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Abstract: The clique number ω(D) of a digraph D is the size of the largest
bidirectionally complete subdigraph of D. D is perfect if, for any induced
subdigraph H of D, the dichromatic number χ (H ) defined by Neumann-
Lara (The dichromatic number of a digraph, J. Combin. Theory Ser. B 33
(1982), 265–270) equals the clique number ω(H ). Using the Strong Perfect
Graph Theorem (M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas,
The strong perfect graph theorem, Ann. Math. 164 (2006), 51–229) we
give a characterization of perfect digraphs by a set of forbidden induced
subdigraphs. Modifying a recent proof of Bang-Jensen et al. (Finding an
induced subdivision of a digraph, Theoret. Comput. Sci. 443 (2012), 10–
24) we show that the recognition of perfect digraphs is co-NP-complete.
It turns out that perfect digraphs are exactly the complements of clique-
acyclic superorientations of perfect graphs. Thus, we obtain as a corollary
that complements of perfect digraphs have a kernel, using a result of Boros
and Gurvich (Perfect graphs are kernel solvable, Discrete Math. 159 (1996),
35–55). Finally, we prove that it isNP-complete to decide whether a perfect
digraph has a kernel. C⃝ 2014 Wiley Periodicals, Inc. J. Graph Theory 79: 21–29, 2015
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1. INTRODUCTION

A conjecture that kept mathematicians busy with for a long time was Berge’s Conjecture
(cf. [3,4]) which says that a graph is perfect if and only if it is a Berge graph, i.e., it does
neither contain odd holes nor odd antiholes as induced subgraphs. After many partial
results, the most famous being Lovasz’ proof of the (Weak) Perfect Graph Theorem [16]
stating that a graph is perfect if and only if its complement is perfect, a proof of Berge’s
Conjecture was published in 2006 by Chudnovsky et al. [9], so that Berge’s Conjecture
is now known as the Strong Perfect Graph Theorem (SPGT).

The importance of perfect graphs lies in computer science. Many problems that are
NP-complete for graphs in general are polynomially solvable for perfect graphs, e.g. the
maximum clique problem, the maximum stable set problem, the graph coloring problem
and the minimum clique covering problem (see [15] resp. [13]). This is applicable, since
the members of many important classes of graphs are known to be perfect, e.g. bipartite
graphs and their line graphs, split graphs, chordal graphs, and comparability graphs.

In this note we make a first step to generalize the theory of perfect graphs to digraphs.
For that purpose we replace the underlying coloring parameter, the chromatic number, by
the dichromatic number introduced by Neumann-Lara [17] and independently by Jacob
and Meyniel [14]. As main result we obtain that a digraph is perfect if and only if it does
not contain induced directed cycles of length at least 3 and its symmetric part is a perfect
graph. Hence, using the SPGT, we derive a characterization of perfect digraphs by means
of forbidden induced subdigraphs. In this article we describe some further consequences
of the main result in complexity theory and kernel theory.

Bokal et al. [5] proved that 2-coloring a digraph feasibly is an NP-complete problem.
By our results, k-coloring of perfect digraphs is in P for any k. We also show that it
is possible to determine a maximum induced acyclic subdigraph of a perfect digraph
in polynomial time. Note that for symmetric digraphs this is equivalent to computing a
stable set.

By a result of Chudnovsky et al. [8] the recognition of Berge graphs is in P , and so,
by the SPGT [9], the same holds for the recognition of perfect graphs. In contrast to
this, the recognition of induced directed cycles of length at least 3, which are a main
obstruction for perfect digraphs, is NP-complete by a result of Bang-Jensen et al. [2]. By
a small modification of their proof we, unfortunately, must conclude that the recognition
of perfect digraphs is co-NP-complete.

Our belief that our definition of perfection in digraphs is a natural concept is supported
by the observation that perfect digraphs are exactly the complements of clique-acyclic
superorientations of perfect graphs. Using a result of Boros and Gurvich [6] we conclude
that complements of perfect digraphs have a kernel, whereas it is NP-complete to decide
whether a perfect digraph has a kernel.

2. NOTATION

We start with some definitions. For basic terminology we refer to Bang-Jensen and
Gutin [1]. For the rest of the article, we only consider digraphs without loops. Let
D = (V, A) be a digraph. The dichromatic number χ (D) of D is the smallest cardinality
|C| of a color set C, so that it is possible to assign a color from C to each vertex of D such
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that for every color c ∈ C the subdigraph induced by the vertices colored with c is acyclic,
i.e. it does not contain a directed cycle. A clique in a digraph D is a subdigraph in which
for any two distinct vertices v and w both arcs (v, w) and (w, v) exist. The clique number
ω(D) of D is the size of the largest clique in D. The clique number is an obvious lower
bound for the dichromatic number. D is called perfect if, for any induced subdigraph H
of D, χ (H) = ω(H).

An (undirected) graph G = (V, E ) can be considered as the symmetric digraph
DG = (V, A) with A = {(v, w), (w, v) | vw ∈ E}. In the following, we will not distin-
guish between G and DG. In this way, the dichromatic number of a graph G is its
chromatic number χ (G), the clique number of G is its usual clique number ω(G), and G
is perfect as a digraph if and only if G is perfect as a graph. For us, an edge vw in a digraph
D = (V, A) is the set {(v, w), (w, v)} ⊆ A of two antiparallel arcs, and a single arc in D is
an arc (v, w) ∈ A with (w, v) /∈ A. The oriented part O(D) of a digraph D = (V, A) is the
digraph (V, A1) where A1 is the set of all single arcs of D, and the symmetric part S(D)
of D is the digraph (V, A2) where A2 is the union of all edges of D. Obviously, S(D) is a
graph, and by definition we have

Observation 1. For any digraph D, ω(D) = ω(S(D)).

The (loopless) complement D of a digraph D = (V, A) is the digraph

D = (V, ((V × V ) \ {(v, v) | v ∈ V }) \ A).

For any digraph D = (V, A), the underlying graph G(D) = (V, E ) is a graph that has an
edge vw ∈ E if and only if (v, w) ∈ A or (w, v) ∈ A (possibly both). By definition we
have

Observation 2. For any digraph D, S(D) = G(D).

A digraph D is a superorientation of a graph G, if G = G(D). A superorientation D
of G is clique-acyclic if there does not exist a clique of G which is induced by the vertex
set of a directed cycle of O(D). Whenever a set S ⊆ V induces a subdigraph H = (S, ∅)
of a digraph D = (V, A), the set S is called stable. A kernel in a digraph D = (V, A) is a
stable set K ⊆ V that is absorbing, i.e. for any v ∈ V \ K there is an arc (v, w) ∈ A with
w ∈ K.

In the formulation of the SPGT and in our directed generalization some special types of
graphs, respectively, digraphs are needed. An odd hole is an undirected cycle Cn with an
odd number n ≥ 5 of vertices. An odd antihole is the complement of an odd hole (without
loops). A filled odd hole/antihole is a digraph H, so that S(H) is an odd hole/antihole.
For n ≥ 3, the directed cycle on n vertices is denoted by C⃗n. Furthermore, for a digraph
D = (V, A) and V ′ ⊆ V , by D[V ′] we denote the subdigraph of D induced by the vertices
of V ′.

3. A STRONG PERFECT DIGRAPH THEOREM

The following main result is the basis of all results of this article.

Theorem 3. A digraph D = (V, A) is perfect if and only if S(D) is perfect and D does
not contain any directed cycle C⃗n with n ≥ 3 as induced subdigraph.
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Proof. Assume S(D) is not perfect. Then there is an induced subgraph H = (V ′, E ′)
of S(D) with ω(H) < χ (H). Since S(D[V ′]) = H, we conclude by Observation 1,

ω(D[V ′]) = ω(S(D[V ′])) = ω(H) < χ (H) = χ (S(D[V ′])) ≤ χ (D[V ′]),

therefore D is not perfect. If D contains a directed cycle C⃗n with n ≥ 3 as induced
subdigraph, then D is obviously not perfect, since ω(C⃗n) = 1 < 2 = χ (C⃗n).

Now assume that S(D) is perfect but D is not perfect. It suffices to show that D
contains an induced directed cycle of length at least 3. Let H = (V ′, A′) be an induced
subdigraph of D such that ω(H) < χ (H). As S(H) is perfect, there is a proper coloring
of S(H) = S(D)[V ′] with ω(S(H)) colors, i.e., by Observation 1, with ω(H) colors. This
cannot be a feasible coloring for the digraph H. Hence there is a (not necessarily induced)
monochromatic directed cycle C⃗n with n ≥ 3 in O(H). Let C be such a cycle of minimal
length. C cannot have a chord that is an edge vw, since both terminal vertices v and w of
any such edge vw are colored in the same color contradicting the fact that the coloring is
a proper coloring of S(H). By minimality, C does not have a chord that is a single arc.
Therefore, C is an induced directed cycle (of length at least 3) in H, and thus in D. !

We actually have proven:

Remark 4. If D is a perfect digraph, then any feasible coloring of S(D) is also a
feasible coloring for D.

Corollary 5. A digraph D = (V, A) is perfect if and only if it does neither contain a
filled odd hole, nor a filled odd antihole, nor a directed cycle C⃗n with n ≥ 3 as induced
subdigraph.

Proof. If D contains any configuration of the three forbidden types, D is obviously
not perfect, since each of these configurations is not perfect.

Assume, D does not contain any of these configurations. Then S(D) does neither
contain odd holes nor odd antiholes, therefore, by the Strong Perfect Graph Theorem [9],
S(D) is perfect. Using Theorem 3, we conclude that D is perfect. !

4. SOME COMPLEXITY RESULTS

Using some well-known complexity results, in this section we describe several immediate
consequences of Theorem 3.

Proposition 6. There is a polynomial time algorithm to determine an induced acyclic
subdigraph of maximum cardinality of a perfect digraph D.

Proof. Let D be a perfect digraph. By Theorem 3, S(D) is a perfect graph. By a
result of Grötschel, Lovász, and Schrijver [12] it is possible to find a stable set I of S(D)
of maximum cardinality in polynomial time. D[I] = O(D)[I] is an acyclic digraph, since
D is perfect and therefore does not contain induced directed cycles by Theorem 3, hence,
as S(D[I]) = (I, ∅), it does not contain any directed cycles. By the maximality of I, D[I]
is a maximal induced acyclic subdigraph of D. !

Proposition 7. k-coloring of perfect digraphs is in P for any k ≥ 1.
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FIGURE 1. Variable gadget V G(k ) (left) and clause gadget CG(i ) (right).

Proof. By Remark 4 it follows that a coloring of a perfect digraph D with ω(D) colors
can be obtained by coloring the perfect graph S(D), which is possible in polynomial time
(see [12]). !

The preceding result does not depend on an efficient recognition of perfect digraphs.
The good news on the tractability of the above problems is bedimed, though, by the
result that the recognition problem for perfect digraphs is hard. In order to test, whether
a digraph D is perfect, by Theorem 3 we have to test

1. whether S(D) is perfect, and
2. whether D does not contain an induced directed cycle C⃗n, n ≥ 3.

The first can indeed be tested efficiently by the results of Chudnovsky et al. [8] and the
SPGT [9], but the second is a co-NP-complete problem by a recent result of Bang-Jensen
et al. ([2], Theorem 11). The proof of Bang-Jensen et al. can be easily modified to prove
the following.

Theorem 8. The recognition of perfect digraphs is co-NP-complete.

Proof. We reduce 3-SAT to nonperfect digraph recognition. We consider an instance
of 3-SAT

F =
m∧

i=1

Ci =
m∧

i=1

(li1 ∨ li2 ∨ li3) with li j ∈ {x1, . . . , xn, x1, . . . , xn}.

For each variable xk we construct a variable gadget V G(k) and for each clause Ci a clause
gadget CG(i), as shown in Figure 1. These gadgets are very similar to those used in
Theorem 11 of the article of Bang-Jensen et al. [2], only the edges (which are redundant
for correctness of the reduction) are missing here. The rest of the construction is the same
as in [2]: We form a chain of variable gadgets by introducing vertices b0 and an+1 and
the arcs (bk, ak+1) for k ∈ {0, 1, . . . , n}, and a chain of clause gadgets by introducing
the vertices d0 and cm+1 and the arcs (di, ci+1) for i ∈ {0, 1, . . . , m}. We close the two
chains to form a ring by introducing the arcs (an+1, d0) and (cm+1, b0). Finally, for each
literal li j (which is xk or xk) we connect the vertex li j in the clause gadget CG(i) with the
vertex li j in the variable gadget V G(k) by an edge. This completes the construction of
the digraph D(F ).

We remark that S(D(F )) is a forest of stars, thus bipartite and hence perfect, so by
Theorem 3 testing whether D(F ) is not perfect and testing whether D(F ) has an induced
directed cycle of length at least 3 is the same. We have to show that D(F ) has an induced
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directed cycle if and only if F is satisfiable. Let (z1, . . . , zn) ∈ {0, 1}n be an assignment
satisfying F . Then the directed path through all yk with

yk =
{

xk if zk = 1
xk if zk = 0

can be extended to an induced directed cycle through the clause gadgets by the construc-
tion, since in every clause there is a literal yk the adjacent edge of which is only connected
to the vertex yk in V G(k). On the other hand, if there is an induced directed cycle through
the ring using the literals (y1, . . . , yn) in the variable gadgets, then (z1, . . . , zn) with
zk = 1 if yk = xk and zk = 0 if yk = xk is an assignment satisfying F , since for every
clause some literal yk that lies on the cycle is satisfied. !

5. A WEAK PERFECT DIGRAPH THEOREM

Note that perfection of digraphs does not behave as well as perfection of graphs in a
second aspect: there is no analogon to Lovasz’ Weak Perfect Graph Theorem [16] in an
obvious way. A digraph may be perfect but its complement may be not perfect. An easy
instance of this type is the directed 4-cycle C⃗4, which is not perfect, and its complement

C⃗4, which is perfect.
However, the following might be considered a weak perfect digraph theorem.

Theorem 9. A digraph D is perfect if and only if the complement D is a clique-acyclic
superorientation of a perfect graph.

Before we prove the above theorem we note

Lemma 10. Let D be a digraph. The following are equivalent.

(i) D contains no induced directed cycle.
(ii) D contains no induced complements of directed cycles.

(iii) D is clique-acyclic.

Proof. (iii) *⇒ (ii) ⇐⇒ (i) are obvious. For (ii) *⇒ (iii) assume that D is not
clique-acyclic, i.e. there is a directed cycle which induces a clique in G(D). Let C be
such a cycle of minimal length. If there were a single arc chord there would be a directed
cycle of smaller length, contradicting minimality. So every chord of C is an edge, i.e. C
induces the complement of a directed cycle. !

Proof of Theorem 9. By our main result, D is perfect if and only if S(D) is perfect and
D does not contain induced directed cycles. By Lemma 10 the latter is equivalent to S(D)
being perfect and D being clique-acyclic. By Lovasz’ weak perfect graph theorem [16]
and Observation 2 we have

S(D) perfect ⇐⇒ S(D) perfect
⇐⇒ G(D) perfect
⇐⇒ D is superorientation of perfect graph.

Summarizing we obtain the proposed equivalence. !
Our result on the complexity of perfect digraph recognition implies
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FIGURE 2. Connections for the clause x8 ∨ x2 ∨ x3 in the construction of Df .

Corollary 11. The recognition of clique-acyclic superorientations of perfect graphs is
co-NP-complete.

Proof. This is immediate from Theorems 8 and 9, using the fact that the complement
of a given digraph can be constructed in polynomial time. !

Whenever one considers digraphs the question of the existence of a kernel is interesting
and has quite some applications (cf. [7]). A fascinating relation between perfect graphs
and kernels was given by Boros and Gurvich [6].

Theorem 12 (Boros and Gurvich [6]). Perfect graphs are kernel solvable.

In our terminology, Theorem 12 means that every clique-acylic superorientation of a
perfect graph has a kernel.

Corollary 13. For any perfect digraph D, the complement D has a kernel.

Proof. Let D be perfect. By Theorem 9, D is a clique-acylic superorientation of a
perfect graph. By the result of Boros and Gurvich (Theorem 12), D has a kernel. !

The preceding result is in contrast to the following theorem.

Theorem 14. It is NP-complete to decide whether a perfect digraph has a kernel.

Proof. Obviously, the problem of the existence of a kernel in perfect digraphs
is in NP . We give a reduction from 3-SAT which is a slight variation of Chvatal’s
classical proof (see [10]). Given a 3-SAT formula f with clauses C1, . . . ,Cm and variables
x1, . . . , xn, we construct a digraph D f as follows. For each variable x j, we introduce two
literal vertices x j, x j joined by an edge x jx j. For each clause Ci = li1 ∨ li2 ∨ li3 we add

a copy Hi of C⃗4, and add the 12 arcs connecting its four vertices to the three vertices
representing the literals of the clause, see Figure 2.

D f is a perfect digraph, since its symmetric part is a matching and the only directed
cycles are the directed 4-cycles in the Hi’s, which are not induced. Since each of the Hi

does not admit a kernel, and any kernel must contain exactly one literal vertex for each
variable, it is immediate that D f has a kernel if and only if the formula is satisfiable. !

6. OPEN QUESTIONS

Since there are many special classes of perfect graphs with algorithms of their own it
seems natural to ask:
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Open question 15. Are there any interesting special classes of perfect digraphs with
efficient algorithms for problems different from coloring and the maximum induced
acyclic subdigraph problem?

Open question 16. Are there other problems that are NP-complete or co-NP-
complete for digraphs in general as well as for perfect digraphs?

Being clique-acyclic is a sufficient but not a necessary condition for a superorientation
of a perfect graph to have a kernel. This raises the question:

Open question 17. What is the complexity of recognizing superorientations of perfect
graphs that have a kernel?
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NOTE ADDED IN PROOF

A digraph D is kernel-perfect if every induced subdigraph of D has a kernel. Tamás
Király brought to our attention that Corollary 11 and Theorem 12 imply the following.

Theorem 18. Deciding kernel-perfectness of a digraph is co-NP-hard.
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