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This paper addresses upgrading min–max spanning tree problem (MMST). Given a graph 
G(V , E), the aim of this problem is to modify edge weights under certain limits and given 
budget so that the MMST with respect to perturbed graph improves as much as possible. 
We present a complexity result for general non-decreasing cost functions. In special case, 
it is shown that the problem under linear and sum-type Hamming cost function can be 
solved in O (|E|2) and O (|E| log |E| log |V |) time, respectively.

© 2017 Published by Elsevier B.V.

1. Introduction

Usually the instances of classical network optimization problems are static and realistic, but, applications often admit 
some improvements of parameters under specific circumstances. This leads to the area of network “upgrading” problems. In 
these special network modification problems, one may invest a budget in order to change the parameters (weights of edges 
or vertices) of the given network within certain limits such that the optimal objective value with respect to the modified 
parameters is minimized while the topological structure of the graph remains unchanged [1,2]. In this paper we consider 
the upgrading min–max spanning tree (MMST) problem where a budget for reducing the weights of edges is assigned and 
the edge weights can be modified within given intervals. In this kind of problem, the network is modified before finding 
the MMST on the network.

Upgrading approach have already been applied to several classical optimization problems. For instance, Fulkerson and 
Harding [3] and Hambrusch and Hung-Yi Tu [4] investigated upgrading the shortest and longest path problems. Upgrading 
the network flow problem is considered by Phillips [5]. Gassner dealt with up- and downgrading 1-center and the 1-median 
problems in [6] and [7,8], respectively. Sepasian and Rahbarnia [9] proposed a linear time algorithm for solving upgrading 
1-median on paths. Some authors also investigated upgrading minimum spanning tree problem. Dragmeister et al. [10], 
Frederickson and Solis-Oba [11] and Krumke et al. [12–14], developed up- and downgrading Steiner and minimum spanning 
tree problems. Another version of upgrading minimum spanning tree problem is investigated by Krumke et al. [15], [16]
and Alvarez et al. [17] in which the weight of each edge is a function of the weights of two vertices connected to it. The 
aim is modifying the vertex weights in order to upgrading the minimum spanning tree.
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Given a connected graph G = (V , E), with |V | = m and |E| = n, a nonnegative weight we is assigned to each e ∈ E . Let T
denote the collection of all spanning trees of G . The weight of a spanning tree T ∈ T is defined as w(T ) = max{we| e ∈ T }. 
The MMST is a tree T ∗ ∈ T with smallest weight, i.e. w(T ∗) = min{w(T )| T ∈ T }. The MMST problem has applications in 
communication network (under the name min–max broadcasting tree) [18–22], and molecular biology [23].

Camerini [24] proposed a linear time algorithm to solve the problem. After that, different versions of the problem was 
studied. Ishii and Nishida [25] investigated the stochastic version of the problem in which edge weights are random vari-
ables. Berman et al. [26] dealt with the constrained version where the sum of edge weights of the tree should not exceed 
a given upper bound. Afterward, their algorithm was improved by Punnen and Nair [27]. Recently, Anderson and Ras [28]
studied the MMST with additional condition that every vertex degree is bounded above in MMST.

In this paper, we investigate upgrading MMST problem. The upgrading MMST problem is aimed at finding new values 
for edge weights and a new MMST associated with these new parameters, so that this tree is the best over all allowed 
parameters. Put simply, the aim is to find a MMST of the network when edge weights change.

Some kind of network improvement approaches was applied to MMST by several authors. Liu and Yao [29] introduced 
the inverse MMST in which the edge weights are modified within given budget so that a candidate spanning tree becomes 
the MMST. They considered the problem under the sum-type Hamming distance. Also, the constrained inverse MMST under 
the weighted Hamming distance was studied by Liu and Wang [30].

In the rest of this section the problem is introduced and formulated formally. In section 2 the problem is investigated 
under non-decreasing and linear cost functions, and a polynomial time algorithm is proposed. In section 3 the problem is 
considered under sum-type Hamming cost function.

Let us model the problem formally. Assume that the weight of each edge e ∈ E , can be decreased with a given cost, 
and the modified weight is w̃e , that is w̃e ≤ we . Each modified edge weight is restricted by a nonnegative lower bound 
we i.e. w̃e ≥ we . The weight of a tree T with respect to the new vector of edge weights, w̃ , is denoted by w̃(T ). Assume 
that the cost of reducing the weight of edge e ∈ E is given by non-decreasing function fe(x). Moreover, let B be a positive 
budget which limits the cost of edge weight reductions. Using the above notations, the upgrading MMST problem is formally 
formulated as:

min
T ∈T w̃(T )

s.t.
∑
e∈E

fe(we − w̃e) ≤ B

we ≤ w̃e ≤ we, ∀e ∈ E

(1)

2. Upgrading MMST problem under non-decreasing cost functions

In this section we assume that cost function fe(x) for each edge e ∈ E is non-decreasing. Let ν∗ be the optimal value 
of (1). It is easy to see that ν∗ is bounded above by the objective value of current MMST, ν̄ , and is bounded below by 
mine∈E w . A tighter lower bound for ν∗ is the weight of MMST, T , corresponding to weight vector w . Denote this lower 
bound by ν . Observe that ν and ν̄ can be found in linear time by [24]. Thus, ν∗ belongs to interval V = [ν, ̄ν]. From now 
on we assume that 

∑
e∈T fe(we − we) > B , since otherwise, T is the upgraded MMST with weight ν = ν and nothing is left 

to solve. By this assumption, the whole budget will be used in order to get the optimal solution.
Before we consider how to solve the problem, we concentrate on a problem closely related to problem (1). Indeed, given 

ν ∈ V , the problem is to make a MMST with weight ν at minimum cost so that new weights satisfy bound restrictions.
For ν ∈ V , consider the new graph Gν = (V , E) where the underlying graph is G and the weight of each e ∈ E , λe(ν), is 

defined as

λe(ν) :=

⎧⎪⎨⎪⎩
0 if ν ≥ we

fe(we − ν) if we ≤ ν < we

B + 1 if ν < we

(2)

For a spanning tree T of Gν , define DT (ν) = ∑
e∈T λe(ν). If T is a minimum sum spanning tree of Gν , then D(ν) denotes 

the sum of the edge weights of T . The following lemma is straightforward.

Lemma 1. The perturbed G has a MMST with weight ν if Gν has a minimum sum spanning tree, T , with total sum weight D(ν) ≤ B. 
Furthermore, T is a MMST of G with weight ν .

According to Lemma 1, one can find a minimum sum spanning tree T of Gν and change the weight of each edge e ∈ T
with we ≤ ν < we to ν . Therefore, T is the improved MMST with w(T ) = ν and the total cost is equal to D(ν).

We have the following fact.

Lemma 2. D(ν) is a non-increasing function of ν .
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Proof. If ν1 < ν2, then λe(ν1) ≥ λe(ν2) for each e ∈ E , since fe is non-decreasing. This implies that D(ν) is non-
increasing. �

Let R = {we| e ∈ E} ∩ V and S = {we| e ∈ E} ∩ V . Define P = R ∪ S ∪ {ν, ̄ν}. Assume that the elements of P are sorted 
increasingly, i.e., ν = p1 < p2 < · · · < pr = ν̄ . We find an interval [pk, pk+1] with D(pk) > B and D(pk+1) ≤ B by applying 
binary search algorithm. By Lemma 2, the optimal solution of (1), ν∗ , belongs to (pk, pk+1]. If D(pk+1) = B , then pk+1 is the 
optimal value. Otherwise, ν∗ is in (pk, pk+1) with D(ν∗) = B . Since this interval does not contain any element of P , each 
edge weight λe(ν) is not piecewise. More precisely, for each e in optimal MMST, λe(ν) is identical to either fe(we − ν) or 
0 on (pk, pk+1).

When ν changes in (pk, pk+1), a sequence of minimum spanning trees are constructed. In [31,32], the problem of finding 
all such intermediate minimum spanning trees is solved when the edge weight functions are all linear. In our problem, edge 
weight functions are decreasing, however, with a similar method in linear case one can find all minimum spanning trees 
when ν varies in (pk, pk+1). Here, we discuss the main idea of the solution method. Suppose T is a minimum spanning tree 
corresponding to the given ν0 ∈ (pk, pk+1). Let e /∈ T . When ν is increased from its current value, ν0, the weight of each 
edge is decreased, since λg = f g(we − ν) and for all edge g , f g is non-decreasing by assumption. Now, e enters T only if 
its weight becomes less than at least one of edges, say h ∈ T , in the cycle induced by adding e to T . That is, h replaced by 
e only if fe(we − ν) = fh(wh − ν). Therefore, the new spanning tree could be found by inspecting between all intersection 
points of weight functions.

Our main goal is to find ν ∈ (pk, pk+1) with D(ν) = B . Thus, it is not necessary to compute all intermediate spanning 
trees. Indeed, we can choose all intersection points belonged to (pk, pk+1), sort them increasingly, and use binary search 
algorithm in order to find two points qt and qt+1 with D(qt) > B and D(qt+1) ≤ B . Note that the minimum spanning 
tree does not change on interval (qt , qt+1]; this unique minimum spanning tree is the solution of the problem. It is left 
to calculate the minimum weight ν by solving the equation D(ν) = ∑

e∈T λe(ν) = B . Here we assume that this equation 
could be solved by calling function solve(). We also assume that finding the number of all intersection points of cost 
functions, s, needs O (g(s)) time. We have the following result.

Theorem 1. The upgrading MMST problem under non-decreasing cost functions can be solved in O  (g(s) + n log m (log s + log n))

time plus O (1) call of function solve().

Proof. Computing ν̄ and ν needs linear time. The elements of P can be sorted in O  (n log n) time. Then, binary search 
algorithm is used for determining interval (pk, pk+1). Each iteration of binary search algorithm needs solving a MMST which 
can be solved by well-known Kruskal’s algorithm in O (n log m). Thus, finding interval (pk, pk+1) needs O (n log m log n). 
Similarly, finding interval [qt , qt+1] needs O (g(s) + n log m log s), where O (g(s)) is included for finding all intersections 
points of cost functions. Thus, the problem is solvable in O  (g(s) + n log m(log n + log s)) time, plus O (1) call of function
solve(). �
Corollary 1. If the cost functions are linear, then upgrading MMST can be solved in O (n2) time.

Proof. Since all cost functions are linear, then, s = O (n2) and each intersection point can be found in O (1) time. In addition, 
equation D(ν) = B is linear and function solve() runs in O (1). According to Theorem 1 and the fact that n = O (m2), we 
conclude that the problem can be solved in

O (g(s) + n log m(logn + log s)) + O (1) call of solve() function =
O (n2 + n log m logn2 + n logm log n) + O (1) = O (n2). �

Remark 1. There is another improvement network problem named downgrading MMST problem. The aim of this problem is 
increasing the edge weights under the given budget so that the weight of MMST problem with respect to new edge weights 
is maximized. We can solve this problem by a similar method mentioned in this paper with minor changes. We ignore 
details because of avoiding of duplication.

3. Upgrading MMST problem under sum-type Hamming cost function

In this section we assume that for each e ∈ E , the cost function fe(xe) is of the form ce H(we, w̃e) where ce is positive 
scalar and H(x, y) is the Hamming distance between x and y, i.e.,

H(x, y) :=
{

0 if x = y

1 if x 	= y
(3)

Let T be the MMST with weight ν with respect to weight vector w . We assume that 
∑

e∈T ce H(we, w̃e) > B . Since, 
otherwise, T is upgraded MMST and nothing is left to solve. So, whole budget will be used. Therefore ν is a lower bound 
for the optimal value of problem (1), ν∗ , which can be found in linear time.
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On the other hand, suppose that T ′ is the MMST with respect to the initial weight vector w . It is easy to see that 
the weight of T ′ is an upper bound for optimal solution of (1). However, a tighter upper bound can be found by im-
proving the weight of T ′ as much as possible. Let ν̄ be the weight of the improved T ′ in the perturbed G . We can find 
ν̄ with a greedy approach as follows. First, notice that when the Hamming distance is used, we pay the whole cost to 
modify an edge weight without attention to the magnitude. So the best choice for new weights are the lower bounds. Let 
wmax = max{we|e ∈ T ′}. It is clear that ν̄ ≥ wmax . Thus, ν̄ belongs to P = {we|e ∈ T ′, we > wmax} ∪ {wmax}. We first sort the 
elements of P in non-increasing order, i.e. P = {p1, . . . , pk} with p1 ≥ p2 ≥ . . . ≥ pk = wmax . For simplicity, we denote by 
ck the constant in Hamming function cost corresponding to pk . Now, if c1 ≤ B , then we reduce p1 to its lower bound and 
modify the budget. We continue this way until ci exceeds the remaining budget for some i. Therefore obtaining ν̄ needs 
O  

(|E(T ′)| log
(|E(T ′)|)) = O  (n log n) time.

Again, we consider a problem closely related to problem (1). The aim is to answer the question of finding the MMST 
with weight ν ∈ V = [ν, ̄ν] under bound restrictions and budget constraint. Consider the graph Gν introduced in section 2
where edge weights are defined as:

λe(ν) :=

⎧⎪⎨⎪⎩
0 if ν ≥ we

ce if we ≤ ν < we

B + 1 if ν < we

(4)

and D(ν) is defined as before.
We have the following lemma.

Lemma 3. The perturbed G has a MMST with weight ν if Gν has a minimum spanning tree T of weight D(ν) ≤ B and T is a MMST in 
G with weight ν .

Similar to Lemma 2, D(ν) is a non-increasing function. We recall that again the edge weights does not change unless it 
reaches its lower bound. Therefore the new weights belong to the following set:

Q = ({we|e ∈ E} ∪ {we|e ∈ E} ∪ {ν, ν̄}) ∩ [ν, ν̄].
Assume that the elements of Q are sorted in increasing order, i.e. Q = {q1, q2, . . . , qs} with ν = q1 < . . . < qs = ν̄ .
Now, qk is the optimum value of the problem where k is the smallest index k with D(qk) ≤ B . It can be found by binary 

search. Therefore, we have the following result.

Theorem 2. The upgrading MMST problem under sum-type Hamming cost function can be solved in O (n logm logn) time.

Proof. We need to solve a MMST to find ν; it needs linear time. Finding ν̄ needs sorting the elements of P , which runs 
in O (n log n) time. Sorting the elements of Q needs O (n log n) time. The last binary search runs in O (n log m log n), since 
it calls Kruskal’s algorithm at most log n times. Thus, problem can be solved in O (n log n) + O (n log n) + O (n log m logn) =
O (n log m log n). �
4. Conclusion

In this paper the upgrading MMST problem has been investigated. It is proved that this problem could be transformed 
into parametric minimum sum spanning tree problem. It is shown that the upgrading MMST under linear and sum-type 
Hamming cost functions are solvable in polynomial time. Further research on the upgrading other versions of MMST prob-
lems (stochastic or constrained) on networks under various objective functions, seems to be promising.
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