a class of “dicut” inequalities.
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The separation LP for fixed charge network flow

Typically a point (x̂, ŷ, ŵ) in the relative interior of Q is easy to construct. Let ŵ be
a feasible flow in which bk > ŵk

e > 0 unless wk
e = 0 or wk

e = bk for all feasible
solutions in which case ŵk

e = 0 or ŵk
e = bk respectively. Set x̂e >

∑
k ŵk

e for all e,
ŷe > 1 if wk

e = bk for some k and ŷe = 1 otherwise.
By applying a linear transformation that maps (x̂, ŷ, ŵ) into 0, the constraints of

Q become:

∑
e:h(e)=i

w̃k
e −

∑
e:t (e)=i

w̃k
e = −

∑
e:h(e)=i

ŵk
e +

∑
e:t (e)=i

ŵk
e i = 1, . . . , n, k ∈ K , μk

i

∑
e:h(e)=k

w̃k
e −

∑
e:t (e)=k

w̃k
e = bk −

∑
e:h(e)=k

ŵk
e +

∑
e:t (e)=k

ŵk
e k ∈ K μk

k

w̃k
e − bk ỹe ≤ bk ŷe − ŵk

e e = 1, . . . ,m, k ∈ K vke∑
k

w̃k
e − x̃e ≤ −

∑
k

ŵk
e + x̂e e = 1, . . . ,m, πe

−w̃k
e ≤ ŵk

e e = 1, . . . ,m, k ∈ K φk
e

w̃ ∈ R
m(|K |), ỹ ∈ R

m, x̃ ∈ R
m

where xe = x̃e + x̂e, wk
e = w̃k

e + ŵk
e , ye = ỹe + ŷe.

The separation LP (6) now takes the form:

max
∑
e

(γ x
e (x∗

e − x̂e) + γ
y
e (y∗

e − ŷe)) − γ0

γ x
e + πe = 0 e ∈ 1 . . . ,m

γ
y
e +

∑
k∈K

bkv
k
e = 0 e ∈ 1 . . . ,m

πe + vke − φk
e +

∑
i :h(e)=i

μk
i −

∑
i :t (e)=i

μk
i = 0 e ∈ 1 . . . ,m, k ∈ K

(14)

γ0 −
∑
k

μk
kbk −

∑
i,k

μk
i (−

∑
e:h(e)=i

ŵk
e +

∑
e:t (e)=i

ŵk
e )

∑
e

πe(−
∑
k

ŵk
e + x̂e) −

∑
e,k

vke (bk ŷe − ŵk
e ) −

∑
k,e

φk
e ŵ

k
e ≥ 0

−1 ≤ γ0 ≤ 1

γ x , γ y ∈ R
m, γ0 ∈ R

1, μ ∈ R
nK , v, π, φ ≥ 0

As we always work with the same polyhedron, the set of constraints of the LP (14)
does not change at every iteration. The only change is in the objective function that is
defined by the current point to be separated. So one only needs to compute a point in
relint(P) once (Fig. 4).
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0

1 2 3

4 5 6

e1
e2

e3

e4 e5

e6 e7 e8

e9 e10

3 2 6

Fig. 4 The fixed charge network

A small example in detail

Example 3 Here we consider an instance with n = 6 nodes other than the root
node 0 and m = 10 arcs. The network is shown in Fig. 4 along with the demands
at nodes 4,5,6, corresponding to commodities 1,2,3. The variable costs are p =
(4, 2, 2, 1, 1, 2, 2, 2, 1, 1) and the fixed costs f = (25, 42, 17, 36, 18, 34, 25, 48, 37,
46).

Consider the point

e 1 2 3 4 5 6 7 8 9 10

ŷe 1.1 1 1 1 1 1.1 1 1 1 1
ŵ1
e 3 0 0 0 0 3 0 0 0 0

ŵ2
e 3/2 1/2 0 1/2 0 1 1 0 1 0

ŵ3
e 3 3/2 3/2 3/2 3/2 3/2 3/2 3 3/2 3

with x̂e = ∑
k ŵk

e + 0.1.
Since (x̂, ŷ) ∈ relint(P), we apply the linear transformation that maps this point

into 0. Since the separation LP is solved with (x∗, y∗) ∈ aff(P), it follows from
Theorem 1 that the LP (6) is always bounded.

Below we show the results obtained using this facet separation LP. The optimal
value of the LP relaxation of (12) is 113.727. The cuts added at each iteration and the
resulting LP values are shown below. The algorithm terminates after generating eight
inequalities that are facet inducing for P .

Cut Inequali t y L Pval

1 y6 ≥ 1 138.455
2 y1 ≥ 1 156.636
3 6y8 + x10 ≥ 6 178.455
4 y7 + y9 ≥ 1 195.636
5 x8 + 6y10 ≥ 6 198.909
6 6y3 + x5 + x10 ≥ 6 206.636
7 y2 + y4 + y9 ≥ 1 216.455
8 2y7 + x9 ≥ 2 217
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7 Final remarks

It appears that the normalization −1 ≤ γ0 ≤ 1 together with a linear transformation
that maps 0 into a point in the relative interior of the feasible region is a good strategy
for generating cuts that are facet-defining. This and some very limited computational
experience raise some practical questions:

– The separation LP (8) can be viewed as a one dimensional LP. Can one devise
efficient methods that take advantage of this viewpoint?

– When based on an extended formulation Q, solving a large separation LP (7) or
its dual at each iteration can be costly. Can methods, such as variable fixing and
cut-lifting, be used to reduce the size of such LPs?

– Does the generation of facet-cuts reduce the tailing-off effect and the numerical
instability that typically affect pure cutting-plane algorithms?

– Benders’ algorithm applies to problems of the form max{cx + hy : Ax + By ≤
d, x ∈ X} where typically in mixed integer programming X ⊆ Z

n . This is equiv-
alent to the problem max{η : (η, x) ∈ P, x ∈ X}, where Q := {(η, x, y) :
η − cx − hy ≤ 0, Ax + By ≤ d} and P := {(η, x) : ∃y s.t. (η, x, y) ∈ Q}.
Would it be effective to modify Benders’ algorithm with the approach described
above?
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