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Abstract

Let G be a simple, undirected graph with vertex set V . For v ∈ V and
r ≥ 1, we denote by BG,r(v) the ball of radius r and centre v. A set
C ⊆ V is said to be an r-identifying code in G if the sets BG,r(v) ∩ C,
v ∈ V , are all nonempty and distinct. A graph G admitting an r-
identifying code is called r-twin-free, and in this case the size of a
smallest r-identifying code in G is denoted by γr(G).

We study the following structural problem: let G be an r-twin-free
graph, and G∗ be a graph obtained from G by adding or deleting a
vertex. If G∗ is still r-twin-free, we compare the behaviours of γr(G)
and γr(G

∗), establishing results on their possible differences and ratios.

Key Words: Graph Theory, Twin-Free Graphs, Identifiable Graphs, Iden-
tifying Codes.
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1 Introduction

We introduce basic definitions and notation for graphs, for which we refer
to, e.g., [1] and [8], and for identifying codes (see [14] and the bibliography
at [17]).

We shall denote by G = (V,E) a simple, undirected graph with vertex
set V and edge set E, where an edge between x ∈ V and y ∈ V is indifferently
denoted by {x, y}, {y, x}, xy or yx. The order of a graph is its number of
vertices |V |.

A path Pn = x1x2 . . . xn is a sequence of n distinct vertices xi, 1 ≤ i ≤ n,
such that xixi+1 is an edge for i ∈ {1, 2, . . . , n − 1}. The length of Pn is its
number of edges, n− 1. A cycle Cn = x1x2 . . . xn is a sequence of n distinct
vertices xi, 1 ≤ i ≤ n, where xixi+1 is an edge for i ∈ {1, 2, . . . , n − 1}, and
xnx1 is also an edge; its length is n.

A graph G is called connected if for any two vertices x and y, there is
a path between them. It is called disconnected otherwise. In a connected
graph G, we can define the distance between any two vertices x and y,
denoted by dG(x, y), as the length of any shortest path between x and y,
since such a path exists. This definition can be extended to disconnected
graphs, using the convention that dG(x, y) = +∞ if there is no path between
x and y.

For any vertex v ∈ V and integer r ≥ 1, the ball of radius r and centre v,
denoted by BG,r(v), is the set of vertices within distance r from v:

BG,r(v) = {x ∈ V : dG(v, x) ≤ r}.

Two vertices x and y such that BG,r(x) = BG,r(y) are called (G, r)-twins; if
G has no (G, r)-twins, that is, if

∀x, y ∈ V with x 6= y, BG,r(x) 6= BG,r(y),

then we say that G is r-twin-free.
Whenever two vertices x and y are within distance r from each other

in G, i.e., x ∈ BG,r(y) and y ∈ BG,r(x), we say that x and y r-cover each
other. When three vertices x, y, z are such that x ∈ BG,r(z) and y /∈ BG,r(z),
we say that z r-separates x and y in G. A set is said to r-separate x and y
in G if it contains at least one vertex which does.

A code C is simply a subset of V , and its elements are called codewords. For
each vertex v ∈ V , the r-identifying set of v, with respect to C, is the set of
codewords r-covering v, and is denoted by IG,C,r(v):

IG,C,r(v) = BG,r(v) ∩ C.

We say that C is an r-identifying code [14] if all the sets IG,C,r(v), v ∈ V ,
are nonempty and distinct: in other words, every vertex is r-covered by at
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least one codeword, and every pair of vertices is r-separated by at least one
codeword.

It is quite easy to observe that a graph G admits an r-identifying code if
and only if G is r-twin-free; this is why r-twin-free graphs are also sometimes
called r-identifiable.

When G is r-twin-free, we denote by γr(G) the cardinality of a smallest
r-identifying code in G. The search for the smallest r-identifying code in
given graphs or families of graphs is an important part of the studies devoted
to identifying codes.

In this paper and in the forthcoming [4], we are interested in the following
issue: let G be an r-twin-free graph, and G∗ be a graph obtained from G by
adding or deleting one vertex, or by adding or deleting one edge. Now, if
G∗ is still r-twin-free, what can be said about γr(G) compared to γr(G

∗)?
More specifically, we shall study their difference and, when appropriate,
their ratio,

γr(G) − γr(G
∗) and

γr(G)

γr(G∗)
,

as functions of the order of the graph G, and r.
Note that a partial answer to the issue of knowing the conditions for

which an r-twin-free graph remains so when one vertex is removed was
given in [3] and [5]: any 1-twin-free graph with at least four vertices always
possesses at least one vertex whose deletion leaves the graph 1-twin-free; for
any r ≥ 1, any r-twin-free tree with at least 2r +2 vertices always possesses
at least one vertex whose deletion leaves the graph r-twin-free; on the other
hand, for any r ≥ 3, there exist r-twin-free graphs such that the deletion of
any vertex makes the graph not r-twin-free. The case r = 2 remains open.

Of what interest this study is, can be illustrated by the watching of a
museum: we place ourselves in the case r = 1 and assume that we have to
protect a museum, or any other type of premises, using smoke detectors.
The museum can be viewed as a graph, where the vertices represent the
rooms, and the edges, the doors or corridors between rooms. The detectors
are located in some of the rooms and give the alarm whenever there is smoke
in their room or in one of the adjacent rooms. If there is smoke in one room
and if the detectors are located in rooms corresponding to a 1-identifying
code, then, only by knowing which detectors gave the alarm, we can identify
the room where someone is smoking.

Of course we want to use as few detectors as possible. Now, what are
the consequences, beneficial or not, of closing or opening one room or one
door? This is exactly the object of our investigation, in the more general
case when r can take values other than 1.

In the conclusion of [18], it is already observed, somewhat paradoxically,
that a cycle with one vertex less can require more codewords/detectors.
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We shall exhibit examples of large variations for the minimum size of an
identifying code.

A related issue is that of t-edge-robust identifying codes, which remain
identifying when at most t edges are added or deleted, in any possible way;
see, e.g., [11]–[13], [15] or [16].

In this paper, we focus on the addition or deletion of one vertex, whereas
in [4] we study the consequences of adding or removing one edge. We shall
consider two cases,

(i) both graphs G and G∗ are connected,
(ii) the graph with one vertex less may be disconnected,

and observe one significant difference in our results.

Before we proceed, we still need some additional definitions and notation,
and we also give two lemmata which, although trivial, will prove useful in
the sequel.

For a graph G = (V,E) and a vertex v ∈ V , we denote by Gv the graph
with vertex set V ′ and edge set E′, where

V ′ = V \ {v}, E′ = {xy ∈ E : x ∈ V ′, y ∈ V ′}.

If G = (V,E) is a graph and S is a subset of V , we say that two vertices
x ∈ V and y ∈ V are (G,S, r)-twins if

IG,S,r(x) = IG,S,r(y).

In other words, x and y are not r-separated by S in G. By definition, if C
is r-identifying in G, then no (G, C, r)-twins exist.

Lemma 1 [(G,S, r)-twin transitivity] In a graph G = (V,E), if x, y, z are
three distinct vertices, if S is a subset of V , if x and y are (G,S, r)-twins
and if y and z are (G,S, r)-twins, then x and z are (G,S, r)-twins. 4

Lemma 2 If C is an r-identifying code in a graph G = (V,E), then so is
any set S such that

C ⊆ S ⊆ V.

4

We present our main results in the following way. In Section 2 we consider
the case r = 1: we study how large γ1(Gx) − γ1(G) and γ1(Gx)/γ1(G) can
be (Proposition 3), then Theorem 4 states exactly how small the difference
can be (namely, −1).

In Section 3, we study how large the difference γr(Gx)−γr(G) can be, in
the following three cases: (i) r ≥ 2, r is even and the graphs are connected
(Proposition 8); (ii) r ≥ 3, r is odd and the graphs are connected (Propo-
sition 10); (iii) r ≥ 2 and the graph Gx is disconnected (Proposition 12).
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Then we consider how large the ratio γr(Gx)/γr(G) can be (Proposition 14),
and it so happens that the graphs we use are connected.

Finally, we study how small γr(Gx)−γr(G) can be for any r ≥ 2 (Propo-
sition 16) and how small γr(Gx)/γr(G) can be for any r ≥ 2 (Proposition 17),
and again it so happens that the graphs we use are connected.

In these sections, the number n represents the order of either G or Gx, or
an approximation. A general conclusion recapitulates our results in a Table.

2 The case r = 1

Note that we obtain the following result with connected graphs: we found
no better with disconnected graphs.

Proposition 3 Let k ≥ 1 be an arbitrary integer. There exist two (con-
nected) 1-twin-free graphs G and Gx, where G has 2k + dlog2(k + 1)e + 2
vertices, such that γ1(G) ≤ dlog2(k + 1)e + 2 and γ1(Gx) ≥ k.

Proof. We put the cart before the horse and, before defining G, we de-
scribe Gx (see Figure 4 with r = 1): we begin by choosing k vertices x1, . . . ,
xk, none of them adjacent with each other, and then build a graph Gx with a
”small” 1-identifying code in the following way: we take s = dlog2(k+1)e+1
auxiliary vertices a1, . . . , as. We first connect each xi to a1; then we con-
nect each xi to the vertices of a unique nonempty subset Ai of the set
A = {a2, . . . , as}. The sets Ai can indeed be chosen in this way, because
there are 2s−1−1 nonempty subsets of A, and s−1 = dlog2(k+1)e. Without
loss of generality, we can choose the sets Ai in such a way that the graph
constructed so far is connected.

Clearly the auxiliary vertices form a 1-identifying code in this graph:
the 1-identifying set of each auxiliary vertex is a singleton consisting of the
vertex itself; and for all the vertices xi, the 1-identifying set contains a1

and at least one more vertex, and no two of these sets are the same by the
construction.

As the next step, we take another set of k vertices, y1, . . . , yk, none of
them adjacent with each other, and each yi connected to exactly the same
auxiliary vertices aj as xi. In this new graph Gx, which is connected, every
1-identifying code must contain at least one of the vertices xi and yi for
each i: otherwise we cannot 1-separate between xi and its ”copy” yi. But
certainly if for each i we take at least one of xi and yi into the code and take
all the auxiliary vertices aj into the code, then the code is 1-identifying, and
Gx is 1-twin-free. All in all, for this graph Gx, the smallest 1-identifying
code has size at least k.

However, if we add one more vertex x, and connect it to each xi (but
not to any yi nor any aj), then in the resulting graph G the set consisting
of x and all the auxiliary vertices aj is a 1-identifying code.
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Therefore, γ1(G) ≤ dlog2(k + 1)e + 2 and γ1(Gx) ≥ k. 4

Remark. The difference γ1(Gx) − γ1(G) and ratio γ1(Gx)/γ1(G) can be
made arbitrarily large:

γ1(Gx) − γ1(G) ≥ k − dlog2(k + 1)e − 2, (1)

γ1(Gx)

γ1(G)
≥

k

dlog2(k + 1)e + 2
. (2)

In terms of n = 2k + dlog2(k +1)e, which is the approximate order of G and
Gx, we can approximate these two lower bounds by n

2 − 3
2 log2 n and n

2 log
2

n
,

respectively.

An open question is whether these difference or ratio can be made substan-
tially larger.

Theorem 4 Let G = (V,E) be any 1-twin-free graph with at least three
vertices. For any vertex x ∈ V such that Gx is 1-twin-free, we have:

γ1(Gx) ≥ γ1(G) − 1. (3)

Proof. Cf. [9, Prop. 3]. For completeness, we still give a proof. Let x ∈ V
be such that Gx is 1-twin-free. Let Cx be a minimum 1-identifying code
in Gx: |Cx| = γ1(Gx). There are two cases: either (a) x is not 1-covered
(in G) by any codeword of Cx, or (b) x is 1-covered (in G) by at least one
codeword of Cx.

(a) In this case, let C = Cx ∪ {x}. Then C is clearly 1-identifying in G
(in particular, thanks to Lemma 2); therefore, γ1(G) ≤ γ1(Gx) + 1.

(b) x is 1-covered by y ∈ Cx. If Cx is 1-identifying in G, then γ1(G) ≤
γ1(Gx), and we are done. So we assume that Cx is not 1-identifying in G.
This means that either (i) at least one vertex in G is not 1-covered by Cx,
or (ii) at least two vertices in G are not 1-separated by Cx.

(i) Since Cx 1-covers any vertex in Gx and x is linked to y ∈ Cx, this case
is impossible.

(ii) Let u, v ∈ V be two distinct vertices which are not 1-separated by Cx.
One of them is necessarily x, and without loss of generality, we assume that
x = u.

Now, v is unique by Lemma 1: Cx is not 1-identifying in G only because
one pair of vertices, x and v, is not 1-separated by Cx.

Since G is 1-twin-free, there is a vertex z which 1-covers exactly one of
the vertices v and x. We set C = Cx ∪ {z}, and we obtain a 1-identifying
code in G, so γ1(G) ≤ γ1(Gx) + 1. 4

Corollary 5 If γ1(Gx) ≤ a and γ1(G) ≥ a + 1, then γ1(Gx) = a and
γ1(G) = a + 1. 4
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Note that we made no assumption on the connectivity of G or Gx. Examples
where γ1(Gx) = γ1(G) − 1, or γ1(Gx) = γ1(G), are numerous and easy to
find.

Conclusion 6 Provided that the graphs considered are 1-twin-free, we can
see, using Proposition 3 and Theorem 4, that γ1(Gx) − γ1(G) cannot be
smaller than −1, but examples exist where it can be as large as, approxi-
mately, n

2 − 3
2 log2 n, and where the ratio γ1(Gx)

γ1(G) can be as large as, approxi-

mately, n
2 log

2
n
. This can even be obtained with connected examples.

3 The case r ≥ 2

Things are different for r ≥ 2, since we can exhibit pairs of graphs (G,Gx)
proving that γr(Gx) − γr(G) and γr(Gx)/γr(G) can be arbitrarily large or
small.

We first give a result with γr(Gx) − γr(G) arbitrarily large. We start
with connected graphs, and have two subcases, r even and r odd. In both
cases, we shall use the following result on cycles of even length.

Theorem 7 [2] For all r ≥ 1 and for all even n, n ≥ 2r + 4, we have:

γr(Cn) =
n

2
.

4

• (i) Case of a connected graph Gx and r ≥ 2, r even

Proposition 8 There exist two (connected) r-twin-free graphs G and Gx,
with n + 1 and n vertices respectively, such that

γr(Gx) − γr(G) ≥
n

4
− (r + 1), (4)

γr(Gx)

γr(G)
≥

2n

n + 4r + 4
. (5)

Remark preceding the proof. The lower bound (4) is equivalent to n/4
when n increases with respect to r. An open question is whether this can
be improved. The lower bound (5) is equivalent to 2, but will be strongly
improved in Proposition 14.

Proof of Proposition 8. Let r ≥ 2 be an even integer, and n be an (even)
integer such that n = k ·2r, k ≥ 2; let Gx = Cn = x1x2 . . . xn be the cycle of
length n and G be the graph obtained from Gx by adding the vertex x and
linking it to the k vertices xj·2r, 1 ≤ j ≤ k. See Figure 1, which illustrates
the case r = 6, k = 4, n = 48 and G has 49 vertices.
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Figure 1: Graph G in Proposition 8, for r = 6 and k = 4. Squares and
circles, white or black, small or large, are vertices. The 19 black vertices
constitute a 6-identifying code in G.

We know by Theorem 7 that γr(Gx) = n
2 , and we claim that

γr(G) ≤ 1 + (k + 2)
n

4k
=

n

4
+ r + 1,

from which (4) and (5) follow. Proving this claim, by exhibiting an r-
identifying code for G, is tedious and of no special interest; therefore, we
content ourselves with showing how it works in the case r = 6, n = 48,
hoping that this will help the reader to gain an insight into the general case.
We consider a first set

S = {x, x1, x3, x5, x13, x15, x17, x25, x27, x29, x37, x39, x41},

see the small black circles in Figure 1. It is now quite straightforward to
observe that the pairs {x48, x1}, {x2, x3} and {x4, x5} are pairs of (G,S, 6)-
twins, as well as {x12, x13}, {x14, x15}, {x16, x17}, {x24, x25}, {x26, x27},
{x28, x29}, {x36, x37}, {x38, x39} and {x40, x41}, for reasons of symmetry,
and that they are the only ones.

Let us consider the first three pairs, {x48, x1}, {x2, x3}, {x4, x5}. Using
edges going through x, they can be 6-separated, for instance, by the vertices
x16, x14 and x12 (see the large black circles), and these three vertices also 6-
separate the other pairs of (G,S, 6)-twins, except for {x12, x13}, {x14, x15},
{x16, x17}. These three pairs can however be 6-separated by three more
codewords, for instance x4, x2 and x48, see the black squares in Figure 1.
Now the code

C = S ∪ {x12, x14, x16, x48, x2, x4}

is 6-identifying in G and has 1 + (4 × 3) + (2 × 3) = 19 codewords.
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In the general case,

S = {x} ∪ {x1+j·2r, x3+j·2r, . . . , xr−1+j·2r : 0 ≤ j ≤ k − 1},

there are k × r
2 pairs of (G,S, r)-twins, and C can be chosen, for instance,

as
C = S ∪ {xn, x2, . . . , xr−2} ∪ {x2r, x2r+2, . . . , x2r+(r−2)},

which shows that the cardinality of C is

1 + (k ×
r

2
) + (2 ×

r

2
) = 1 + (k + 2)

n

4k
,

and so γr(G) ≤ 1 + (k + 2) n
4k

. 4

Conclusion 9 When r is even, Proposition 8 gives pairs of connected graphs
proving that γr(Gx)−γr(G) can be, asymptotically, as large as approximately
n
4 .

• (ii) Case of a connected graph Gx and r ≥ 3, r odd

Proposition 10 There exist two (connected) r-twin-free graphs G and Gx,
with n + 1 and n vertices respectively, such that

γr(Gx) − γr(G) ≥
n(3r − 1)

12r
− r, (6)

γr(Gx)

γr(G)
≥

6nr

n(3r + 1) + 12r2
. (7)

Remark preceding the proof. An open question is whether the first
lower bound, which is equivalent to n(3r−1)

12r
when r is fixed and n goes to

infinity, can be improved. The second lower bound, equivalent to 6r
3r+1 , will

be improved in Proposition 14.

Proof of Proposition 10. Let r ≥ 3 be an odd integer, and n be an (even)
integer such that n = k · 2r, where k ≥ 3 is a multiple of 3; let Gx = Cn =
x1x2 . . . xn be the cycle of length n and G be the graph obtained from Gx

by adding the vertex x and linking it to the k vertices xj·2r, 1 ≤ j ≤ k.
See Figure 2, which illustrates the case r = 5, k = 6, n = 60 and G has 61
vertices.

We know by Theorem 7 that γr(Gx) = n
2 , and we claim that

γr(G) ≤
n

4
+

n

12r
+ r,

from which (6) and (7) follow. Again, proving this claim is of no interest
here, and we just show how it works in the case r = 5, n = 60. We consider
a first set

S = {x, x1, x3, x11, x13, x21, x23, x31, x33, x41, x43, x51, x53},
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xx
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Figure 2: Graph G in Proposition 10, for r = 5 and k = 6. Squares and
circles, white or black, small or large, are vertices. The 21 black vertices
constitute a 5-identifying code in G.

see the small black circles in Figure 2. It is straightforward to see that only
the following sets of (G,S, 5)-twins exist:
• (i) {x, x10, x20, x30, x40, x50, x60},
• (ii) {x59, x1, x2} together with the five symmetrical sets {x9, x11, x12}, . . .,
• (iii) {x3, x4} together with the five symmetrical sets {x13, x14}, . . .

The first two cases are annoying and will be “expensive” because they
present symmetries with respect to x. Define the set T as follows:

T = S ∪ {x5, x15, x35, x45},

see the large black circles in Figure 2. Now in Case (i), all the vertices are
5-separated by the vertices in T \ S, and so are x59 on the one hand and
x1, x2 on the other hand, as well as their symmetrical counterparts from
Case (ii). The remaining pairs of (G, T , 5)-twins are {x1, x2}, {x3, x4} and
the 10 pairs obtained by symmetry. As in the proof of Proposition 8, these
handle very economically: the vertex x60 5-separates the 5 pairs {x13, x14},
. . . , {x53, x54}, and so does x2 for {x11, x12}, . . . , {x51, x52}; finally, {x1, x2}
and {x3, x4} can be 5-separated, for instance, by x10 and x12, see the black
squares in Figure 2:

C = T ∪ {x60, x2, x10, x12}

is a 5-identifying code in G and has 1 + (6 × 2) + (4 × 1) + (2 × 2) = 21
codewords. In the general case,

S = {x} ∪ {x1+j·2r, x3+j·2r, . . . , xr−2+j·2r : 0 ≤ j ≤ k − 1}

contains 1 + (k × r−1
2 ) vertices; then

T = S ∪ {xr+j·2r : 0 ≤ j ≤ k − 1, j not congruent to 2 modulo 3}

10



contains |S| + 2k
3 elements, and finally we take

C = T ∪ {xn, x2, . . . , xr−3} ∪ {x2r, x2r+2, . . . , x2r+(r−3)},

which shows that

γr(G) ≤ 1 + (k ×
r − 1

2
) +

2k

3
+ (2 ×

r − 1

2
) =

n

4
+

n

12r
+ r.

4

Conclusion 11 When r ≥ 3 and r is odd, Proposition 10 gives pairs of
connected graphs proving that γr(Gx) − γr(G) can be, asymptotically, as

large as approximately n(3r−1)
12r

.

If we do not require to consider a connected graph Gx, then we can ob-
tain a larger difference or ratio than in (4)-(7), we need consider only one
case, whatever the parity of r is, and moreover the construction is easy to
understand; see next paragraph.

• (iii) Case of a disconnected graph Gx and r ≥ 2, r even or odd

Proposition 12 There exist two graphs G and Gx, with p(2r + 1) + 1 and
n = p(2r + 1) vertices respectively, such that

γr(Gx) − γr(G) ≥
n(2r − 2)

2r + 1
− 2r, (8)

γr(Gx)

γr(G)
≥

nr

n + 4r2 + 2r
. (9)

Remark preceding the proof. Can the first lower bound, equivalent to
n(2r−2)

2r+1 , be improved? The second bound, equivalent to r, is still improved
in Proposition 14.

Proof of Proposition 12. Let r ≥ 2 and p ≥ 3 be integers; the graph
Gx consists of p copies of the path P2r+1, and G is obtained by adding the
vertex x and linking it to all the middle vertices of the path copies, see
Figure 3. We claim that: (a) γr(Gx) = 2pr and (b) γr(G) ≤ 2p + 2r, from
which (8) and (9) follow.

Proof of (a). The result comes from the obvious fact that γr(P2r+1) = 2r.
Proof of (b). It is not difficult to check that

C = {x} ∪ {vi,1, vi,2r+1 : 1 ≤ i ≤ p − 1} ∪ {vp,j : 1 ≤ j ≤ 2r + 1}

(see the black circles in Figure 3) is indeed r-identifying in G. Note however
that, for simplicity, we chose to give the bound 2p+2r, when actually, with
a little more care, 2p + 2r − 3 can be reached, which would improve only
slightly on (8) and (9). 4
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Figure 3: The graphs Gx and G in Proposition 12.

Conclusion 13 Proposition 12 gives pairs of graphs (G,Gx), where Gx is
not connected, proving that γr(Gx) − γr(G) can be, asymptotically, as large

as approximately n(2r−2)
2r+1 .

Finally, we give a construction (obtained with connected graphs) with a ratio
γr(Gx)/γr(G) arbitrarily large, but where the difference γr(Gx) − γr(G) is
not as large as in (4) and (6).

Proposition 14 Let k ≥ 2 be an arbitrary integer. There exist two (con-
nected) r-twin-free graphs G and Gx, where G has 2rk+rdlog2(k+1)e+r+1
vertices, such that

γr(Gx)

γr(G)
≥

k

rdlog2(k + 1)e + r + 1
. (10)

Proof. The construction is a straigthforward generalization to any r ≥ 2
of the one used in the proof of Proposition 3, see Figure 4; the basic idea is
similar, but the implementation becomes somewhat more involved.

We consider, for each i between 1 and k, the paths xi(1)xi(2) . . . xi(r),
and yi(1)yi(2) . . . yi(r). We need also some auxiliary vertices. Denoting
again s = dlog2(k + 1)e + 1, for each j = 1, 2, . . . , s, we consider the path
aj(1)aj(2) . . . aj(r); we denote the set of these sr auxiliary vertices by A.
We say that the vertices xi(−h), yi(−h) and aj(h) are on the h-th level (cf.
Figure 4).

We now imitate the proof of Proposition 3, and for each i ∈ {1, . . . , k}
choose a unique nonempty subset Ai of the set {a2(1), . . . , as(1)} and connect
xi(1) and yi(1) by an edge to the vertices aj(1) for which j ∈ {1} ∪ Ai.

12



level 3

a  (1)
1

1
y  (r)

...

...

G

k
x  (1)

...

k
y  (1)

s

1
a  (r)

a  (r)a  (1)
s

level −2

1
x  (1)x  (r)

1

k
y  (r)

x

Figure 4: A partial representation of the graph G in Proposition 14: more
edges exist between the vertices xi(1) and yi(1) on the one hand, and the
vertices aj(1) on the other hand. The case r = 1 can be used to illustrate
Proposition 3.

In the resulting graph Gx, we first take all the vertices in A as codewords.
Then we observe that for an arbitrary, unknown vertex v,

• Br(v) contains at least two vertices aj(r) if v is on the level -1;

• Br(v) does not contain any vertices aj(r) if v is on the h-th level for
some h ≤ −2; and

• Br(v) contains exactly one aj(r) if v ∈ A.

From the last case we see that we can uniquely tell whether or not v ∈ A
simply by looking which vertices of A are in Br(v). We can in fact do even
more: if j is the only index for which aj(r) is in Br(v), then v is one of
the vertices aj(h) for some h = 1, 2, . . . , r. We know that aj(1) is connected
to at least one xi(1) (as we chose s to be as small as possible) and xi(1)
is connected to at least one aj′(1) with j′ 6= j. Then exactly r − h of the
vertices aj′(1), . . . , aj′(r) are in Br(v), and this uniquely identifies v.

Assume now that we already know that v /∈ A. Let h be the highest level
for which some aj(h) belongs to Br(v). Then v must be one of the vertices
xi(r+1−h) or yi(r+1−h), and moreover, we can uniquely tell i by looking
at the indices j for which aj(h) belong to Br(v), because by the construction
{j : aj(h) ∈ Br(v)} = {1} ∪ Ai (as we can only reach these vertices from v
by going from v to xi(1) or yi(1) and from it directly to those aj(1) to which
xi(1) or yi(1) was connected to by an edge).

In conclusion, by only looking at which auxiliary vertices are in Br(v)
we can ”almost” identify v: we find indices i and m such that v is either

13



xi(m) or yi(m). This implies that the graph is clearly r-twin-free. Indeed, if
all the vertices are in the code, then the only remaining task, i.e., separating
each xi(m) from yi(m), becomes easy: if xi(r) is in Br(v) then v = xi(m);
if not then v = yi(m).

Moreover, every r-identifying code must contain at least one element of
the set {xi(1), xi(2), . . . , xi(r), yi(1), yi(2), . . . , yi(r)}: otherwise we cannot
r-separate xi(1) and yi(1). Consequently, any r-identifying code in this
graph has size at least k.

We now add one more vertex x, and connect it by an edge to each
xi(r). We claim that the vertex x together with all the vertices in A form
an r-identifying code. By the construction, the set Br(v), v 6= x, contains
exactly the same vertices of A as before adding the vertex x (and the set
Br(x) contains none), so the only thing to check is that xi(m) and yi(m)
can now be r-separated: but this is indeed done by x. 4

Remark. In terms of n = 2rk + rdlog2(k + 1)e, the lower bound (10) can
be approximated by n

2r2 log
2

n
and is open to improvements.

Conclusion 15 Proposition 14 gives pairs of (connected) graphs proving
that γr(Gx)/γr(G) can be, asymptotically, as large as approximately n

2r2 log
2

n
.

Then we turn to examples where γr(G) − γr(Gx) is arbitrarily large. Note
that we obtain this result with connected graphs.

Proposition 16 There exist two (connected) r-twin-free graphs Gx and G,
with n = pr + 1 and pr + 2 vertices respectively, such that

γr(Gx) = p + 2r − 3 =
n + 2r2 − 3r − 1

r
and γr(G) = r(p − 1) + 1 = n − r,

where p is any integer greater than or equal to 3.

Proof. Let r ≥ 2 and p ≥ 3 be integers; before defining G, we describe Gx

in the following informal way, illustrated in Figure 5(a): Gx consists of
p copies of the path Pr, and in each copy the last vertex is linked to v. This
graph has n = pr + 1 vertices. Next, we construct the graph G consisting
of Gx to which we add one vertex x, linked to each first vertex of all the
copies of Pr. See Figure 5(b). We claim that: (a) γr(Gx) = p + 2r − 3, and
(b) γr(G) = r(p − 1) + 1, from which (13) and (14) follow.

Proof of (a). The code

C = {v1,i : 2 ≤ i ≤ r} ∪ {v2,i : 1 ≤ i ≤ r} ∪ {vj,1 : 3 ≤ j ≤ p},

i.e., the code consisting of all the vertices of the first two copies of Pr,
except v1,1, and the first vertex of each of the following copies, is r-identifying
in Gx; this it is straightforward to check. So γr(Gx) ≤ (r−1)+r+(p−2) =

14
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Figure 5: The graphs Gx and G in Proposition 16.

p + 2r − 3. We now prove that γr(Gx) ≥ p + 2r − 3. The following two
observations will be useful. For 1 ≤ i ≤ p and 2 ≤ k ≤ r, we have:

BGx,r(vi,r−k+1)∆BGx,r(vi,r−k+2) = {vj,k : 1 ≤ j ≤ p, j 6= i}, (11)

where ∆ stands for the symmetric difference, and for 1 ≤ i < j ≤ p:

BGx,r(vi,r)∆BGx,r(vj,r) = {vi,1, vj,1}. (12)

The consequences are immediate. First, in order to have the vertices vi,r,
1 ≤ i ≤ p, pairwise r-separated in Gx, we see by (12) that we need at least
p − 1 codewords among the p vertices vi,1; second, for k fixed between 2
and r, we see, using (11), that we need at least two codewords among the
p vertices vi,k. So γr(Gx) ≥ (p − 1) + 2(r − 1) = p + 2r − 3, and Claim (a)
is proved.

Proof of (b). Note that in G, for i and j such that 1 ≤ i < j ≤ p, the
set of vertices

{x} ∪ {vi,k : 1 ≤ k ≤ r} ∪ {v} ∪ {vj,k : 1 ≤ k ≤ r}

forms the cycle C2r+2, which is r-twin-free and is denoted by C(i, j). On
such a cycle, we say that the vertex z is the opposite of the vertex y if z is
the (only) vertex at distance r + 1 from y.

We claim that, for k fixed between 1 and r, among the p vertices vi,k, at
least p− 1 of them belong to any r-identifying code C in G. Indeed, assume
on the contrary that two vertices, say v1,k and v2,k, are not in C; then their
opposite vertices in C(1, 2), v2,r−k+1 and v1,r−k+1 respectively, cannot be
r-separated by C.
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Finally, the fact that BG,r(v)∆BG,r(x) = {v, x} shows that v or x belong
to C, and finally γr(G) ≥ (p − 1)r + 1. On the other hand,

{v} ∪ {vi,k : 2 ≤ i ≤ p, 1 ≤ k ≤ r}

is an r-identifying code in G, with size (p−1)r+1, thus Claim (b) is proved.
Observe that this code contains all the vertices in G, except the r+1 vertices
x and v1,k, 1 ≤ k ≤ r. 4

Note that we could have contented ourselves with the inequalities γr(Gx) ≤
p + 2r − 3 and γr(G) ≥ r(p − 1) + 1, so as to obtain γr(G) − γr(Gx) ≥

p(r − 1) − 3r + 4 and γr(G)
γr(Gx) ≥

r(p−1)+1
p+2r−3 .

Remark. The difference

γr(G) − γr(Gx) = p(r − 1) − 3r + 4

can be made arbitrarily large; in terms of n, the number of vertices of Gx,
we can see that we have:

γr(G) − γr(Gx) =
(n − 3r)(r − 1) + 1

r
, (13)

which is equivalent to n(r−1)
r

when r is fixed and n goes to infinity. As far
as the ratio given by Proposition 16 is concerned, we have:

γr(G)

γr(Gx)
=

r(n − r)

n + 2r2 − 3r − 1
, (14)

which is equivalent to r when we increase n. This can be improved, with a
ratio which becomes arbitrarily large; again, it so happens that the graphs
are connected:

Proposition 17 Let k ≥ 2 be an arbitrary integer.
There exist two (connected) 2-twin-free graphs G and Gx, where G has 3k +
2dlog2(k + 2)e + 4 vertices, such that

γ2(G)

γ2(Gx)
≥

k

2dlog2(k + 2)e + 3
. (15)

Let r ≥ 3. There exist two (connected) r-twin-free graphs G and Gx, where
G has (r + 1)k + rdlog2(k + 2)e + 2r + 1 vertices, such that

γr(G)

γr(Gx)
≥

k

rdlog2(k + 2)e + r + 3
. (16)

Proof. We first deal with the general case r ≥ 3. We construct the graph G
for a given k ≥ 2 in the following way, see Figure 6: G consists of the paths
xi(0)x(1)x(2) . . . x(r−2)x(r−1)x and yi(0)yi(1) . . . yi(r−1), for i = 1, . . . , k,
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Figure 6: A partial representation of the graph G in Proposition 17, in the
general case r ≥ 3: more edges exist between the vertices xi(0) and yi(0) on
the one hand, and the vertices aj(1) on the other hand.

of the path a1(1) . . . a1(r + 1), of the paths aj(1) . . . aj(r) for j = 2, . . . , s,
where s = 1 + dlog2(k + 2)e, plus the edge xa1(1) and the following edges,
joining exclusively the vertices xi(0) and yi(0) on the one hand, and the
vertices aj(1) on the other hand: for each i we choose a unique nonempty
proper subset Ai of the set A = {2, 3, . . . , s}, and connect every xi(0) and
every yi(0) to every vertex aj(1) for which j ∈ Ai. Moreover, we connect
every xi(0) and every yi(0) to a1(1). The sets Ai can indeed be chosen in
this way, because there are 2s−1 − 2 proper nonempty subsets of A, and
s − 1 = dlog2(k + 2)e. Without loss of generality, we can choose the sets
Ai in such a way that each aj(1) has degree at least two, and so the graph
constructed is connected, as will be Gx.

We say that the vertices x(−h), xi(−h), yi(−h) and aj(h) are on the
h-th level, cf. Figure 6 (and x is not given any level). Let

A = {aj(h) : 1 ≤ j ≤ s, 1 ≤ h ≤ r} ∪ {a1(r + 1)}.

Let us first consider Gx, and let C = A ∪ {x1(0), x(r − 1)}. We show that
C is r-identifying, so that γr(Gx) ≤ sr + 3. The argument is very similar to
the first part of the proof of Proposition 14: let v be an arbitrary, unknown
vertex in Gx.

If v belongs to A, then v is r-covered by exactly one codeword aj(r),
whereas every vertex of level 0 is r-covered by at least two codewords of
level r, and no vertex with negative level is r-covered by any codeword of
level r; if v ∈ A is r-covered by aj(r), we know moreover that v = aj(h)
for some h between 1 and r + 1. If h < r, then h is given by the highest
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level ` of any codeword aj′(`) r-covering aj(h), with j′ 6= j (such a j′ exists
because aj(1) is connected to at least one xi(0), which in turn is connected
to at least one aj′(1)). If j 6= 1 and h = r, then h is given by the fact that
no codeword aj′(`) (j′ 6= j) r-covers aj(h). And if j = 1 and h ∈ {r, r + 1},
then the codeword x1(0) tells whether h = r or h = r + 1. This means that
we can determine first that v ∈ A, then on which path and at which level it
is located.

If v /∈ A, then its level can be determined by the highest level, say `, of
the codewords in A which r-cover it. Then the codeword x(r − 1) tells if v
is of type x or y; and finally, if v = xi(0) or v = yi(h) for some h between 0
and r − 1, then we can uniquely tell i by looking at the indices j for which
aj(`) ∈ Br(v), because by the construction {j : aj(`) ∈ Br(v)} = {1} ∪ Ai.
This ends the study of Gx.

We now consider the graph G, and prove that it is r-twin-free. Com-
paring with the previous graph Gx, it is still true that every vertex in A
is r-covered by exactly one vertex aj(r), whereas every vertex of level 0 is
r-covered by at least two vertices of level r, and no vertex with negative
level is r-covered by any vertex of level r – and note that x is r-covered by
exactly one aj(r), namely a1(r); it is still true that no two vertices inside A
are r-twins, that one vertex in A and one vertex of type y or x (except
maybe x itself) are not r-twins, and that no two vertices of type y are r-
twins; also, thanks to the vertices yi(r−1), no vertex of type y can be r-twin
with a vertex of type x; but we have to see what happens with the vertices
of type x between themselves, and with the vertex x and one vertex in A.

Now x is not r-twin with any aj(h), j > 1, thanks to aj(r), and not either
with any a1(h), thanks to a1(r + 1) – note in particular that a1(r + 1) is
the only vertex r-separating x and a1(2). Assume finally that v is of type x,
v 6= x. If v = xi(0) for some i, the set of indices j for which aj(r) ∈ Br(v)
equals {1} ∪ Ai, has size at least two, and identifies v. So assume that v is
not on level 0, and denote by h ∈ {1, 2, . . . , r− 1} the largest level for which
at least one aj(h) belongs to Br(v). If the only shortest path between v
and a1(1) goes via x, then {j : aj(h) ∈ Br(v)} = {1}; if there is a shortest
path between v and a1(1) that goes via one (and hence all) xi(0), then
{j : aj(h) ∈ Br(v)} = {1, 2, . . . , s}: in both cases, h uniquely identifies v.

Ultimately, what is the smallest size of an r-identifying code in G? For
a given i between 1 and k, it is easy to see that we have:

Br(yi(0)) = Br(xi(0)) ∪ {yi(r − 1)}, (17)

where the right-hand side is a disjoint union; this shows that any r-identifying
code in G contains at least k elements, and ends the case r ≥ 3. Note that if
we had considered this construction for r = 2, then (17) would not be true,
since x(1) would be in B2(xi(0)) \ B2(yi(0)).

When r = 2, the previous construction does not work, as we have just seen,
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Figure 7: A partial representation of the graph G in Proposition 17, in the
particular case r = 2: more edges exist between the vertices xi(0) and yi(0)
on the one hand, and the vertices aj(1) on the other hand.

but the following does: the x-paths are again xi(0)x(1)x, and the y-paths
are yi(0)yi(1) as before; the vertex a1(3) is removed, and, keeping all the
edges between the vertices of level 1 in A and the vertices of level 0 as before,
we add all the edges between x and the vertices of level 0; see Figure 7.

It is then rather straightforward, using the same kind of argument as in
the general case, to check that C = {aj(h) : 1 ≤ j ≤ s, 1 ≤ h ≤ 2} ∪ {x(1)}
is 2-identifying in Gx, that G is 2-twin-free, and that any 2-identifying code
in G needs at least k codewords. 4

Remark. In terms of n = (r + 1)k + rdlog2(k + 2)e, the approximate order
of G and Gx, we can approximate the lower bounds in (15) and (16) by

n
r(r+1) log

2
n
. Again, can the bounds given in (13), (15) and (16) be signifi-

cantly improved?

Conclusion 18 When r ≥ 2, Propositions 16 and 17 provide pairs of graphs
proving that γr(Gx) − γr(G) can be, asymptotically, as small as approxi-

mately −n(r−1)
r

, and γr(Hx)
γr(H) can be, asymptotically, as small as approximately

r(r+1) log
2

n

n
, and both can even be obtained with connected examples.

4 General conclusion

Table 1 recapitulates the results obtained in the previous sections, using in
particular the Conclusions 6, 9, 11, 13, 15 and 18; these are stated for n large
with respect to r, where n is the approximate order of G or of Gx; when using
' X (respectively, / X), we mean that we have a lower bound (respectively,
an upper bound), for the difference or ratio, which is approximately X . We

only consider the difference γr(Gx) − γr(G) and the ratio γr(Gx)
γr(G) .
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r r comment γr(Gx) − γr(G) γr(Gx)
γr(G) reference

impossible to have < −1
r = 1

(connected) graphs ' n
2 − 3

2 log2 n ' n
2 log

2
n

Concl. 6

≥ 2

even connected graphs ' n
4 Concl. 9

odd connected graphs ' n(3r−1)
12r

Concl. 11

any
graphs ' n(2r−2)

2r+1 Concl. 13

(connected) graphs ' n
2r2 log

2
n

Concl. 15

/ −n(r−1)
r≥ 2 any (connected) graphs

/ r(r+1) log
2

n

n

Concl. 18

Table 1: The difference γr(Gx) − γr(G) and ratio γr(Gx)
γr(G) , as functions of n

and r.
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