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Let .F be a family of subsets of S and let G be a graph with vertex set V= {XA IA E .Y) such that: 

(.K~,xB) is an edge iffAnB#O. The family .F is called a set representation of the graph G. 

It is proved that the problem of finding minimum k such that G can be represented by a family 

of sets of cardinality at most k is NP-complete. Moreover, it is NP-complete to decide whether a 

graph can be represented by a family of distinct 3-element sets. 

The set representations of random graphs are also considered. 

1. Introduction 

Let G = (F’,:E) be a graph without loops and multiple edges. A family 9 = 
~,IxE v) of (not necessarily distinct) sets is called a set representation of G if 

A,nA,+0 iff (x,y)~E 

3r every pair x,y of distinct vertices of G; conversely G is called an intersection 
raph of 9. A set representation 3 of G is called a k-set representation if )A,./ I k 
3r all x E V; a distinct set representation if A,# A, for all x, y E V, x# y, a simple set 
Fpresentation if ~JlA,/I 1 for all x, YE V, x# y. 
It is well known (see [12]) that every graph has a simple set representation. 
We shall deal with the problems of finding optimal set representations for graphs 

nder two optimization criteria: 
(1) minimize the maximum size of the sets, 
(2) minimize the size of the universe of elements. 

he first criterion generalizes the question of line graphs because line graphs are the 
,aphs with a distinct 2-set representation. Similarly, graphs with a 2-set representa- 
In are intersection graphs of multigraphs. Both these classes have a good charac- 
rization given in terms of finite number of forbidden subgraphs (see [1, 31). These 
laracterizations assert the existence of a polynomial time algorithm for 
:termining whether a given graph has a (simple) 2-set representation. The number 
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given by the criterion (2) is called the intersection number; it belongs to the long 
studied combinatorial quantities (see [5]) and is known to be NP-complete (see [15]). 
For special classes of graphs the intersection number is either given by a formula or 
is computable in polynomial time (see [9, 141). 

There are also interesting questions concerning set representations by families of 
special types, for example interval graphs (see [8]), intersection graphs of curves in 
the plane (see [4]), etc., but we shall not deal with these. 

In Section 1 we transform the questions of set representation to the questions of 
covering by complete subgraphs, which is a more convenient approach. 

In Section 2 we show that it is NP-complete to find a minimum integer k for 
which a given graph G has a k-set representation. It is even NP-complete to decide 
whether a given graph G has a 4-set representation. Moreover, it is NP-complete to 
decide whether a graph has a distinct 3-set representation. These results indicate that 
the characterization of line graphs probably cannot be generalized even for triples. 

Further, in Section 3 we show that it is NP-complete to find the minimum k such 
that for a given graph G there exists a simple set representation with IU Yl= k. This 
result can also be considered in connection with line graphs because if G is a graph 
and H=L(G), its line graph, then G is a simple set representation of H. 

In Section 4 we discuss the structure of the set Forb, which is defined to be the set 
of minimal forbidden subgraphs for the class of graphs with 3-set representation. 

In Section 5 we give some estimations for set representations of random graphs. 
For the graph-theoretic terms used see [2], for details of reduction techniques see 

[lOI. 

1. Covering of graphs 

Let G = (V,E) be a graph. A system ‘?I of complete subgraphs of G is called a cover 
of G if every edge of G belongs to at least one complete graph from ‘8. We say that a 
cover !?f is: k-cover if every vertex of G belongs to at most k graphs from %, edge- 
disjoint if no two graphs from ‘8 have a common edge, vertex-separating if for every 
pair of vertices of G there is a member of 2l containing just one of them. 

The following theorem (see 121) gives a correspondence between set representa- 
tions and covers of graphs and will be used implicitely. 

Theorem 1.1. Let G = (V, E) be a graph. The following two mappings 

Y=(A,Ivcz V)~?l={lC,~x~ U} where K,={vE VJXEA,}, 

%={K,JxEU}-~F=(A~I VEV) whereA,={x~UIvEK,} 

give a one-one correspondence between set representations (5) and covers (a ) of G. 
Moreover, a set representation 9 and its corresponding cover ‘8 satisfy: 
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(i) 9 is a k-set representation iff I[ is a k-cover, 
(ii) 9 is distinct iff U is vertex separating, 

(iii) 3 is simple lff ‘2l is edge disjoint. 

2. Set representations with minimum size of sets 

For a given graph G denote by r(G) and q,(G) the minimum k for which there 

exists a k-cover and a distinct k-cover, respectively. 

Theorem 2.1. For a given graph G and an integer k it is NP-complete to decide 
whether z(G) 5 k. 

Proof. For a given graph G with n vertices we shall construct a graph H such that 

X(G) = r(H) - n, (1) 

where x is the chromatic number. This reduces the determination of the chromatic 

number, which is NP-complete (see [l l]), to the determination of r. The graph His 
constructed as follows: To the graph G, the complement of G, add new vertices 

Y,,Y2,...,Ynrxandjointhevertexxtoallverticesof V(G)U{y,,y,,...,y,}.Consider 

a cover Yl of H. Clearly 

I{K~xEKEU} 1 rn+x(G) 

which gives 

x(G) 5 r(H) - n. 

On the other hand, suppose that G is colored by x(G) colors and take a cover 2l 

formed by following sets 

{x}U(VJVEV(G), viscoloredbyi}, i=1,2,...,x(G), 

{u, v} for all pairs u, VE V(G), (u, v) @E(G), 

{x,y;}, i=l,2 ,..., n. 

Hence 

x(G) 2 r(H) - n. 

The satisfiability problem of Boolean expressions in conjunctive normal form 

with at most three literals per clause will be abbreviated by 3-SAT. The 3-SAT 

problem is known to be NP-complete (see [l 11). We will consider the version of 3- 

SAT with exactly 3-distinct literals per clause (see e.g. [13]). 

Theorem 2.2. It is NP-complete to decide whether a given graph G has a distinct 3- 
set representation. 
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Proof. We shall reduce to it the 3-SAT problem. Let @ = cr A.. .AC, be a Boolean ex- 

pression of variables x,y, z, . . . which is an instance of 3-SAT. We shall construct, in 

the following four steps, a graph G such that @ is satisfiable iff there exists a vertex- 

separating 3-cover of G. 

(1) For every variable x let H, denote the graph given by Fig. 1 with some edges 

labeled by symbols x1,x2, . . . ,x,, x1, . . . ,x,,,. 

H, = 

Fig. 1. 

(2) For every i= 1,2, . . . . m let us consider a graph I;; given by Fig. 2 with labeled 

vertices ai, bi and edges ai,Pi, y,, where a$, y are the literals appearing in the clause 

C;. 

a, b 

Fig. 2. 

(3) Put H= C H,, where x runs over all variables of @, and 

F= CFi, i= I,2 ,..., m. 
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(4) Let G be an amalgamation of F and H given by glueing edges with the same 

label. 
The graphs used in the construction have the following properties: 

(i) Every 3-cover ‘?I* of H, satisfies: either all the edges xl, . , . ,x, are covered by 

triangles of 21X and none of the 2; are, or all of the X; are and none of the x,. 

(ii) A 3-cover Bj of F; separates vertices a;, 6; iff at least one of edges 1&,/3~, y; is 

covered by two triangles of 21Li. 

Let (11 be a vertex separating 3-cover of G. Let us consider a truth assignment t for 

@ given by 

(*) t(x) = 0 iff (every) x, is covered by a triangle of ‘?I in H,. 

If oi is covered by a triangle of 2I in G, then oi must be covered by K4 in Fis Hence, 

using (ii), t is a satisfying truth assignment for @. 

On the other hand, suppose that I: {x,y, z, . ..) + (0, l} is a truth assignment 

satisfying @. Let us consider a cover 2I of G consisting of 

(a) the 3-cover of H, satisfying (*) (for every variable x); 

(b) all copies of K4 in Fi containing (Yi with t(q) = 0, and all triangles in fi contain- 

ing oi with t(q)= 1 (i= 1, . . ..m). 

Thus, by property (i), the 3-cover 2l is vertex-separating. 

Theorem 2.3. It is NP-complete to decide whether a given graph G has a 4-set repre- 
sentation. 

Proof. We shall reduce to it the 3-SAT problem. Let @ be an instance of 3-SAT as 

in the proof of the Theorem 2.2. We shall construct a graph G such that @ is 

satisfiable iff there exists a 4-cover of G. 

(1) For every variable x of @ let H, be a graph arising from the graph given by 

Fig. 1. after adding one pendant edge to every vertex of H,. 

(2) For every i= 1, . . . . m let us construct a graph Fi (with 16 vertices) in the 

following way. Consider three copies IV,, W,, W, of 8-wheel given by Fig. 3 and 

identify these vertices: v1 with vi, vz with v; and vi, vs with vi and VT, v, with vi 

and vi, vi with v;. 

(3) Put H = C H,, where x runs over all variables of @, and 

F=CF,, i=l,..., m. 

(4) Let G be an amalgamation of H and F given by glueing edges with the same 

label. 

The graphs used in the construction have the following properties. 

(i) Every 4-cover ‘?lX of H, satisfies: either all the edges xi, . . . ,x,,, are covered by 

triangles of U, and none of the Zi are, or all the X~ are and none of the Xi. 

(ii) In every 4-cover Ui of F, there is at least one of edges oi,Pi, y, covered by a tri- 

angle of 2li. (To see it consider the neighbourhood of the vertex v2 = vi = ~2.) 

(iii) For each of a;,&, yi there exists a 4-cover of Fi such that this edge is covered 

by a triangle and the other two are not (Fig. 4). 
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Fig. 3. 

Fig. 4. 
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Let 2I be a 4-cover of G. Let us consider a truth assignment t for @ given by (*). It 

follows from (ii) that 6 is a satisfying truth assignment for @. Conversely, if t is a 

satisfying truth assignment for @, then (iii) guarantees the existence of a 4-cover of 

G satisfying (*). 

Theorem 2.4. It is NP-complete to decide whether a given graph G has a simple 3- 

set representation. 

Proof. Modify the proof of the Theorem 2.2. as follows. Consider 3-covers which 

are edge-disjoint instead of vertex-separating. Let the graphs F; be given by Fig. 5. 

Now, the proof runs as the proof of the Theorem 2.2. 

Fig. 5. 

It is easy to see that r(G) 5 Q(G) I t(G) + 1. Nevertheless the following holds. 

Theorem 2.5. It is NP-hard to decide whether 7(G) = rd(G) for a given graph G. 

Proof. We shall reduce to it the problem of determination of r, which is NP- 

complete by the Theorem 2.1. Let a graph G be given. We shall consider two cases. 

(1) let ~~(G)=t(c). Consider graphs Ei, i= 1, . . . . IV(G)l, given by Fig. 6. 
Evidently, r(EJ = i, z&;) = i + 1. Let Gi = G + Ei and put 

iO = max {i) 7d(G;) = T(Gi)}. 

Then obviously r(G) = i,,. (Since r(G + E;) = max (r(G), T(Ei)).) 

(2) let rd(G)=r(G)+ 1. Put G;=G+Ki,i, i= 1, . . ..I V(G)I, where Ki,;is the i-star. 

Obviously r(Ki,i) = r&i,;) = i. Set iO = max {i I rd(G;) = T(Gi)}. Then r(G) = i@ 
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6 - 1 trmes L - 1 times ‘-lt1mes i- 1 times 

E,= 

Fig. 6. 

3. Set representations with a small universum set 

For a given graph G denote by w(G), ad(G) and o,(G) the minimum k for which 

there exists a set representation 9, a distinct set representation OF, and a simple set 

representation 9, respectively, such that / (J 91= k. 
For a fixed integer k it is polynomial to decide whether w(G) I k, ad(G) 5 k and 

w,(G) 5 k. For od and CO, it is enough to check all possible configurations. To prove 

it for w define an equivalence relation - on the vertices of G by 

X-Y iff (x,y)~Eand ((x,z)EE(G)~(z,~)EE(G) 

for every z E V(G) - {x, y}). 

Denote by G/- the factorization of G by -. Let us note that G/- is isomorphic to 

an induced subgraph of G. Since every set representation of G/- is distinct, we get 

w(G) = o(G/-) = o~(G/-). 

It is known that the problem of determination of w (and hence also of od) is NP- 

complete ([15]). We prove this for w,. 

Theorem 3.1. For a given graph G and an integer k it is NP-complete to decide whether 
o,(G) 5 k. 

Proof. We shall reduce to it the problem of maximum independent set in a cubic graph [6]. 

First, let us state some observations about 0,. 

(1) Denote by K6 - e, K6 - 2e and K6 - 3e the complete graph K6 without one, two and three 
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disjoint edges, respectively. It is easy to check that 

os(K6 - e) = o,(K6 - 2e) = 5, and o,(K6 - 3e) = 4. 

(2) Let G *H be a graph arising from G and H by glueing in a common edge P. Then 

o,(G *H) = min (w,(G - P) + o,(H), o,(G) + co,(H- c)). 

Let G = ( V; E) be a cubic graph. For every vertex x of G consider a labeled graphs H, given by 

Fig. 7, where e’ e2 e3 are the edges of G incident to x. XP X, X 

Hx= 

Fig. 7. 

Using (1) and (2) we compute 

o,(H,) = 16, 

w,(H,-eL)=w,(H- {e~,e~))=w,(H- {e~,e~,e~))= 19. 

Let H be an amalgamation of H,xe V(G), given by glueing the edges of the same label. Thus, 

wS(H)=16.a(G)+19(/VI-a(G))=191VI-3.a(G), 

where a(G) denotes the maximum number of independent vertices of G. 

4. Minimal forbidden induced subgraphs 

The line graphs (i.e. the intersection graphs of graphs) are characterized by a 
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finite family of minimal forbidden induced subgraphs. (See [l]). For the graphs 

which are intersection graphs of k-hypergraphs (k > 2) the analogous statement does 

not hold. If we denote by Forbk the class of all graphs G with s(G) > k and s(H) 5 k 

for all subgraphs H induced on a proper subset of V(G), then one can prove that 

(Forbkl = co. The same holds for the class Forbt, which is defined in the same way 

but using distinct set representations only. An example of an infite class of graphs 

which belong to the Forb3 and also to the Forbi is given by Fig. 8. 

. . . 

Fig. 8. 

It would be interesting to know a nontrivial description of classes Forbk for k > 2. 

This may be difficult. The following problem seems to be easier: Is it true that there 

exists a constant c such that for all graphs of class Forb3 the size of cliques is 

bounded by c? 

For the class Forbt this question has a negative answer. An example of graphs 

from Forbf with aritrarily large cliques is given by Fig. 9. 

5. Some remarks on random graphs 

Let 0 cp < 1 be fixed and denote by G, a random graph with vertex set { 1,2, . . . n} 
such that each edge occurs with probability p independently of all other edges. 

Proposition 5.1. 

Prob [r(G,) = Q(GJ] -+ 1, and Prob [w(G,) = ad( -+ 1 as n+ 03. 

For the proof it is enough to show that almost all graphs have the following 

property: The neighbourhoods N,,, NX2, . . . , N,.. of all vertices x1,x2,. . . ,x, E V(G,) 

are pairwise distinct. Indeed, 

Prob [Zx1,x2e V(G,): NX1=NX,] I 
0 

i . (p2+ (1 -p)2)2)n-2+0. 

From the results of [7] where it is proved that the number of vertices of the largest 

complete subgraph of G, is (with probability tending to 1) 

2 

log ( 1 /P) 
logn+o(logn) asn+oo, 
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Fig. 9. 

and the chromatic number x(G,) is (with probability tending to 1) at least 

it follows that the existence of constants cl, c2, d (depending on p only) such that 

Prob [c,n2/log2n<o(G,)~c2n2/log n]+l as n--*0>, 

Prob [d/log n<r(G,)/n<pJ+l as n+a~. 

From the fact that there exists an algorithm which colors G, with at most 2x(G,) 

colors with probability tending to 1 (see [7]), it follows the existence of an algorithm 

which covers the edges of G, with probability tending to 1 by at most en/log n 

cliques. 
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