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We consider integer programs in which the objective function and constraint matrix are 
fixed while the right-hand side varies. The value function gives, for each feasible right-hand 
side, the criterion value of the optimal solution. We provide a precise characterization of the 
closed-form expression for any value function. 

The class of Gomory functions consists of those functions constructed from linear func- 
tions by taking maximums, sums, non-negative multiples, and ceiling (i.e., next highest integer) 
operations. 

The class of Gomory functions is identified with the class of all possible value functions by 
the following results: (1) for any Gomory function g, there is an integer program which is 
feasible for all integer vectors v and has g as value function; (2) for any integer program, 
there is a Gomory function g which is the value function for that program (for all feasible 
right-hand sides); (3) for any integer program there is a Gomory function f such that f(v)<-0 
if and only if v is a feasible right-hand side. Applications of (1)-(3) are also given. 

Key words: Integer Programming, Cutting-Planes, Subadditive Duals. 

1. Introduction 

The value  func t i on  of the pure  integer  program 

min  cx, 

sub jec t  to A x  = b, 

x -> 0, x integer ,  
(1.1) 

p rovides  the sens i t iv i ty  analys is  of (1.1) to changes  in the r ight -hand-s ide  b. 

Specifically,  it is the func t i on  G such that  G ( b )  is the opt imal  value of (1.1). 

W h e n  (1.1) is i ncons i s t en t  (i.e. w h e n  there is no  x - O, x integer ,  with A x  = b) we 

put  G ( b )  = +oo. We also al low values  G ( b )  = -oo if no lower  b o u n d  can be put  on 

cx over  the set of  so lu t ions  to the cons t ra in ts .  We shall a s sume  th roughou t  the 
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paper that 

A, b and c are rational matrices and vectors, 
and G(0) > - ~. (1.2) 

The hypothesis G(0)> - ~  implies that G(v)> - ~  for all v. 
This paper provides an exact description of the class of value functions, by 

showing how they are iteratively constructed by simple operations, and by 
showing also that all functions thus constructed are value functions. In order to 
give the intuitive content of our results, we provide this verbal sketch of the 
class of functions involved: they are exactly the functions (which we call 
'Gomory functions' in Section 2 below) which are obtained by starting with the 
linear functions )~b, and finitely often repeating the operations of sums, maxima 
and nonnegative multiples of functions already obtained, and rounding up to the 
nearest integer. Thus, for example the Gomory function G(bl ,  b2)= 

max{ - 3 b l + lb2, b l + b2 + C~b2q} is the value function of some two-constraint pure 
integer program, where rr7 denotes the least integer which is greater than or 
equal to the real number r. 

Perhaps the main deficiency of our intuitive summary is that it ignores the 
domain of definition of the value function, which, as it turns out, is defined by 
the vectors for which a second Gomory function is not positive (see Theorem 
3.13 and Theorem 5.2 below). In Section 2 we give precise definitions for the 
terms to be used later on, further motivation and discussion of related literature, 
and some preliminary results. 

Our intuitive summary shows that, once the 'technology matrix' A and 
'criterion function' c are fixed in the integer program (1.1), there is a simple 
(although perhaps lengthy) closed form expression for the value of the solution 
in terms of the right-hand-side (r.h.s.) b. This result is in exact analogy to the 
similar result for a linear program: in fact, the value functions of linear programs 
are built up precisely in the same way, except  that the rounding-up operation is 
not used. The characterization of linear programming value functions does not 
require the rationality hypotheses in (1.2). 

This paper is a continuation of our earlier investigations (Blair and Jeroslow, 
1977, 1979; Jeroslow, 1979). We extend work of Gomory (1963), particularly 
from the perspective of Chvfttal (1973), and we have benefited from Schrijver 
(1979) and Wolsey (1979, 1981). These are the most immediate influences on our 
results here, and recent related work has been done by Edmonds and Giles 
(1977). The literature on this topic, which is part of the theory of cutting-planes, 
is extensive and partially summarized in the references of the survey of 
Jeroslow (1978a). 

This completes our introductory remarks. The plan of the remainder of the 
paper is as follows. Section 2 defines the Gomory functions and establishes some 
of their important properties. In Section 3, we show that Gomory functions 
provide value functions, by means of the monoid basis results of Jeroslow 
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(1978b). Section 4 is devoted to the proof  of some elementary principles which 
are used later, and seem to have some interest in their own right. In Section 5 

we prove that value functions are Gomory  functions. Section 6 is devoted to the 
proof of two results (Theorems 6.2 and 6.3) which are closely related to our 
study of the value function, the first of which (Theorem 6.2) is a result 
announced in Wolsey (1979). In Section 7 we work an example to illustrate our 

characterization of the value function. 
We conclude this section with some notational issues. In (1.l), A is an m by n 

matrix with columns denoted by aj: A = [ai] [cols]. Also b is an m by one vector,  

c is one by n, and x is n by one; for components  we write c = (cj) = (Cl, ..., cn), 
b = (b~) = (bl, .  . . . .  bin) and x -- (xj) = (xl . . . . .  x,). With this notation, Ax  = b can also 
be written ~i"--i aixj = b, and we use the second form generally when some 
specific column of A has to be identified (as in Section 5 below). 

All variables, such as the xj, are understood as continuous throughout,  which 
here means rational; if a variable is to be restricted to be integer this will be 
explicitly stated. In many contexts below, it does not actually matter whether 
our continuous variables are rationals or reals, but we shall not treat the latter 
distinction. We let Q denote the rationals. If v and w are vectors we will use vw 

for  the inner product.  

2. Chvfital functions and Gomory functions; general background 

The class q~ of Chvfital functions consists of essentially the Gomory  functions 

built up without taking maximums. The exact definition follows. 

Definition 2.1. The class %, of m-dimensional Chvdtal functions is the smallest 
class c¢ of functions with these properties; 

(i) f E ~¢ if f (v)  = Av and A E Qm (here v = (vl .... , vm)); 
(ii) f, g E c¢ and a , /3  - 0 with a, /3 E Q, implies a f  +/3g E q~; 

(iii) f E ~ implies rf~ E q~, where r f7 is the function defined by the condition 

rfT(v) = rf(v)7. (2.1) 

Definition 2.2. The class ~ of  Chvdtal functions is defined by 

= U {q~m ]m -> 1, m integer}. (2.2) 

Note  that, while non-negative multipliers a, /3-> 0 occur in clause (ii) of 
Definition 2.1, the vector  A E Qm of clause (i) is unrestricted in sign. 

We similarly obtain an exact definition of the class of Gomory  functions. 

Definition 2.3. The class %~ of m-dimensional Gomory functions is the smallest 
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class ~ of functions with the properties (i)-(iii) of Definition 2.1, and also this fourth 
property: 

(iv) f, g E ~ implies max(f, g} E cg. 

Definition 2.4. The class ~ of Gomory functions is defined by 

~3 = U {%n I m --> 1, m integer}, (2.3) 

In Definitions 2.1 and 2.3 the function notation is understood in the usual way. 
For example, the function a f  +/3g of Definition 2.1(ii) is defined by the con- 
dition: 

(cff+ ASg)(v) = eft(v) + [3g(v) for all v ~ Q~. (2.4) 

Similarly, the defining condition for max(f, g} in Definition 2.3(iv) is max(f, g} 
(v) = max{f(v), g(v)}. Note that function f ~ ~3m or f E ~m are defined for all 
v E Qm, although in several instances below, we shall have occasion to restrict 
their domains to smaller sets, as e.g. integer vectors v @ Z m. 

Of course, the device of phrasing ~ and q3~ in terms of smallest classes of 
functions, which contain the linear function and have certain closure properties, 
is equivalent to saying that these classes are built up from the linear functions by 
iterative finite application of the operations defined in the closure properties. Our 
next definition makes the concept of 'iterative application' exact. 

Definition 2.5 A function f has pre-rank zero if it is a linear function. It has 
pre-rank (r + l) exactly if there are functions g, h of pre-rank - r which satisfy 
at least one of these conditions: 

(i) f -- ag +/3h for some rational scalars a,/3 -> 0; or 
(ii) f = max{g, h} or 

(iii) f = ~g~. 
In general, a function has several pre-ranks. 

Definition 2.6. If f has at least one pre-rank, its rank is its least pre-rank. 

We can now state and prove the equivalence of e.g. Definition 2.3 with one by 
iterative application. 

Proposition 2.7. For an m-dimensional function f, f E ~m if and only if f has a 
pre-rank. 

Proof. Let Y( be the class of all m-dimensional functions f which have a 
pre-rank. If f E~(, one proves f E ~m by induction on the rank of f. Thus 
5( C_ q3m. Conversely it is easy to prove that 3{ satisfies (i) to (iv) of Definition 2.3. 
Therefore ~,, C 5~, hence ~g,. = ~. 
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Many results about Chvfital and Gomory functions are most easily proven by 
induction on rank. We will sometimes use the phrase 'induction on the formation 
of f '  to mean induction on the rank of f. 

We next define a class of functions which we shall need in Section 5, to 
discuss the components of an optimal solution to (1.1). 

Definition 2.8. The class ~f, of unrestricted m-d imens iona l  Gomory  func t ions  is 
the smallest class 5g with properties (i) and (iii) of Definition 2.1, and (iv) of 
Definition 2.3 and also this property: 

(ii) f, g E 3f and a,/3 E Q implies a f  +/3g E ~L 

The class cg -+ is defined by 

~3 -+ = U {~3~,1 m --- 1, m integer}. 
m 

We remark that the composition of unrestricted Gomory functions is an 
unrestricted Gomory function. 

The rounding-up operation rr7 (actually, truncation Lrj, but r r ' = - L - r  j) 
occurs in Gomory's  'method of integer forms'. It also occurs in the following 
'rule of deduction' which is due to Chvfttal (1973), which we here adapt to 
non-negative (rather than unconstrained) integer variables: 

If the inequality 7rlxl + 'w2x2 + ' ' "  -~- 7rnXn ~ 7tO is valid, and if the xj are 
non-negative integers, then the inequality 77r~Tx~ + FTr27x2 + ... + rTrn~X, >_ 

rTr0 n is also valid. (2.6) 

For example, if ~x~ -> 6 ~ (i.e. xl -> ~) is valid, and if Xl is a non-negative integer, then 
xl-> 1 is valid. 

Chvfital's rule can be justified in two steps. For if its hypothesis is valid, then 
by adding suitable multiples of the non-negativities x~->0, we see that the 
weaker statement 

VOT17X1 J r  r T r 2 7 X 2  q-  " ' "  -+- VTrnTXn ~ 3"i" 0 (2.7) 

is valid. Since the left-hand side of (2.7) is an integer for integral xj, and is not 
less than It0, it also is not less than rTr07. This justifies Chvfital's rule. 

Chv~ttal and Hoffman observed (see Chv~ital (1973)) that Gomory's  algorithm 
proceeds by certain instances of the rule (2.6). The precise mode of its im- 
plementation of (2.6) is affected by the way it introduces variables for cuts, and 
in its given form Gomory's  algorithm is not convenient for analysis. If the 
Chv~ital operations is repeatedly applied, and is viewed as parametric in the 
right-hand side, it constructs a Chvfital function (see Wolsey (1981)). 

The Chvfital functions are essentially the discrete analogue of linear functions. 
We will see below that their carrier is linear and that they are pointwise close to 
it (Definition 2.9 and Proposition 2.10). Now if this analogy holds true, just as the 
value functions of linear programs are the finite maximum of linear functions, 
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the value function of an integer program should be a finite maximum of Chvfital 
functions. That is why one might conjecture that value functions are Gomory 
functions, at least on their domain of definition. 

The technical difficulties toward establishing the equivalence of Gomory 
functions and integer value functions should be clear enough. For one thing, 
further operations, beyond maxima, might be necessary. For another, it is 
conceivable that infinitely many different Chv~ital functions occur for the 
infinitely many possible right-hand-sides b. In fact, our result, that the value 
function G is a Gomory function, can be construed as a 'hyper-finiteness' result 
concerning Gomory-type algorithms based on the Chvfital operation (2.6). 

We establish as a consequence of our work, that not only can such algorithms 
be designed to be finitely convergent, but one uniform finite upper bound on the 
number of cuts needed is valid for all r.h.s. (once A and c are fixed in (1.1)). 

We associate with each Gomory function f ~ q3 a set of homogeneous poly- 
hedral functions called 'carriers', in our next definition. The carrier will turn out 
to be unique. 

Definition 2.9. To every f E cgm we assign a set S(f) of functions inductively as 
follows: 

(i) If f ~ %~ is linear (i.e. f (v )  = ,~v for some h E Qm), then f ~ S(f). 
(ii) If f E cgm can be written as f = ag +/3h with a,/3 ~ Q non-negative and g, 

h E cgm, and if g' E S(g) and h' E S(h), then ag'+/3h'  ~ S(f) .  
(iii) If f ~ cg~ can be written as f = rg~ with g E (g~, and if g ' ~  S(g), then 

g'~ S(f). 
(iv) If f ~ ~3m can be written as f = max{g, h} with g, h E ~J~ and if g' ~ S(g) and 

h' ~ S(h), then max{g', h'} ~ S(f). 
(v) The sets S(f), f E ~d~, are formed by inductive application of rules (i)-(iv) 

preceeding. 

Because of clause (iii) in Definition 2.9 a carrier, i.e. an element of S(f), of 
f E qd,n is trivially obtained by simply deleting the integer round-up operations. 
For example, if f ( v )  = max{-  bl + ]b2, 2bl + r _  b T}, then one carrier of f is 
max{ - b l + ~b2, b 1}. 

Proposition 2.10. If  f '  ~ S(f), f E cg, then f '  is a homogeneous function iteratively 
constructed from linear functions by taking sums and maximums,  and f '  
satisfies, for  some constant k >- 0 (depending on the formation of f'): 

O < - f ( v ) - f ' ( v ) < - k  for a l l v E O m .  (2.8) 

Moreover, if f E ~, then f '  is linear. 

Proof. The nature of f '  is evident as the clauses (i)-(iv) of Definition 2.9 do not 
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involve the round-up operation, and such functions f '  are easily proven to be 

homogeneous by induction on their iterative formation. 
Similarly, the inequality f (v) - - - f ' (v)  is easily seen to be preserved in clauses 

(i)-(iv). For example, if f = ag + [3h, then since g --- g' and h -> h', and a , /3  -> 0, 
we have f >- a g ' +  /3h' = f ' .  We now examine the bound f ( v ) -  f ' ( v )  <- k of (2.8). 

If f '  is a carrier of f due to clause (i), k = 0 since f = f ' .  
If f '  is a carrier of f due to clause (ii), let k~ and k2 be such that 

g ( v ) -  g ' (v)  <-- kl for all v ~ R" ,  
h(v )  - h ' (v)  <- k2 for all v E R m. (2.9) 

kl and k2 exist by induction on the number of steps in the inductive formation of 

g' and h' under the clauses of Definition 2.9. Then we have, as f '  = ag'  +/3h' ,  

f ( v )  - f ' ( v )  <- a ( g ( v )  - g ' (v))  + [3(h(v) - h ' (v))  

< otkl +/3k2, (2.10) 

so we may take k = ak~ +/3k2. 
If f '  is a carrier of f due to clause (iii), let k' be such that 

g ( v ) - g ' ( v ) < - k  ' for a l l v E R  m, (2.11) 

Then as f ' =  g', we have 

f ( v )  - f ' ( v )  = F g(v)n - g ' (v)  < k '+  1 (2.12) 

and we may take k = k' + 1. 

Clause (iv) formation is handled in a manner similar to clause (ii). For  f E ~, f '  
is linear, since no application of maximums (clause (iv)) occurs. 

Corollary 2.11. For  f E cg, S ( f )  contains  exact ly  one funct ion .  

Proof. Clearly S(f)  # 0 by induction on the rank of f. Let  f~, f ~ E  S( f ) .  If f[  # f~, 
let v0 be such that f{(vo) ~ f~(vo). Let  k~, k2 be such that, for all v, 

O < - - f ( v ) - f ~ ( v ) < - k l ,  O < - f ( v ) - f ~ ( v ) < - k 2 .  

For all ~t -> 0, (2.13) applied to v = Av0 gives 

But (2.14) 
f l ¢  f~. 

(2.13) 

Ifi(vo) - f~(vo)l = If~(YWo) - f~O~vo)l 

< Ifi(Xvo)-f(~vo)l + If(~vo)-f~(~vo)l 
-< kl + k> (2.14) 

is impossible for  A > (kl+ k2)/([f{(vo)-f~(vo)l), and this contradicts 

Definition 2.12. A monoid  is a set M of vectors of Qm whic forms a semi-group 
under addition in Qm. To be precise: (i) 0 E M ;  and (ii) if v , w ~ M ,  then 
v + w E M. The monoid M is integral if it contains only integer vectors.  
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Any monoid M S  {0} contains infinitely many elements. Any set of vectors 
generates a monoid by taking all non-negative integer combinations of vectors in 
the set. 

A function f : M ~ R, with M a monoid, is called subadditive if 

f (v  + w) < - f ( v ) + f ( w )  for all v, w ~ M. (2.15) 

The interest in subadditive functions is that they generate valid cutting-planes, as 
summarized in our next result. 

Proposition 2.13. (Gomory, 1969). I f  f is a subadditive function on the monoid 
generated by the columns of A = [aj], then the inequality 

t l  

j~if(aj)xj >- f (b  ) (2.16) 

is satisfied by all solutions to (1.1). 

A converse to Proposition 2.13 is also true. 

Proposition 2.14 (Jeroslow, 1979). Assume that (1.1) is consistent. If  the in- 
equality 

t l  

j=~l Ilixi -> II0 (2.17) 

is satisfied by all solutions to (1.1), then there is a subadditive function f, defined 
on the monoid generated by the columns of A = [ai], which satisfies 

f(O) = O, f(ai) <- IIj for j = 1 . . . . .  n, f ( b )  >- IIo. (2.18) 

We remark that it is easy to derive (2.17) as a consequence of (2.18) and (2.16), 
if one simply notes that x -> 0 for all solutions to (1.1). 

An alternate form of Propositions 2.13 and 2.14 is the 'subadditive dual' we 
referred to earlier. 

Theorem 2.15 (Jeroslow, 1979). I f  (1.1) is consistent and has a finite value, then 
this program has the same finite value: 

max f(b),  (2.19) 

subject to f (a j )<-q,  j =  l . . . . .  n, 
f subadditive on the monoid generated by the columns of  
A = [aj]. 

Moreover, the value function G is always an optimal solution to (2.19). 

We next relate subadditivity to Gomory functions (Proposition 2.17). 
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Lemma 2.16. Suppose that f and g are subadditive on M, and ~, [3 >- O. Then the 

following functions are subadditive on M:  

(i) af  + [3g, 
(if) rf~, 

(iii) max{f, g}, 

Proof. Let  v, w ~ M be given. Then we have 

(af  + [3g)(v + w) = af(v  + w) + [3g(v + w) 

<-- a f (v)  + a f (w)  + [3g(v) + [3g(w) 
<--- (a f (v)  + [3g(v)) + (a f (w)  + [3g(w)) 

= (af  + [3g)(v) + (af  + [3g)(w), (2.20) 

which establishes (i). Also 

rf~(v + w) = rf(v + w) ~ 

<- ~f(v)  + f ( w )  ~ 

<- rf(v)7 + Ff(w)7 = FfT(v) + rfT(w), (2.21) 

which establishes (if). The first inequality in (2.21) is due to the subadditivity of f 
(see (2.15)) and the fact that rr7 is a non-decreasing function of r. The second 
inequality in (2.21) is due to the easily verified subadditivity of the function rrT. 

Moreover, for f and g subadditive, 

f (v  + w) <- f (v )  + f (w)  <- max{f(v), g(v)} + max{f(w), g(w)}, 
g(v + w) <- g(v) + g(w) <- max{f(v), g(v)} + max{f(w), g(w)}, (2.22) 

By taking the maximum over both sides in (2.22), we prove (iii). 

Proposition 2.17. All Gomory functions f @ %, are subadditive on Q". 

Proof. By induction on the rank of f ~ ~3m. 

Thus, Gomory functions can be used to obtain valid cutting-planes (in Pro- 
position 2.13). 

The fact that Chvfital functions are subadditive, and usually somewhere 
strictly subadditive (i.e. in (2.15) there is strict inequality for at least some choice 
of v, w), shows that the negative of a Chvfital function is not usually subadditive. 
For example, -rvT, is not subadditive (although it is a typical element of ~+-, 
because - 1 = -r17 = -r0.5 + 0.57 > - 2 = ( - r0.57) + ( - r0.5~), which contradicts 
(2.15). 

The following simple result is a 'normal form' for Gomory functions. 

Proposition 2.18. Every Gomory function f E %, is a maximum of finitely many 
Chvdtal functions : 

f = max{g1 . . . . .  gt} all gi E %~. (2.23) 
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Proof. By induction on the rank of f. If f is a linear function the result is 
immediate. 

Suppose that f = o~g +/3h where a, 13 ~ 0 are rational and g and h are of lower 
rank than f. We write 

g = max{gi}, h = max{hi}, (2.24) 
iEl jEJ 

for finite non-empty index sets I and J, where g~ and hj are Chvfital functions. 
Then one easily verifies that 

f = max{ag~ +/3hi}. (2.25) 
iE I  

Suppose f = Fgn, where g has lower rank than f. We may again assume (2.24) 
holds for g, and we can conclude 

f = max{rgf}. (2.26) 
i~I 

Suppose that f = max{g, h}, where g and h have lower rank than I. We again 
may assume (2.24), and we have 

f = max[max{g,}, max{hi}I, (2.27) 
k i c I  jCJ J 

so that again the inductive hypothesis is preserved. 

3. Gomory functions are value functions 

Just as we have been using small letters f ,g ,  h .... for Chvfital and Gomory 
functions we shall reserve capital letters F, G, H .... for value functions. 

In this section, we derive sufficient closure properties for value functions, to 
insure that Gomory functions are value functions, at least when their domains 
are suitably restricted. The issue regarding the domain of definition is, of course, 
that value functions are defined, i.e. are not +0% only for certain r.h.s, b in (1.1), 
while Gomory functions are defined in all Qm. 

In this section, we will confine ourselves to showing how Gomory functions 
arise in the setting of programs (1.1) with A, b and c integral. The value 
functions associated with such programs we shall call integral value functions. 
The extension of our work to the rational case (i.e. hypothesis (1.2)) is straight- 
forward (see e.g. Corollary 3.14 below). 

We proceed by use of certain results in Jeroslow (1978b), particularly 
Theorem 3.2 below. 

A set S C_ Qm is a slice precisely if S has the form 

S = T + M, (3.1) 



C.E. Blair and R.G. Jeroslow/ Value function 247 

where T ¢  0 is a finite set of integer vectors  in Qm, and M is an integer monoid in 

Q~ which has a finite set of generators.  
A monoid is the discrete analogue of a convex  cone with ver tex at the origin; a 

slice is the discrete analogue of a polyhedron.  It  is trivial for  polyhedra  that their 

intersection is a polyhedron.  The analogous result is true for  slices (but see also 

Blair and Jeroslow (1979) or Jeroslow (1978b) for a continuous result  which has a 

false integer analogue). 

Theorem 3.1 (Jeroslow, 1978b). I f  Tl and T2 are slices and Tl n T2~ O, then 

T~ n T2 is a slice. 

Theorem 3.2. I f  M1 and M2 are integer monoids which are finitely generated, then 

M1 N M2 is also a finitely generated monoid. 

Proof. It  is trivial that  M~ n M2 is a monoid. 
Since M~ n M2 _~ {0}, M~ n M2 is a slice: 

MI n M2 = T + M, (3.2) 

where T is a non-empty  finite set of integer vectors ,  and M is a finitely 

generated integer monoid. As M~ n ME is a monoid,  so is T + M, hence 

T + T + M = (T  + M ) + ( T  + M )  = T +M.  (3.3) 

Let  T = {t~ . . . . .  ta} and let M be generated by st . . . . .  Sb. We claim that T + M 
is generated by U = {tl .... , ta, s~ . . . . .  sb}. 

It  is clear that any element  t + m E T + M (t ~ T, m E M)  is generated by  U. 

Converse ly ,  let v be generated by  U: 

a b 

v = ~_~ niti + ~_~ mjsj. (3.4) 
I = 1 =  j=l= 

One may  easily prove,  by  induction on p = ]~P-i n~, that any vector  of the form 

~,~=~ n~ti is an element  of T + M, using (3.3) for the inductive step, and the fact  

that 0 E T + M for p = 0 (the latter by (3.2) and the fact  that 0 E M~ n M2). 

Thus in (3.4), ~ , ~ = l n M E T + M ,  and as ~ b = l m j S i ~ M ,  we have v E 
T + M + M = T + M. This completes  the proof  of our claim. 

We recall our assumpt ion at the start  of the section that  A is integer. G(b) will 

be defined (i.e., G ( b ) <  + ~) only for certain integer vectors  b. In what follows, 
we may  interchangeably write row vectors  as column vectors ,  or vice-versa,  
simply to improve  readability. 

Lemma 3.3 I f  M1 . . . . .  Mr are finitely generated integral monoids, so is their 
Cartesian product M1 × .." × Mr. 



Proof. Without loss of generality, r = 2. Let  Mj be generated by V j l  . . . . .  V jt for 

j = 1, 2 (we may take t to be the same as 0 ~ Mj). Then M~ x M2 is generated by 

Lemma 3.4. I f  M is a finitely generated integral monoid, then so is the projection 

P r o o f .  I f  M is generated by (v  lj, v 2j) for j = 1 . . . . .  t, then M i is generated by v ~j 
for j = 1 . . . . .  t. 

P r o p o s i t i o n  3.5. Let G be a function G : Qm ~ R U { + o0} U { -  ~}. Then G is the 
integral value function of some integer program (1.1) if and only if the set M 
defined by 

is a finitely generated integer monoid. 

Proof. Suppose that M is a finitely generated integer monoid, and let its 
generators be (cj, aj). Then 

where A = [aj] (cols) and c = (cj). Then the value function of the integer program 
(1.1) for this A and c is 

Conversely,  if G(b)  is the integral value function of (1.1), we have 

Via the same ideas as in the proof of Proposit ion 3.5, one easily establishes 
the following result. 

Corollary 3.6. M is the domain of some integral value function G (i.e. M = 
{b I G(b ) < +oo}) if and only if M is a finitely generated integer monoid. 

Throughout  this paper, the infimum over an empty set is +~.  
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Q1 . . . . .  Qr be matr ices  o f  rat ionals .  Then the f u n c t i o n  defined by 

wl . . . . .  Wr and b are integral, and there are 

l integer vectors  b 1, . . . ,  b r such that Qb + 
G ( b ) = i n f  H ( w l  . . . . .  wr) ~ , ; : l  Qib~>-O and moreover  all w~-> 

Hi(b J), j = l, . . . ,  r 
(3.11) 

is an integral value func t ion .  

In (3.11), wl . . . . .  wr are integers, the vectors  b, b 1 . . . . .  b r may be of different 

dimensions,  and the matrices Q, Q1 . . . . .  Qr are dimensioned to make all expres-  

sions displayed compatible.  

Proof. The monoid 

M =  w~ 

L\W'r /  

and the monoids 

z is integer and 

z >- H ( w l  . . . . .  w')  ] (3.12) 

{(wj)  wj is integer ~, 
Mj- = bj and wj --- Hj(bJ)J j = 1 . . . . .  r, (3.13) 

are all integer monoids with a finite set of generators,  by  Proposi t ion 3.5. By 

L e m m a  3.3, so is M x Ml x ... x Mr. 

It  is well known that (the result goes back  to Hilbert  (1890) for one proof ,  also 

see Jeroslow (1978b)) any monoid, defined by  imposing integrality conditions on 

the solutions to homogeneous  linear inequalities in rationals, has a finite set of 

generators .  In particular,  this monoid is finitely generated: 

p =.  ) WI 

b I 

Wr 

b ~ 
I tl 

P t 1, z, w l . . . .  , W r, b ....  Wr, b r, and b are 

integral, and w~ = ws for j = 1 . . . . .  r 
and Qb + ~,rj~l QJb j >- 0 

(3.]4) 

By Corollary 3.2, the monoid 

M '  = (M × M1 × " .  × Mr) N P (3.15) 

has a finite set of generators.  Le t  M* denote the project ion of M '  onto its 
co-ordinates (z, b). By L e m m a  3.4, M *  has a finite set of generators.  One also 
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checks f rom (3.11) that 

(z, b) E M* if and only if z is integral and z >>- G(b).  

By Proposi t ion 3.5, G is an integral value function. 

(3.16) 

In what  follows, when we write a composi t ion of functions such as 

G(b) = H(H~(b) . . . . .  Hr(b)) (3.17) 

we shall understand that G(b) is defined (i.e., G ( b ) <  +oo) exact ly if each 

quantity wj = Hi(b)< + oz and also H(wx .... , Wr)< + 0% in which case G ( b ) =  

H ( w l ,  . . . ,  wr). 

Corollary 3.8. I f  H is a monotone non-decreasing integral value function and 
H1 . . . . .  Hr are integral value functions which are nowhere -o~, then the function 

G in (3.17) is an integral value function. 

Proof. Note  that, by the monotonici ty  of H, 

[wl . . . . .  Wr are integral and, there are integral 
G(b) = inf H(wl ,  ..., Wr) I b i = b with wj >- Hi(b j) for  j = 1 . . . . .  r J" 

(3.18) 

Theorem 3.7 applies. 

Corollary 3.9. I f  HI and H2 are integral value functions, nl and n2 are non- 

negative integers and D is an integer, then the following three functions are 

integral value functions : 

( i)  G = nlHl + hEllE, 
(ii) G = rH1IDT, 

(iii) G = max{H1, H2}. 

Proof. In cases (i) and (iii), it suffices to show that G ( b ) =  H(HI(b) ,  H2(b)), 

where H is a monotone  non-decreasing value function. In case (ii), we show that 
G(b) = H(HI(b)) ,  where H is a monotone  non-decreasing integral value func- 
tion. Corollary 3.8 then yields the desired result. 

For  (i), the value function H is that of this two row integer program: 

inf nlx~+ nzx2, 

subject  to xl = bl, (3.19) 
X2 = b2, 

xl, x2 integral, 

where we can obtain a formulat ion in non-negative variables by setting xj = 
x } - x ' f  where x} and x'j are integral and non-negative.  The value function is 

non-decreasing because  nl, n2 -> 0. 
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For  (ii), the value function is that of the integer program 

inf xl, 

subject to D X l -  x2 = b, (3.20) 
X2 ~-- 0, 

xl, xz integral, 

and again a formulation in non-negative variables easily follows. The function 

H (b ) = r b/D7 is clearly non-decreasing. 
For  (iii), H is the value function of the integer program 

inf xl, 
subject to  x l - x 2  = bl, 

Xl - -  X3 = b2, 
X2, X3 ~ O, 

x~, x2, x3 integer, 

and the desired properties are easily verified. 

Proposition 3.10. I f  p is an integer vector, then the funct ion F ( v ) =  pv is an 

integral value function. 

Proof. F is the value function of this integer program: 

inf px, 

subject to  Ix = b, (3.22) 
x integer. 

and by the usual device of setting x = x' - x" with x', x" - 0 we can put (3.22) in 

the form (1.1). 

The statement that 'Gomory  functions are value functions '  has to be properly 

construed. The domain of a Gomory  function g is all of Qm, while that of a value 
function G is some subset of the integer vectors Z m ; hence a Gomory  function g 
must first be restricted to Z m for any such statement to hold. A second issue 

derives from the fact  that a Gomory  function g need not have an integer value 
g(v) even for an integer vector  v E Z "~, yet  the value G(v)  for a value function is 
always integral, since c is assumed integral in this section. A precise statement 
follows next. 

Theorem 3.11. I f  g is a Gomory function,  there is an integral value function G 
and non-negative integer D >- 1 such that 

g(v) = G(v ) /D  for  all v E Z m. (3.23) 

Proof. By induction on the rank of g. If g ( v ) =  Av for some )t E Qm, write 
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,k = p/D for p integer and D -> 1 integer. Then g(v) = pv/D and the result follows 

by Proposit ion 3.10. 
If g = ahl+/3h2 where a = nl/D1 and /3 = n2/D2 are non-negative rationals, 

D1, D2-> 1 and hi and h2 are Gomory  functions, let D3 and D4 be non-negative 

integers such that 

hi(v) = H1(v)/D3 for all v E Z m, 
h2(v) = H2(v)/D4 for all v E Z" ,  (3.24) 

for value functions H1 and H2. Then for v E Z m, 

nlH~(v) n2H2(v) (D2D4nOHl(v)+ (DiDsn2)H2(v) (3.25) 
g ( v ) -  D1D3 t- D2D~ D1D3D2D4 

Since n[ = D2D4n~ and n~ = D1DaD2 are non-negative integers, n~Hl + n~H2 is a 
value function by Corollary 3.9(i). 

If g = rh17, let (3.24) hold. Then for v integer, g(v) = FH1(v)/D37 and rH~/D37 is 

a value function by Corollary 3.9(ii). 
If g = max{h~, h2}, let (3.24) hold. For  v E Z m we have 

g(v) = max{Hl(v)/D3, H2(v)/D4} 

- D31D4 max{D4Hl(v), DaH2(v)}. (3.26) 

Now D4HI(v) and DsH2(v) are value functions by Corollary 3.9(i), and so is 

max{D4H1, D3H2} by Corollary 3.9(iii). 

We also wish to be able to restrict Gomory functions g by a non-negativity 
condition h - 0 on another Gomory function h, and still have a value function. In 

this context,  the domain of g and h will be Qm, not Z m, hence some hypothesis 
on the Gomory  function h will be needed. This hypothesis will take the form 

h ( v ) > 0  i f v ~ Z  m, (3.27) 

so that, in essence, the compositely-defined function is < + ~ only for v E Z m. 

We proceed toward our goal in the next  two results. 

Theorem. 3.12. Let G and H be integral value functions. Then the function 

defined by 

F(v)  = ~G(v) if n ( v )  <- O, (3.28) 
t+ ~ if H(v)  > O, 

is also an integral value function. 

Proof. We have F(v)  = K(G(v) ,  H(v)) ,  where, for wl, W2 ~ Z, 

= f, wl iY w2<-O, K(w)  
t +~ if w2>0.  

(3.29) 
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K is non-decreasing and it is the value function of this two-row integer program: 

inf xl, 

subject to X1 = Wl, 

- x2 = w~, (3.30) 

X2 ~ 0, 

Xl, x2 integer. 

Then F is a value function by Corollary 3.8. 

Theorem 3.13. Suppose that g and h are Gomory functions and that h satisfies 

(3.27). Let the function f be defined by 

f (v)={g(+~ ifh(v)<-O, 
if h(v) > 0. (3.31) 

Then there is an integral value function F and an integer D >- 1 with 

f (v)  = F(v)/D for all v ~ Q~. (3.32) 

Proof. By Theorem 3.11 there are value functions G and H and integers 

D1, D2 - 1 with 

g(v) = G(v)/D1 for  all v E Z m, (3.33) 
h(v) = H(v)/D2 for all v E Z r". 

Note that, by (3.27), 

h(v) <-0 if and only if H(v)<-0 for all v E Qm. (3.34) 

From (3.31), we have, using (3.33), 

Dlf (v )= ~G(v) i f H ( v ) < - 0 ,  (3.35) 
if H(v)  > O. 

By Theorem 3.12, Dlf(v) is a value function. 

Corollary 3.14. Suppose that g and h are Gomory functions and that there is a 
rational non-singular m by m matrix B such that, for all v ~ Qm, 

h ( v ) > 0  if B v ~ Z  m. (3.36) 

Then there is a value function F arising from a program (1.1) with rational A, c 
such that 

F(v)  = if h(v) > 0. (3.37) 

Proof. Define h'(v) = h(B-lv),  g'(v) -- g(B-lv),  and apply Theorem 3.13 to g', h' 
to obtain an integer matrix A', an integer vector  c'  and an integer D, such that it 
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has value function 

F ' ( v ) =  IDg(+B~ iv) if h(B-~v)<-O,  (3.38) 
if h ( B - l v )  > O. 

Let  c = c'[D, A = B-~A  '. Then the value function G of (1.1) satisfies 

F ( v )  = min{c ' x /D  I B - 1 A ' x  = v, x >- 0 and integer} 
1 

= ~ min{c x [ A ' x  = By,  x >- 0 and integer} 

1 F'(Bv)  = ~g(v) if h(v) <- O, 
= D  L+  ~ i f h ( v ) > 0 .  (3.39) 

4. Some results on the relation between an integer program and its LP relaxation 

We begin with two results showing that if an integer program is inconsistent, 
then a perturbation of the linear programming relaxation is also inconsistent. 
Throughout  this section al . . . . .  an E Qm are fixed, e is a vector  with all com- 

ponents equal to one. 

Theorem 4.1. There exists a k > 0 such that, f o r  all v E R m, if there are no integer 

xi such that 

~ ajx i >_ (4.1) v, 

then there are no xj such that 

~ a j x j - >  + ke. (4.2) v 

Proof. Let  k be n times larger than any non-negative component  of any a t. If 
x = (xl . . . . .  x~) satisfies (4.2), then replacing each xi by the next  lower integer 

provides an integer solution that satisfies (4.1). Hence if (4.1) has no integer 

solution, (4.2) has no continuous solution. 

Next  we examine the analogous problem for integer programs whose con- 
straints are given as equations rather than inequalities. For  v E R m define 

Iv = {(xl . . . .  xn) ] ~ a~xj = v ; xj >- 0; xj integer}. (4.3) 

Theorem 4.2. There exists a K~ >- 0 such that, f o r  all v, either: 

(i)/~ is n o n - e m p t y ;  or 
(ii) there are no integer xj (posit ive or negative)  such that E ajx i = v ; or 

(iii) there is no x >- K l e  such that ~,~ aix j = v. 
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In other words, if an integer program with right-hand-side v is inconsistent, 
then either it remains inconsistent when the non-negativity constraints are 
dropped or else the LP relaxation is inconsistent if lower bounds of KI are 
imposed on all the variables. 

Proof. Let  S = {(al .... , an) [ ~,~ ajar = 0}. Let  F C Z n be a basis for S. Let  K1 be 

larger than the dimension of S multiplied times the largest non-negative com- 
ponent  of any member  of F. If v is such that (ii) and (iii) are false then there is 
an integer x = (xl, ..., x,) such that ~ 7  ajxj = v and scalars a r, f E F, such that 

x + ~,iEv air >- K~e. If a~ is the largest integer -< a# then x + ~ i e F  ~ f  is integer, 
because F C Z", and non-negative because ~,S~F (a'r-- as)f >-- -- K~e. Hence x + 

Remark. An alternate form of Theorem 4.2 replaces (iii) by 
(iii) There is a 1 -<J -<n dependent  on v such that {x I ~  ajxj = v; x >-0, xj >-- 

k}=O. 
The k constructed here is n times the K1 constructed in the proof of Theorem 

4.2. We will not use this result later, and omit the detailed proof. 

Next  we present  some results relating the optimal solution to an integer 
program to the optimal solution to linear programming problems. The results we 
require later are Theorem 4.6 and Corollary 4.7. These can be deduced from 
Blair and Jeroslow (1977, 1979), but our presentation is self-contained. Also, we 
believe the value of the constant  K2 is new. 

For  v E Rm, define 

Lv = {x l ~,  aixj = v, x, >- O}, (4.4) 

Re(v) = inf{cx Ix E L,}, (4.5) 

Gc(v) = inf{cx I x E I~}, (4.6) 

Lemma 4.3. There exists K2 ~> 0 and a finite F C Z" such that, for  every c, if every 
component  of  x is either zero or >- K2, then either 

(i) Rc(E a~xj) = cx; or 
(ii) there is y ~ F such that Eaj(xj + yj) = E ajxj, c(x + y) < cx, and x + y >- O. 

Proof .  For  S C {1, 2 . . . .  n} let 

Us = {X l ~ ,  ajxi =O and xi =O if jf~ S} .  (4.7) 

For  each S such that Us is one-dimensional, let x s ~ Us be a non-zero integer 



256 C.E. Blair and R.G. Jeroslow/ Value function 

vector .  We  take  F to be  x s and - x s for  all such  S. K2 is chosen  to be  as large 

as any  c o m p o n e n t  of  any  m e m b e r  of  F. I f  x, c are such  tha t  (i) is fa lse  there  is a 

z E R" such that:  ( a )  ~ ajzj = 0; (/3) cz < 0 ;  (3') zj >- 0 if x i = 0. L e t  z* sa t is fying 
(a)-(~/)  be  such tha t  {j ] z~ = 0} is max imal .  By  definit ion of F, there  is a w E F 

such tha t  w i = 0 if z~ = 0. 
We  claim tha t  z* = Ow for  some  scalar  O. L e t  O be  such tha t  z ' =  z * - O w  

satisfies 

z } ~ 0  i f z ~ - - - 0 ,  (4.8) 

z i -<0  i fz~j-- -0 ,  (4.9) 

for  at least  one j, z} = 0 and z~ ¢ 0. (4.10) 

z '  satisfies ( a )  and (y).  (4.10) and the  max ima l i t y  p r o p e r t y  of  z* imply  cz'  >- O. I f  

z '  ¢ 0, we  could find a scalar  O' such tha t  z* - O 'z '  satisfies ( a ) - ( 7 )  and has m o r e  

zero  c o m p o n e n t s  than  z*. Since this would  con t rad ic t  the max ima l i ty  we  mus t  

have  z'  -- 0, z = Ow, and our  c la im is es tabl i shed.  

H e n c e  there  is a y E F sat is fying ( a ) - ( 7 )  [y = w or - w]. I f  e v e r y  c o m p o n e n t  

of  x is zero  or --- K2, then  x + y - 0; hence  (if) holds.  

Corol la ry  4,4. Let  the set F be as in L e m m a  4.3. For  x ~ Z ~, x >- O, define Y~ by 

xi = {x  d if x i >- K2, (4.11) 
otherwise" 

Then,  f o r  every c, either R c ( ~  afii) = cg or there exists y E F such that x + y >- 0 

and c(x  + y) < cx. 

Proof .  App ly  L e m m a  4.3 to 2. 

L e m m a  4.5. Let  c, v be such that L ¢  0 and G c ( v ) >  - ~ .  Then,  f o r  every x E L,  

there is an x* E L such that 

cx* <- cx, (4.12) 

{ai Ix  ~, >- K2} is linearly independent ,  (4.13) 

R c ( ~  aj~*) = c2"  [X* defined by (4.11)]. (4.14) 

Proof.  App ly  Coro l l a ry  4.4 to x. Ei ther  R c ( ~  afi~) = c$ or there  is an x '  = x + y 
Iv wi th  cx '  <- cx + max{cy ] Y ~ F, cy < 0}. T h e n  we apply  Coro l la ry  4.4 to x '  etc.  
Since G o ( v ) >  -o0  we mus t  even tua l ly  obta in  an x ~n) such  that  (4.12) and (4.14) 
hold. By (4.14) and the c o m p l e m e n t a r y  s lackness  t h e o r e m  there  is a w E R m 

such tha t  wai <-q  for  all j and wai = q if g l " ) > 0 .  I f  (4.13) fails there  is a y E F  
such that  cy -<  0, yj = 0 if gl " )=  0, and at least  one c o m p o n e n t  of  y is nega t ive  

(recall  Gc(v)  > - ~). For  some  integer  O > 0, x + Oy E L and x + Oy has  f e w e r  
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components  -> K2. This process is repeated until an x* is obtained such that 
(4.12) and (4.13) hold, and ~}b)>0 if 2 ~ > 0 ,  hence waj = c i if ~ j  > 0 .  To verify 

(4.14) note that if x - 0  and ~ ajxj = ~, aft*,  then cx >>-~,(waj)xj = w(~ ,  ajxj)= 

w(£ cx*. 

Theorem 4.6. For  any c, v such  that L ¢ 0  and G c ( v ) >  -o0  there is an x ' E L  

sat is fy ing (4.13), (4.14) and 

G~(v) = cx*. (4.15) 

Proof. Any x E L  can be decomposed as ~ plus a vector  x' all of whose 
components  are between 0 and K> Since there are only finitely many x' and at 
most one x ~/~  satisfying (4.13) for each choice of x' and linearly independent 

set, there are only finitely many x ~ L satisfying (4.13) and (4.14). Let  x* be an x 

with cx minimal. 

Corollary 4.7. For  every c E R  n there is a K3 such that if I ~ 0  and R c ( v ) > - o %  

then 

Rc(v)  <- Go(v) < Rc(v)  + K3. (4.16) 

Proof. R c ( v ) < - G c ( v )  is immediate. Parametric  linear programming theory I im- 

plies that there  is an M~ such that [ R ~ ( v ) - R ~ ( w ) J < - M l l l v - w l [ .  Let  ME = 
max{[cx[ I 0 <-- x <-- K2e}. Let  M3 = max{llE~ ajxjll, o <- x <- K2e}. From theorem 4.6 
we know there is an x* E I~ such that cx* = G~(v) and cg* = R~(~ aj~*). Since 

0 <- x* - Y,* <- K2e we have 

G~(v) = .cx* <- c~* + M2 = R~(~,  afi~]) + M2 <- R~(v) + M1M3 + M2, 

so we may take K3 = MIM3 + M> 

5. Value functions are Gomory functions 

We will use notation (especially (4.3)-(4.6)) and results from Section 4. Let  

al .... , an ~ Qm and c ~ Q" be fixed. The two main results of this section are: 

Theorem 5.1. There is a G o m o r y  func t ion  f : Rm _> R such that, f o r  every v, 
f ( c )<-O  if and only if I~¢ O. 

Theorem 5.2. There is a G o m o r y  f unc t ion  g such that, f o r  every v such that  I~# f), 

g (v )  = Gc(v). 

The function f is a 'consistency tester '  for  the integer program, g is a function 

1This follows from the fact that  Rc(v)= max Aiv, where the ,~ are the ext reme points of the 
polyhedron {~ [ Xaj ~ ei, 1 -~ j ~ n}. We take M, = max I1~11. 
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which is equal to the value function of the given integer program, whenever  it is 
consistent.  Our proof  of Theorem 5.2 uses Theorem 5.1, which requires several  

prel iminary results. The proofs  are constructive.  

Lemma 5.3. L e t  

S = {v I v = ~ ajxj, xj in teger  ( p o s i t i v e  or  negat ive)} .  (5.1) 

There  is a l inearly  i n d e p e n d e n t  U C Qm s u c h  tha t  

S = { v l v =  ~'~ a , u , a ,  

Proof. Le t  H = {j I some member  of S has first (j - 1) components  zero and j th 
componen t  positive}. For each j E H, uj U U is a vector  where the first (j - 1) 

components  are zero and whose j th componen t  is the smallest  possible positive 

number.  Set U = {uj [j E H}. It  is easy to show that if v E S and the first (j - 1) 

components  of  v are zero,  then v - auj  will have the first j components  zero for 

some integer a. This process can be continued to yield a representat ion of v as 
an integer linear combinat ion of the ui. 

Remark. The proof  of L e m m a  5.3 consists essentially of taking the Smith normal  

form of A. 

Corollary 5.4. L e t  S be as  in L e m m a  5.3. T h e r e  is a G o m o r y  f u n c t i o n  f l s u c h  t ha t  

v ~ S i f  and  on ly  i f  fl(V) -< O. 

Proof. Le t  d be the dimension of L ( S ) ,  the linear span of S. There are 

wl,  . . . ,  wm-a E Q~ such that v E L(S)  if and only if w~v = O, 1 <- i <- m - d. There  

are z, ~ Q~ such that if v ~ L(S),  then v = ~ , E u  ( z , v )u .  Hence  v E S if w~v = 0 

for all i and zuv is integer for all u ~ U. Hence  we may  take 

f l ( v )  = max{wiv, - w i v  ; 1 <- i <- m - d;  rzuv 7 - zuv ; u ~ U} .  (5.2) 

Theorem 4.2 says that if h = ~, then either S above is empty  or else inserting 
lower bounds of K1 on the variables produces an inconsistent  linear program. 
Corollary 5.4 shows that  the first situation can be detected by a Gomory  
function. Our next  l emma is a fact  f rom parametr ic  linear programming.  It  states 
that if lower bounds produce an inconsistent  LP,  this inconsistency can be 
detected in a uniform manner  over  all v. 

Lemma 5.5. There  ex i s t  )tl . . . .  , AM ~ Qm s u c h  tha t  

~tiaj <- O f o r  all l ~ i ~ M ,  l <- j <- n ; (5.3) 
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for  every v @ R r", k >- 0, if there is no x E L~ with x >- ke, then, for  some i, 

t l  

h~v + k ~= ( - h~aj) > O. (5.4) 

Proof. { w l a j w  <-0, 1 <-j <-n} is a cone. We apply the finite basis theorem to 

obtain h~,.. . ,  hM such that  every m e m b e r  of the cone is a non-negative linear 

combinat ion of the hi. 
Standard results of linear programming (e.g., Farkas '  lemma) show that if 

there is no x E L~ with x >- ke, then there exists w E R m and scalars Sl . . . . .  s, - 0 

such that waj + sj = O, 1 <- j <- n, and wv + k ( ~  si) > 0. There are non-negative a~ 

such that w = ~ a~hi. I f  s~j = -h~aj, then s i = ~ ~sij. Since 

j=l 

there must  be at least one i such that hiv + k ~ = 1  ( - hiaj) > O. 

Our next  result is mot ivated by the fact  that Gomory  functions,  being 

sub-additive, generate valid inequalities. Suppose A and v are such that every  
x ~ I~ satisfies x l ->p ,  for some integer p. Suppose we also know that every 

x ~ Iv-o~ satisfies ~ /3ix i - 3 ' .  Then we can conclude that every  x E Iv satisfies 

/3ix i -> ~/+/3~p. We will show that if there are G o m o r y  functions generating the 
first two inequalities, then one can construct  a G o m o r y  function that generates 

the third one. 

Lemma  5.6. Let  p be a Gomory  func t ion  such that  p(aO = 1; p(aj)-<O, 2 < j - <  n 

[i.e., p generates an inequality of  the f o rm  Xl >- something].  Le t  h be any Gomory  

funct ion.  Then there is a Gomory  func t ion  s such that: 

s(ai)<-h(ai) ,  2--< j -< n, (5.5) 

s(aO = h(aO, (5.6) 

f o r a n y  v, if p(v)  is integer, then 

p ( v ) s (aO  + h(v - p (v )aO = s(v).  (5.7) 

Proof. Our argument  proceeds  by  induction on the format ion of h. If  h is linear 
we take s ( v ) =  h(v) .  I f  h ( v ) =  rhl(v)7 where h~ is a G o m o r y  function, then by 

induction hypothesis  there is an sl such that (5.5)-(5.7) hold for  s~, hi. We define 

s(v)  = rsl(v) + (r sl(al)7 - s t (aO)p(v)  7. (5.8) 

For 2<-j<-n,s(aj)<_~sl(aj)7<_rh1(aj)~=h(aj)  , hence (5.5) holds, s ( a l ) =  
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rsl(ax)~ = rhl(al)7 = h(al) so (5.6) holds. If p(v) is integer, 

s(v) = r s l ( v ) -  sl(al)p(v)7 + r sl(al)Tp(v) 
= rhl(v - p(v)ax) ~ + s(al)p(v) 
= h(v - p(v)aO + p(v)s(aO 

so (5.7) holds. 
If h(v) = ahl(V) where a ---0, we take s(v) = oLsl(v). If h(v) = hi(v)+ h2(v), we 

take s(v) = st(v) + s2(v). If h(v) = max{hi(v), h2(v)} and hl(al) --- h2(aO, we take 

s(v) = max{sl(v), s2(v) + (h l (aO-  h2(aO)p(v)}. (5.9) 

For 2 - < j - n ,  

s(ai) <- max{sl(ai), s2(ai)} -< max{hl(ai), h2(ai)} = h(aj). 

Also s(al)= sl(al) = h(al). If p(v) is integer, 

s(v) = max{p(v)sl(aO + hl(v - p ( v ) a l ) ,  h2(v - p ( v ) a O  + hl(aOp(v)} 
= p(v)sl(aO + h(v - p ( v ) a 0  

so (5.5)-(5.7) hold in this case and the induction is complete. 

Remark. The construction of s is based on the idea that a Gomory  function 

represents a method of obtaining valid inequalities, with each step in the 
formation of the function corresponding to the generation of a new valid 

inequality from those previously obtained. The function s represents the same 
sequence of operations on inequalities as the function h, except  (see (5.8) and 
(5.9)) that whenever  h uses the inequality xl-> 0, s uses the inequality x~ >-p(v) 

generated by p. 

Our next  task is to show how we can use information about the consistency of 
an integer program with n - 1 columns to obtain valid inequalities for an integer 

program with n columns. Let  

LL  ={(x2 .... xn) [ ~ aixi= v, xi>-O and integer}. (5.10) 

Suppose we know that xl -> p (p non-negative integer) if x E L and that LL-pal = 
0. Then we may conclude that xl - p + 1 if x E L. Our next  result uses this idea 

in the context  Gomory  functions. 

Lemma 5.7. Suppose there is a Gomory function h such that h(v) <- 0 if and only 
if LL  # ¢). Then for any k there is a Gomory function pk such that 

pk(al) <-- 1, 

pk(ai)<--O, 2<--j<--n, 

for any v, pk(v)>--k + l if L=fJ .  

(5.1o) 

(5.11) 

(5.12) 
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Proof.  We argue by  induct ion  on k. For  k = 0 we m a y  take po(v)= rc~h(v) 7 for  

some a > 0. If  pk(v) satisfies (5.10)-(5.12) and p~(a~)< 1 we m a y  take pk÷l(V)= 

r(1/a)pdv)7 where  a = m a x { p k ( a 0 , ~ } .  2 I f  h(al)<-O we ma y  take pk+l(v)= 

(k + 2)rh(v) 7. 

The interest ing case is p k ( a 0 =  1, h ( a 0 > 0 .  By  scaling we m a y  assume 

h(aO = 1. We apply L e m m a  5.6 with p = pk to obtain  s such that  s(ai) <- h(aj) <-- 0 
and s(aO = h (a l )=  1. We define pk÷,(v)= rmax{p~(v), s(v)} 7. I f  L = 0, then by  

(5.12) ei ther  pk(v) > k + 1 or pk(v) = k + 1. Since pk+l(V) >-- rPk(V)n we are done  in 

the first case. If  pk(v) = k + 1, then (5.7) implies s(v)  = pk(v) + h(v - (k + 1)al) > 

k + 1, hence  pk+l(v) >- rs(v)7 >- k + 2. 

We are ready  to car ry  out: 

Proof  of Theorem 5.1. Our  p roof  p roceeds  by  induct ion on n. First  we deal with 

the case n = 1. There  are h~, . . . ,  ~tm-1 such that  v is a scalar multiple of  al if 

)tjv = 0, 1-<j  < m - 1. There  is w such that  if v = aa~, then a = wv (e.g. we ma y  

take w = al/Hall[. We m a y  take 

f ( v ) = max{ hiv, - hiv, - wv, r wv ~ - wv }. 

N o w  we deal with the induct ion  step. We are assuming  for  eve ry  n - 1 rational 

vec tors  there  is a G o m o r y  func t ion  f such that  f ( v )  > 0 if and only if v is not  a 

non-nega t ive  integer combina t ion  of  the n -  1 vectors .  In part icular  we are 

assuming  there are G o m o r y  func t ions  hi, 1 -< j -< n, such that  hi(v) > 0 if and only  

if there is no x E Iv with xj = 0. We apply L e m m a  5.7 with k = K~ to obtain 
funct ions  Tj such that  

Tj(ai) ~ 1, 

Tj(ai)<-O, i ¢  j, 

Ti(v)>- Kl  

if there are no x E L with x i = O. 
Let  hi . . . . .  2~M be as in L e m m a  5.5. Define 

(5.13) 

(5.14) 

(5.15) 

t l  

f2(v) = lmax{hiv + ~ ( -  hia~)Tj(v)}, (5.16) 

f ( v )  = max{fl(v),  f2(v)}, (5.17) 

where  f l (v )  was cons t ruc t ed  in L e m m a  5.4. 

If  Iv = 0, then by  L e m m a  4.2, either S = 0 (hence f l (v)  > 0 by  L e m m a  5.4) or 

there  is no x ~ Lv with x >-K~e. In this last case L e m m a  5.5 implies that,  for  

2 The original manuscr ipt  used an incorrect  choice of a, as was remarked to us by P. Carstensen.  
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_~ n some i, ;t~v K1 ~i=t  (-;t~aj)> 0. Using (5.15) and (5.3), 

n 

f2(v) >- ;tiv+ ~, ( -  ;tiaj)Tj(v) > O, 
j= 

hence f ( v )  > 0 if L = 0. 
To show f ( v )  <-0 if L ¢  0 it suffices to show f (a j )  <-0 and use the subadditivity 

of f. f l(aj)  <- 0 by Corollary 5.4. By (5.16), (5.3), (5.13) and (5.14), f2(aj) -< 0, hence 
f (a j )  <-- O. 

Our next task is the proof of Theorem 5.2. Let  N > 0 be such that 

N q  is integer, 1 _< j -< n ; N integer. (5.18) 

Our method of proof is to deduce valid inequalities by making use of 
information about L together with information about L 7/{x I cx = p}. Suppose 
we know that if x E Io, then cx >- p, where N p  is integer; and that if x E lo and 
cx = p ,  then ax >-~. There should be some way of combining these two 
inequalities into a single inequality (a + L c ) x  >- [3 + Lp  for some L _> 0. The next 
result shows that this does happen when the inequalities are generated by 
Gomory functions. 

Lemma 5.8. Le t  p : R m ~ R be a Gomory  func t ion  such that  p(aj)  <- cj f o r  all j. 

Le t  f : R ~+~ ~ R be any Gomory  funct ion.  Le t  p ' (v )  = ( 1 / N ) r N p ( v )  ~ (p'(aj) -< cj 
by (5.18)). There is a Gomory  func t ion  h : R m ~ R and an L >-O such that 

h (a j )<- f (q ,  a j )+Lc j ,  l < - j < - n ,  (5.19) 

f o r  every v, h (v )  >- f ( p ' ( v ) ,  v) + Lp'(v). (5.20) 

Proof. We construct h by induction on the formation of f. If f is a linear 
functional f (r ,  v) = ar + wv with a -<0, we take h(v )  = wu, L = - a  and (5.19) and 
(5.20) hold as equations. 

If f ( r , v ) = a r + w v  with a > 0 ,  take h ( v ) = a p ' ( v ) + w v ,  L = 0 .  (5.20) is an 
equation, (5.19) follows because p'(aj)---cj. 

If f (r ,  v ) =  rfl(r, v) ~, then by induction hypothesis there are hi, L~ such that 
(5.19) and (5.20) hold. Take L = N r L I  ~ and define 

h(v )  = Chl(v) + (L - L1)p'(v) ~ = rhl(V) - Lip'(v) ~ + Lp'(v). (5.21) 

We have 

h(aj)  <- rhx(aj) + (L  - L 1 ) c j  ~ = rhl(aj) - LlCj 7 + L q  <-- f(cj,  aj) + Lci, 

so (5.19) holds. Also 

h(v )  >- r f l(p'(v),  v) ~ + L p ' ( v )  = f ( p ' ( v ) ,  v) + Lp'(v) 

so (5.20) holds. 
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If f ( r , v ) = a f l ( r , v ) ,  a>-O, we take h = a h l ,  L = a L I .  
fl(r, v) + f2(r, v), we take h = hi + h2, L : L1 + L2. 
max{f~(r, v); f2(r, v)} with L1 -> L2 take L = L1 and 

h(v)  = max{hi(v); h2(v)+ ( L 1 -  L2)p'(v)}. 

We have 

Also 

h(aj) <- max{f~(q, aj) + L l q  ; f2(cb aj) + LlCj} = f ( c  b aj) + Lq.  

h(v)  >- max{fl(p'(v), v) + Lip '(v); f2(p'(v), v) + Lip '(v)}  
= f (p ' (v) ,  v) + Lp'(v) .  

Thus (5.19) and (5.20) hold in this case and the induction is complete. 

263 

If f(r,  v) = 
If f(r,  v) = 

(5.22) 

Remark. The idea behind this construction is similar to that for Lemma 5.6. The 

function h represents the same sequence of operations as the function f, except  
that at every step at which f uses the equation cx = p, h uses the inequality 
cx >- p' generated by the Gomory  function p'. 

Tk(aj) <-- q, 

for  all v, 

for  all v, 

Recall N defined by (5.18), 

imply Tk(v) <-- G~(v). 

Corollary 5.9. For every k >- 0 there is a Gomory function Tk : R m ~ R such that 

1 --- j -< n, (5.23) 

NTk(V) is integer, (5.24) 

if lv~O, T k ( v ) > - m i n I G c ( v ) , l ~ N R c ( v ) 7 +  k }. (5.25) 

Rc by (4.5). Note that (5.23) and sub-additivity 

Proof. We argue by induction on k. We take To(v) = ( l /N)  NRc(v)7. 3 Rc(aj) <- cj is 

immediate and (5.23) follows because Ncj is integer. (5.24) and (5.25) are also 
easy. 

Suppose we have constructed Tk(V). By Theorem 5.1 applied to a}= (q, aj) 
there is an f : R '+I  ~ R such that f(r, v) <- 0 if and only if there is an x E Iv such 
that cx = r. We apply Lemma 5.8 with p = Tk, f as described. By (5.24), p '  = p =  
Tk. Define 

T k + l ( v ) = m a x { T k ( v ) , l : N h ( v ) / L  7} if L > 0 ,  (5.26) 

Tk<(V) = max Tk(V), Tk(v) + ~ if L = O. (5.27) 

3 Rc is a Gomory function by the remark at the end of Corollary 4.7. 
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(5.23) holds for Tk÷l because Tk(a~)<--q and f(q,  aj)<_O in (5.19). (5.24) is 
immediate. If Tk(v)= Gc(v), we see that (5.25) holds for  Tk+l, because Tk+l(v)>-- 
Tk(v). If Tdv)  < Gc(v), then f(Tk(v), v) = f(p'(v), v) > 0. (5.20) implies Tk÷l(v) > 
Tdv),  which implies that Tk÷l(v) is a rational with denominator N and hence 

Tk÷l(v) >-- N rNRc(v)~ + 
(k + 1___~) 

N 

Since NGc(v) is integer, Tk(v)< G~(v) implies 

1 rNRc(v)n_t (k + 1) Gc(v) 
N N 

hence (5.25) is established for Tk÷l. 

Now we can return to: 

Proof of Theorem 5.2. With K3 constructed by Corollary 4.7, 4 we let f = TNK3. 
Using (4.16) condition (5.25) becomes TNK3(V) >- Go(v). As remarked above, (5.23) 
implies the opposite inequality, hence f(v) = Go(v). 

The referee suggests an alternate proof of Theorem 5.2, sketched as follows. 
In Wolsey (1979) it is shown that there is a finite set of subadditive functions 

which, independent  of the r.h.s, b, generate a set of inequalities of the form 
(2.16) which define the convex hull of feasible solutions. From Schrijver (1979) 

one can deduce that each of these subadditive functions is a Chv~ttal function. 
By combining these two facts with standard results on the value function of 
linear programs, our sketch is complete. We have not checked the details of this 

approach. 
Next  we consider the dependence of the optimal solution to (IP) on the 

right-hand-side v. Consider the one-row problem 

min x + y, 
3x + y = v, 
x, y -> 0 and integer. 

The optimal solutions for v = 4, 5, 9, have x = 1, 1, 3, respectively. The 
optimal solution value for x is not a subadditive function of v, hence cannot  be a 
Gomory  function. However ,  our next  result shows that the optimal solution can 
be obtained by using unrestricted Gomory  functions (defined in Proposit ion 2.7). 

To deal with cases involving more than one optimal solution, we define the 
lexicographically smallest optimal solution to be that optimal solution which 
makes x~ as small as possible. If there is more than one such x we make x~ as 
small as possible, given the specified value of x'~, etc. 

4 T h e  a s s u m p t i o n  Re(v)> - c c  n e e d e d  to  i n v o k e  C o r o l l a r y  4.7 is n o t  r e s t r i c t i ve .  I t  is e a s y  to  s h o w  

t h a t  if Rc(v) = - ~  f o r  a n y  v, t h e n  f o r  all v, e i t he r  L = I~ o r  Go(v) = - ~ .  
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Corollary 5.10. A s s u m e  Rc(v)  > - ~ for  all r ight-hand sides v. I f  I~¢ O, let x* be 

the lexicographically smallest  m e m b e r  o f  I, such that cx* = Gc(v) [i.e. x* is an 

opt imal  solution]. Then there are unrestricted Gomory  func t ions  fi : Rm ~ R such 

that  if I~¢ O, then the j th c o m p o n e n t  o f  x* is f j (v) .  

Proof. The first component  of x* is the value of the optimal solution to the 
integer program 

min xl, 

subject to cx = s0, (5.28) 
Y~ ajxj = v, 

x -> O, x integer, 

when we set s0 = Go(v). By Theorem 5.2, there are Gomory  functions go(v), 

gl(o~, v) such that go(v) = Gc(v) and g~(~0, v) is the optimal value of (5.28). Then 
the first component  of x* is g~(go(v), v), which is an unrestricted Gomory  
function of v. Similarly, the second component  of x* is the value of the optimal 
solution to 

min x2, 

subject to cx = ao, 

xl = al, (5.29) 
ajxj = v, 

xj-----0, x integer, 

where s0 = go(v), Oil = g](go(v), v). By Theorem 5.2, there is a Gomory  function 
g2(~0, a], v) which is the optimal value of (5.29). Hence the second component  of 
x* is gz(go(v), g~(go(v), v), v). The other components  of x* are developed similarly. 

We next  present  the analogues of Theorems 5.1 and 5.2 for an integer program 
in inequality format: 

min C l X 1  -]- " '"  q- CnXn ,  

subject to alxl + .'. + a,x,  >- v, (5.30) 

Xl . . . . .  x, -> 0 and integer. 

We will assume that the vectors aj have all components  integer (the extension 
to the rational case is straightforward). Then (5.30) is equivalent to the integer 
program in equation form: 

min ClXl + .." + cnx,, 

subject  to alxl  + ... + anxn - ely1 . . . . .  e,~ym = rvq, (5.31) 
x, y -> 0 and integer, 

where ei E R m has one in ith component ,  zero in other components ,  and v is 
taken componentwise.  Application of theorems 5.1, 5.2 yields: 
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Corollary 5.11. There is a Gomory function f such that (5.30) is consistent if and 
only if f ( v  7) <- O. 

Corollary 5.12. There is a Gomory function g such that g(rvT) is the value of 
(5.30) for any v for which f(r v T) <- 0. 

We can extract  further information about f, g. A Gomory  function h is 
specified by a definition giving the precise order in which the various operations 
(sums, round-ups, etc.) are carried out. A Gomory function can have several 
different definitions, e.g. 3x defines the same function as x + ½x. We will use/~ to 
denote a definition of h. 

Definition 5.13. For  a given/~ we associate T(/~) C Q~, the set of all A occurring 

in linear functionals used in/~. Formally T(/~) is defined by 
(i) if/~(v) = )tv, then T(/~) = {)t}; 

(ii) if/~ = a/~, or/~ = r/~7, then T(/~) = T(/~1); 

(iii) if /~ = / ~  +/12 or/~ = max{/~,/~2}, then T(/~) = T(/~0 U T(/~2). 

The class At~3 consists of those Gomory  functions h for which there is/~ such 

that every X E T(/~) has non-negative components.  
Every  h ~ 3/~3 is a monotone non-decreasing Gomory  function (the converse 

is also true, but  non-trivial). 5 M~3 is closed under composition in the sense that if 

f : R ° ~ R ,  and g i : R ~ R ,  l<- i<-Q,  are in Mq3, then so is h ( v ) =  
f(gl(v),  ..., go(v)). In particular, if f ~ ~cg, then h(v) = f ( ' v  7) E Jlc~. 

Lemma 5.14. Let 1 <-j <- n. Let ho be a Chvdtal function defined by flo such that 
ho( -e i )  <-0. Then there is a Chvdtal function hi defined by f~l such that: 

(i) hi(v) = ho(v) for all v with integer components;  
(ii) if ~t ~ T(f~l), then )tej >- 0; 

(iii) if A E T(/~I), )t = )t' + kei, where )t' is a non-negative linear combination of 

members of  T(ho). 

Proof. We construct  ~1 by moving integer quantities through the round-up 
operations r 7 which occur in h0. For example, if ho(v)= 4½ely +F-2~elv  7 we 

could take hi(v) = 1½ely + ~½elv 7. 
Formally, we proceed by induction on the number of round-up operations 

used in h0. For  any h define n(h) by 
(i) if h(v)  = by, n(h)  = 0; 

(ii) if/~ = a)~ n(/~) = n(f); 
(iii) if h = f + ~, n(h) = n(f)  + h(~); 
(iv) if/~ = r f7 ,  n(/~) = n ( f ) +  1. 

5 The proof is by induction on the formation of h. The key step is that if h = f + g is a monotone 
Gomory function, then for some linear function ?t. f + ?t and g - h are monotone Gomory functions. 
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If n(/~o)= O, then we may take hi(v) = Xv, since ho is linear. If n(/~o)> O, then 
there is )t ~ Qm, al . . . . .  ak --> 0; f l , . . . ,  fk such that 

t;o(v) = xv  + ~ , r f~(v)~  + ~ 2 r L ( v )  ~ + ... + ~ k r L ( v )  ~ 

where n(fO < n(/to). Since ho(-  e i) -< 0 there are integers too, ml . . . . .  mk such that 
(i) ?,too+ ~ k aimi = 0; 
(ii))te a + m0 -< 0; 

(iii) r f i ( -  el) ~ + mi = O. 
Define hi(v) = ()t - moel)v + Y~ a i rg i ( 'O)  7 where g i ( v )  ---- f i ( v )  - -  (m~ei)v. hi(v) = ho(v) 
for integer v by (i), (ii) and (iii) mean we may apply the induction hypothesis to 
produce suitable ~i. 

Corollary 5.15. I f  ho is a Gomory function and ho( -  ei) <- o for all j, then there is 
an h ~ ~cg such that h(v) = ho(v) for all integer v. 

Proof. By Proposition 2.16, h0 is a maximum of Chvfital functions. Use Lemma 
5.13 each Chv~ital function for each 1-< j-< n to get the desired representation. 

Now the strengthening of corollaries 5.4 and 5.5 is immediate. 

Theorem 5.16. There is an f ~ ~ such that (5.30) is consistent if and only if 
f(v)<-o. 

Theorem 5.17. There is a g ~ ~q3 such that g ( v )=  optimum value of (5.30) if 
f (v)  <- o. 

The next result was first proven by Wolsey (1981) by an analysis of Gomory's  
method of integer forms (Gomory, 1963). However,  Gomory assumes that the 
initial linear programming relaxation has a tableau of lexicographically positive 
columns (Gomory, 1963, bottom page 286; also pp. 287 and 289). Hence the 
method of proof in Wolsey (1981) cannot be used for all integer programs. 

Theorem 5.18. I f  (1.1) is consistent and has finite value, there is an optimal 
solution f to the subadditive dual problem (2.19) which is a Chvdtal function. 

Proof. By Theorem 2.15, the value function G of (1.1) optimally solves (2.19); 
hence by Theorem 5.2, there is a Gomory function g which is an optimum in 
(2.19). By Proposition 2.18, g = max{fl . . . . .  fl} for certain Chvfital functions fl, 
1 -< i -< t. If fi is such that g(b) = fi(b), then fj is an optimum for (2.19). 

Remark. Several alternative proofs of Theorem 5.18 are possible. Schrijver 
(1979) building on work of Edmonds and Giles (1977) has recently established 
that finitely many applications of Chvfital's operation (as in (2.6)) yields the 
convex hull of integer points for any integer program (without the restriction in 
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Gomory  (1963)). This can be used to construct  the appropriate f in Theorem 
5.18. Another proof is based on (non-trivial) modifications of the method of 
integer forms so that it will work for all integer programs. 

An interesting 'separation principle' follows from Theorem 5.18 which we give 

next. 

Corollary 5.19. If b is not an element of a finitely generated integer monoid M, 
there is a Chvdtal function f such that 

(i) f(m)<_O for all m C M ;  and 
(ii) f (b)  > O. 

Proof. Let  the generators of M be al .... , an. Then the following integer program 
is consistent and has finite value one: 

minimize x,+l, 

subject to k ajxj q- bXn+l = b ,  (5.32) 
j-1 

xj >- 0 and integer. 

The subadditive dual of (5.32) is the program: 

max F(b),  
subject to F(aj)<-O, j = 1 . . . . .  n, (5.33) 

F(b)  <- 1, 

and by Theorem 5.18, the optimum value of this dual is achieved by a Chv~tal 
function f ;  hence f ( b ) =  1. From f(aj)<-O for  j = 1 . . . . .  n one easily derives 
f (m)  <- 0 for all m = ~ '= l  ajxi (xj >- 0 and integer) by induction on a = ~ = 1  xj. 

We conclude this section with a result which relates the value function G~ of 
(1.1) to that of the linear relaxation. 

Theorem 5.20. Let g be any Gomory function such that 

g(v) = G~(v) whenever I~=~ O, 

and let ~, be the carrier of g. Then 

~,(v) = R~(v) whenever R~(v)< +~.  

(5.34) 

(5.35) 

Proof. Suppose that there is a v0 with Rc(vo) < +~  and ~(v0) ~ Rc(vo). Then for 
suitably large integral D --- 1, I ~  0 ¢ ~, and as ~ and Rc are homogeneous func- 
tions, ~,(Dvo) ~ Re(Dr0). Then without loss of generality, D = 1 and Ivo ~ fl. 

We established in Proposit ion 2.10 that there exists kl-> 0 with 

0 <- g ( v ) -  ~,(v) <- kl for all v ~ Qm. (5.36) 
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By Corollary 4.7, there exists k2 ~ 0 such that 

0 <- Go(v) - Rc(v)  <- k2 whenever  L ~  0, (5.37) 

and hence 

O < - g ( v ) - R c ( v ) < - k 2  w h e n e v e r / ~ ¢  ~J. (5.38) 

Starting from (5.36) and (5.38), we may apply the kind of reasoning as in the 
proof  of Corollary 2.11 (particularly as in the display (2.14)) to the homo- 

geneous functions ~ and Rc, and we obtain a contradiction from our sup- 
position that ~(v0) ~ Rc(vo). 

Theorem 5.20 has this interpretation; if we start with a closed-form Gomory 
expression g for the optimal value of (1.1) and simply go through the expression 

erasing all round-up symbols, we obtain a closed-form expression for the optimal 
value of the linear relaxation of (1.1). 

6. The structure of Go(v) as c varies 

Throughout  this section al . . . . .  an ~ Qm will be fixed. In Section 5 we deter- 
mined the parametric form of the value of (1.1) in its right-hand side; now we 
seek a simultaneous uniformity in the criterion vector  c. 

We begin with a result which says that there is a finite set F such that, if x is 
any feasible but not optimal solution to an integer program, there is a better  
feasible solution obtained by adding some member of F to x. The set F is 
independent of the criterion vector  c. This type of result was first established by 
Graver  (1975); we give an alternate proof (and a somewhat  different statement of 
the result) via monoid basis results. 

Lemma 6.1. There is a finite F C Z"  such that, f o r  any v ~ Qm, c E R", x E L, 
either: 

(i) cx = Gc(v); or 

(ii) f o r  some  y E F, x + y ~ Iv and c(x  + y) < cx. 

Proof.  Define M C Z:" by 

M = { ( a  1 . . . . .  O~n, /31 . . . . .  /3n) I ~  ajo~j = ~ aj/3j, o~j, /3i >- 0 and integer}. 

(6.1) 

M is a monoid defined by rational polyhedral constraints. Theorem 7 of Jeroslow 
(1978b) (indeed, Hilbert 's result) implies that there is a finite W C M such that 
every  member  of M is a non-negative integer combination of members of W. 
Define F C_ Z" by 

F = {y [ y = a - / 3  where (a,/3) E W}. (6.2) 
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If v E Qm, x ~ I~ and (i) fails, there is a z E L with cz < cx. Since ( z , x ) ~ M  
there are non-negative integers n~ such that 

we•.•v n~w = (z, x ). (6.3) 

Since c z < c x  there is at least one w = ( a , / 3 ) E W  such that n ~ - I  and 

ca<c~3 .  As ( ~  n ~ w ) - w + ( a , a ) ~ M ,  x - [ 3 + a E L .  Then ( a - [ 3 ) ~ F  and 

c(~ -/3)<0. 

Theorem 6.2. There is a finite set T = {dl, . . . , dN} C Qn such that, f o r  any c E R n, 

v E R m, if I ~  ~J and Gc(v) > - 0% there are ad >-- 0, d E T, such that: 

(i) ~aET o~ad = c, and 

(ii) ~,d~r aaGa(v)= G~(v). 

The algebraic content  of Theorem 6.2 is that any inequality cx >- G~(v) valid 
for L can be obtained by taking non-negative linear combinations of the 
inequalities dx >-Ga(v),  d E T. Geometrically,  this means that for every  v the 
finitely many inequalities dx >- Ga(v),  d ~ T include the facets of I~, uniformly in 
V. 

Essentially the same result has been stated by Wolsey (1979) as Theorem 2'. 

Proof. Define 

C = { c l f o r s o m e w E R  m , w a j < - q , l < - j < - n } C R " .  (6.4) 

C is a polyhedral  cone. If I~# 0, Go(v) > -o~ if and only if c E C, since c E C if 
and only if R c ( v ) >  - ~ .  (The 'if' part is easy. The 'only if' follows from the 
remark at the end of Theorem 5.2.) 

Le t  F be as in Lemma 6.1. For  each H C_ F define the polyhedral  cone 

BH = {c I c ~ C and cy >- 0 for every y ~ H} C R". (6.5) 

By the Finite Basis Theorem there is a finite AH C BH such that the cone 
generated by AH is Bn. We define 

T = I,.J An. (6.6) 
HC_F 

We must establish that T has the desired properties. Let  v E Qm, c E R n 
satisfy our hypotheses.  By Theorem 4.6 (or Meyer  (1974)) there is an x ~ Iv with 
Go(v) = cx. Let  H = {y ~ F I x + y ~ h}. Clearly c ~ Bn. Hence (i) holds for  some 
aa>-O where we may further specify a a = 0  if d ~ A n .  By Lemma 6.1, 
Ga(v) = dx for every d ~ Brl. Hence 

aaGa(v) = ( ~ a a d ) x  = cx = Gc(v),  
d H d H 

and (ii) holds. 
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By Theorem 5.2, there is, for each d ~ T, a Gomory  function gd such that 

gd(V) = Gd(V) if / ~ 0 .  Also, it follows from the definition of Gd(V) that 

~, adGd(v) <-- Gc(V) for all non-negative ad such that ~] add = c. 

Thus we can strengthen Theorem 6.2: 

Theorem 6.3. There are finitely many Gomory functions gd, d E T, such that, if 
L ¢ 0  and Go(v)> - %  then Gc(v) is the value of the optimal solution to this 
programming problem with linear constraints: 

maximize ~ adgd(v), 
d ~ T  

subject to ~ add = c, (6.7) 

ad-->0. 

Remark. If c is fixed and v varies, only finitely many optimal solutions a to (6.7) 
arise, as each optimal t~ is an extreme point to the linear constraints. Each of the 
optimal solutions gives a Gomory  function ]~ Oldgd(V ) <: Gc(V), where,  for all 
v, Gc(v) is the maximum of this finite family of Gomory  functions. Thus we have 
extended Theorem 5.2 to c ~ R n. 

7. Examples of valid inequalities generated by Chvfital functions 

In Gomory  (1969) we find tabulated the facets of the group problem 

tl+2t2+3t3+4t4+5ts=--O (mod 6), 

ti - 0, integer, not all ti = 0. (7.1) 

This is equivalent to an integer programming problem with a single constraint 

Xl + 2x2 + 3x3 + 4x4 + 5x5 - 6x6 = 6, 

xi->0, x~ integer. (7.2) 

One facet  given in Gomory  (1968) is 

5ti + 4t2 + 3t3 + 2t4 + t5 -> 6. (7.3) 

This is generated by the Chvfital function 

f ( a )  = 6r~a 7 - a. (7.4) 

More generally, the inequality 

ktl + (k - 1)t2 + . . -  + tk ~ k + 1 (7.5) 
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is valid for the group program constraint 

t l + 2 t 2 + 3 t 3 + ' " + k t k - - - 0  ( m o d k + l ) .  (7.6) 

(7.5) is generated by the Chv~ital function f ( a )  = (k + 1)ra/k 7 - a. 

Theorem 5.11 guarantees that any valid inequality for an integer program with 

fixed right-hand side is generated by a Chvfital function. However ,  it seems too 

much to expect that the facets will be generated by particularly simple functions. 

Another facet of (7.1) is (see Gomory (1969)) 

4Xl + 2X2 + 3X3 + 4X4 + 2x5 -> 6. (7.7) 

One function that generates (7.7) is 

f ( a ) = 3  r - ~ a + ~ r ( ] r  ~a~_~a)~7+4a .  (7.8) 

(7.8) was obtained by using the method of integer forms (see Gomory (1963)) to 

solve (7.2) with objective function 4xl + 2x2 + 3x3 + 4x4+ 2x5. (7.7) can probably 
be generated by a simpler function, but it can be shown that (7.7) cannot be 

generated by a function of the form f ( a ) =  )tla +/k.2r/~30t ~. There is room for 

further investigation. 
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