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ABSTR,kCT. Given a graph H with E edges and N nodes, a graph G is sought such that H is the  l ine 
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In troduct ion  

Only loopless undirected graphs without multiple edges are considered. We shall further 
l imit  a t tent ion to connected graphs without loss of generality. 

The line graph H of a graph G is a graph where each node corresponds to a different 
edge of G, with two nodes of H adjacent  if and only if the corresponding edges of G have 
a node in common. ~ i th G having e edges and n nodes, H will have e nodes and E edges 
where E = ~]~-1 [d~(d~ -- 1 ) / %  d~ being the degree of node i in G. G is called the  root 
graph of H, and H is the line graph of G. A star  graph is a graph where all edges are 
incident to one common node. Each star  subgraph of G defines a maximal complete sub- 
graph of H, called clique of H. A node of G will be called "well defined" when the whole 
corresponding clique in H has been found and named by  the algorithm. A node of H is 
"half-named" when it corresponds to an edge of G, having already one of its two nodes 
well defined. A node of H is fully named when it corresponds to an edge of G whose two 
nodes are well defined. 

As an example, the nodes of G will be 1, 2, 3, 4 , . . . ,  n, and the node of H corresponding 
to the edge of G joining node 1 and node 2 will be called "1-2 ."  

A node of H will henceforth be a pair  of numbers writ ten in increasing order. The 
algorithm we present proceeds by  first assuming H is a line graph, and defines in a con- 
sistent way a graph G such tha t  H is necessarily the line graph of G if H is really a line 
graph. 

Then to find out if indeed H is a line graph at  all, we shall generate the line graph of G 
and compare i t  with H. The answer follows, for we know by [1] tha t  except in a tr ivial  
case (triangle and star  with three branches) the root graph of a line graph is unique up to 
isomorphism. (In fact it  should not  be very hard to deduce this result from a careful 
s tudy of our own algorithm.) Beineke in [2] has proven tha t  a graph H is a line graph if 
and only if it  does not  contain any of nine forbidden subgraphs, none of which has more 
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than six nodes. This immediately guarantees the existence of an e~cient 1 algorithm to 
find whether or not a graph is a line graph. Van Rooij and Will [3] have proven that  H 
is a line graph if and only if two conditions are satisfied: (i) it does not have K~.8 as an 
induced subgraph; and (ii) two odd triangles ~ having a common edge induce a subgraph 
which is K~. 

We provide a computer-oriented characterization of a line graph which is an "order-of- 
E-algorithm" where E is the number of edges of the given graph H. Furthermore, our 
algorithm will output the root graph G of H whenever the latter is a line graph. 

First Step of Algorithm 

Choose any two adjacent nodes of the graph H. Call these nodes "basic nodes" and name 
them 1-2 and 2-3. They define the clique 2, i.e. the set of edges of the root graph G 
which are incident to node 2 of the root graph G. List all the nodes adjacent to both basic 
nodes (and name them at the same time). A node of the form 1-3 is called a cross node. 
If  we can determine which, if any, of the basic nodes is a cross node, the rest of the naming 
process is straightforward: all other nodes are named 2-4, 2-5, 2-6, . . . ,  etc., so that  all 
of them together with the basic nodes form the clique 2. 

One "essential problem is to discover which node, if any, is the cross node of the two 
basic nodes. We shall denote X the set of all nodes adjacent to both basic nodes. Any 
cross node is in X. In what follows, we shall consider three main cases, according to the 
value of the cardinality of set X. 

Case 1. I X I = 1. We shall call x the unique node in X. 
Case 1.1. There is a node y adjacent to one vertex of the triangle (x, 1-2, 2-3) which 

is not adjacent to any other, i.e. the triangle is odd. Then, necessarily, x = 2-4. 
PI~OOF. If  x were 1-3, then y would be adjacent to two nodes of the triangle. 
Case 1.2. The triangle (x, 1-2, 2-3) is even, i.e. any node of H is either adjacent to 

zero or two nodes of the triangle. 
Let Y be the set of nodes adjacent to both x and 1-2 excluding 2-3, and let Z be the 

set of nodes adjacent to both x and 2-3 excluding 1-2. 
(1) I YI >-- 2 o r l Z I  > - 2 ; t h e n x =  1-3. 
PROOF. Indeed if x were 2-4, then x would not be the only node adjacent to both 

basic nodes, since at least one of two nodes adjacent to 1-2 and x or to 2-3 and x would 
have to contain 2 in its name i.e. to belong to clique 2. Then x being no longer unique, 
case 1 is contradicted. 

(2) ] Y ] -- I Z ] = 1, say Y = {y} and Z = {z}. Either (I) or (II) or ( I I I )  following 
is true. 

(I) y and z are not adjacent, and then x = 1-3. 
PROOF. If  X were 2-4, then x would be 1-3 and y would be 3-4, and x and y would 

be adjacent. 
(II) y and z are adjacent, and then either H has only five nodes (and then x may or may 

not be the cross node of the basic nodes, but it does not matter, as illustrated in Figure 1). 
( I I I )  H has more than five nodes, and necessarily x -- 1-3. 
PROOF. If  a were 2-4, any node adjacent to both y and z would be adjacent to one 

of the nodes of the triangle (x, 1-2, 2-4) without being adjacent to the two others, and 
we ruled out the odd triangle case (1.1). 

(3) I Y ] + I Z I = 1. Say, for instance, Y = {y} and Z = ~ ,  then if H has only four 
vertices, the name of x does not matter as seen in (2) (see Figure 1). If  H has more than 
four vertices, the only connection with the rest of the graph is through adjacency to 
y = 1-4, and more specifically through node 4 of the root-graph G, because the triangle 
defined by x and the basic nodes is not odd. Hence x -- 1-3. 

Efficient means  where the  order of complexi ty  is bounded by  a polynomial  in n ;  here a polynomial  
ot degree 6. 

.&n odd triangle is a triangle which is not even, and an even triangle is such that every node is 
adjacent to two or zero vertices of the triangle. 
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(4) I Y I = I Z I = 0. Then H is a complete graph with three vertices because we 
assumed H to be connected and case 1.1 is already ruled out a t  this point. Hence we know 
this case to be the trivial case when two root graphs exist and exit with tha t  answer. 

Case 2. I X [  = 2, s a y X  = {x,y}. 
(1) If  x and y are adjacent,  then there is no cross node. 
(2) I f  x and y are not adjacent,  then one of the two is the cross node: 
(I) ~\e  deal with two triangles: (x, 1-2, 2-3) and (y, 1-2, 2-3). If  we find one of them 

to be odd, the node of X (x or y) in this triangle must  belong to clique 2. Hence, the 
other node of X (y or x) must  be the cross node 1-3 of the two basic nodes. 

(II)  Both triangles are found even. Then we claim: 
(i) There is a t  most one node adjacent  to 1-2 and x. 

(ii) There is at  most one node adjacent  to 2-3 and x. 
(iii) There is at  most one node adjacent  to 1-2 and y. 
(iv) There is a t  most one node adjacent  to 2-3 and y. 
PROOF. If there are, say, two nodes a and b adjacent  to both 1-2 and x, then one 

of them is bound to be different from their cross node (unicity of the  cross node). Then if 
x were 2--4, a would not  be the cross node of 1-2 and 2-4. Hence a would belong to clique 
2, a contradiction because a could not be y since x and y are not adjacent .  If  x were 1-3, 
then a or b would belong to clique 1 (since the cross node of 1-2 and x = 1-3 exists 
a l ready:  2-3). These two nodes a and b would be named 1-5 and 1-6 (say). At  least one 
of them could not be adjacent  to y = 2-? and therefore the triangle (y, 1-2, 2-3) would 
be odd--contradic t ion .  

The other three propositions are proven in a similar way. 
Claim. Now both  triangles being even the only remaining possibilities for H are the  

following (Figure 2): 
PROOF. If  there is a node adjacent  to 1-2 and x, then it must  be adjacent  to 1-2 and 

y since the y-tr iangle is also even. If  there is a node a adjacent  to 1-2 (and x and y) 
and another node b adjacent  to 2-3 (and x and y), then these two nodes must  be adjacent  
as the si tuat ion is symmetric and they both belong to clique 4. (See Figure 3.) 

Case 3. I X I  >- 3. All we need to do is to check for each node of X, whether or 
not  it  is adjacent  to some other node of X. If  ~ve find such a node a to be nonadjacent  
to some node b, then either a is the first node of X to be invest igated with respect to 
b,  and we shall suspect both  a and b as candidates to be cross nodes, or a is not  the  
first node of X whose adjacency to b is investigated,  in which case a must  be the cross 
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node. In the first case, where a and b are in a simi|ar (symmetric) position, we need only 
to break the tie. We need only one more checking: the adjacency of a and some other 
node of the set X (which must exist since I X I -> 3. In other words, a is the cross node 
if it is not adjacent to some third node, b is the cross node otherwise. 

Main Step of Algorithm 

TiLe first step discovered the first clique and named all nodes of this clique, and in addi- 
tion, half-named all adjacent nodes. I t  also named the cross node 1-3, if it exists, of this 
first clique. From then on, the two associated cliques are discovered. These associated 
cliques are defined (if 1-3 exists) by  the following basic nodes: (2-3, 1-3) on the one hand, 
and (1-2, 1-3) on the other. Note that  in the subsequent discovery of these two asso- 
ciated cliques, no node which is already fully named is considered; in particular, the cross 
nodes will not be considered. Hence the naming process is straightforward. 

The main step consists in choosing two basic nodes, adjacent of course, one of which 
is fully named and belongs to an already discovered clique, the other only h~df-named. 

THEOREM. There is no cross node to be discovered and named in the main step clique. 
PROOF. Indeed, assume there is a cross node. Such a cross node will then belong to 

tile already discovered clique to which one of the basic nodes belongs. Hence it is already 
fully named. Q.E.D. 

As a conclusion, only once do we look for a cross node-- in  the first step of the algorithm. 
THEOREM. The choice of the two basic nodes in the main step is consistent. (a) I f  no 

such couple of basic nodes exists, the algorithm has already terminated, i.e. all nodes are 
already fully named. (b) There is no contradiction in the naming process. 

Note: Underscored characters in the figures correspond to boldface ones in the text. 
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PROOF OF (a). Assume  no t  all nodes  are fully named .  Then ,  since the  g raph  H is 

connected ,  there  is somewhere  a fully n a m e d  node  f n n  ad j acen t  to a ha l f -named  node  

h n n .  Assume  now t h a t  there  was no such couple of basic nodes  as descr ibed earlier. T h a t  

is to  say, the  f n n  does no t  be long to an a l ready  discovered clique. Then  such an  f n n  could 

only  have  been  ad jacen t  to two different  cliques, say cliques 5 and  6. T h e  n a m e  of t he  
f n n  is therefore ,  say 7-8,  as shown in Figure 4. 

The  n a m e  of h n n  is, w i thou t  loss of generMity,  say, 7-? T h a t  is to  say t h a t  t he  h n n  

has been ha l f -named  because of ad jacency  to a clique which  is one of the  two cliques 5 

and  6. Say, wi thou t  loss of general i ty ,  t h a t  it  was clique 5, and  hence  i t  had  to  be the  
node  5-7 which ha l f -named  h n n .  We conclude the  a rg u men t  by  no t ing  the  con t rad ic t ion :  
5-7  and  7-? are a con t rad ic t ion  to the  a s sumpt ion  of t he  nonexis tence  of the  pai r  of basic 
nodes  as defined in the  main  step.  Q.E .D.  

PROOF OF (b). There  is no cont rad ic t ion  in t he  n a m i n g  process itself.  Indeed ,  only  
" n o t - f u l l y - n a m e d "  nodes  are considered.  As soon as a node  is fully n a m e d  it  is no longer  
considered by  the  naming  process.  Hence  no con t rad ic t ion  can arise. Q .E .D.  

The Algorithm 

Step 1. Pick up two adjacent nodes. Name them 1-2 amd 2-3. They are the two basic nodes to 
start  with. 

Step 2. Find all nodes adjacent to both basic nodes. If there are three or more nodes, go immediately 
to step 5. If there is none, go to step 6. 

Step 3. There is only one such node. Call it x. If there is a node adjacent to one node of the triangle 
without being adjacent to any other node of the triangle# then x = 2--4. Then, go to step 
6. Otherwise x = 1-3 and go to step 7. 

Step 4. There are two nodes adjacent to both first step basic nodes. Call them ~ and y. If x and y 
are adjacent, there is no cross node and go to step 6. If they are not adjacent, they constitute 
two triangles with the basic nodes, and we find out if there is an odd triangle. ~ If there is one, 
the corresponding summit, say x, is 2-4, and then y will be named 1-3 and will be the cross 
node. Go to step 6. Otherwise, both triangles are even. The only three remaining possi- 
bilities are as shown in Figure 5. 

Step 5. There is a group of three or more nodes adjacent to both basic nodes. If there is a node 
a of the group which is not adjacent to a certain node b (chosen at random but once and 
for all) then either a is the first node of the group under investigation, or it is not. In the 
first case, the tie is broken by examining the adjacency of a to a third node of the group. 
If it is adjacent, then b is declared the cross node. If it is not, then a is declared the cross 
node. If there is no cross node go to step 6. If there is one, go to step 7. 

Step 6. All the nodes of the clique are named, and they half-name successively all the "not-yet- 
fully-named" nodes which are adjacent to them. Go to step 8. 

Step 7. All the nodes of the clique are named and the cross node is fully named. Only the nodes of 
the clique will be used to half-name successively the "not-yet-fully-named" nodes which are 
adjacent. Then the two associated cliques are disposed of, and the naming process takes 
place as usual. CGo to step 8. 

4 Note the naming process should be implemented simultaneously with the operation of finding out 
if there exists such a triangle called an "odd" triangle. 
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Step 8. 

Step 9. 

(Choice of a new couple of basic nodes.) If all nodes are fully named, go to step 9. Choose 
any half-named node. It is adjacent to a fully named node. If this fully named node does not 
belong to an already discovered clique, then there is a fully named node which does belong 
to an already discovered clique (which half-named the half-named node) and which is 
defined as the cross node of the two previous nodes. Hence, it is found in one or two steps. 
(Also the last couple of nodes involved in the half-naming process could be found on top 
of an ad hoc stack.) The couple of basic nodes name completely the basic node which was 
only half-named. Discover these nodes (among the LIST of not yet fully named nodes) which 
are adjacent to both basic nodes and half-name them with the clique number NCLQ, and 
complete their name. All nodes of the clique are now fully named. Write them off the LIST, 
and half-name all nodes adjacent to clique nodes with the number which is not the clique 
number and which is in their names. Then go to 8 again. 
Mark the edges of L(G), the line graph of G, which are in H, until one edge of H is not 
in L (G). If this happens: Exit--H is not a line graph. If this does not happen: Exit--H is a 
line graph. 

Complexity of Computation 

In the first part of the algorithm, the naming process easily indicates that  the overall 
computation is of order N. Indeed any node is scanned at most twice: the first t ime to 
be half-named, and the second time to be fully named. I t  is no longer scanned afterward. 

The second part of the algorithm which is the comparison between L(G) and H takes 
at most E steps, where E is the number of edges of H. For the entire algorithm, we ob- 
tain O(N) + E. 

Optimality 

As far as the order of magnitude of the number of steps is concerned, this algorithm is 
optimal. Indeed, there is no way to find out whether or not N is a line graph and output  
its root graph G without looking at least once at all its edges. However, if we were not to 
output  G, it is not clear that  we should necessarily scan all edges. 

Furthermore, the first part  of the algorithm, that  is the procedure to find the root 
graph of a given line graph, is itself optimal. Indeed, there is no way to accomplish this 
without scanning each node of H or, equivalently, each edge of G. This shows that  the 
order of N is optimal. 



An Optimal Algorithm to Detect a Line Graph and Output Its Root Graph 575 

node x in G" 

o 

node y in G" x p q y 

• >= : :-----e 

in G' = S 2 (G) 

FIG. 6 

Application 

(1) Hamiltonian graph. If  a graph H turns out to be a line graph, and if its root 
graph G is Eulerian (all nodes of G of even degree), then we can conclude that  H is Hamil- 
tonian. Furthermore, if H is a line graph such that  all its cliques are disjoint--we mean 
all cliques of three nodes or more-- then H is Hamiltonian if and only if G is Eulerian. 

Here we mean two cliques are disjoint if no node of one clique is adjacent to any node 
of the other clique. 

Indeed, such a graph H will be Hamiltonian if and only if a graph H' ,  transformed 
from H by concatenating all paths of degree-2 nodes into only one degree-2 node, is 
Hamiltonian. This graph H '  in turn will be Hamiltonian if and only if its root-graph G t 
is Eulerian, and the reason (see [4]) is that  G' is indeed identical to S2(G") where S2(G") 
is the transform of some graph G" by replacing each edge of G" by three edges in series 
where the two middle nodes are degree-2 (see Figure 6). 

I t  would be interesting to extend tiffs method to cases when almost all the cliques of H 
are disjoint. 

(2) Clusters. The clusters of a graph are often defined as their cliques. However, the 
discovery of cliques in an ordinary graph is not a very e~cient process. On the other 
hand, we now have a very eIticient tool to discover the cliques of a line graph. This leads 
us to consider a new definition of clusters for a class C(L) of graphs. A graph belongs to 
C(L) if and only if it is a subgraph of a line graph L, with the same nodes, but  not con- 
taining edges which are not in L. The clusters of any graph of C(L) may be defined as 
corresponding to the cliques of L. This leaves room for any cluster of a graph of C(L) to 
grow, up to the clique of L. At this point, any more "growth" or addition of edges would 
necessarily destroy the superstructure L, and a new line graph L'  should be defined, con- 
taining L and the last addition, thereby enlarging C(L) into C(U) which contains C(L). 
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