
LCA Queries in Directed Acyclic Graphs

Miroslaw Kowaluk1,� and Andrzej Lingas2,��

1 Institute of Informatics, Warsaw University, Warsaw
kowaluk@mimum.edu.pl

2 Department of Computer Science, Lund University, 22100 Lund
Fax +46 46 13 10 21

Andrzej.Lingas@cs.lth.se

Abstract. We present two methods for finding a lowest common ances-
tor (LCA) for each pair of vertices of a directed acyclic graph (dag) on
n vertices and m edges.

The first method is surprisingly natural and solves the all-pairs LCA
problem for the input dag on n vertices and m edges in time O(nm). As
a corollary, we obtain an O(n2)-time algorithm for finding genealogical
distances considerably improving the previously known O(n2.575) time-
bound for this problem.

The second method relies on a novel reduction of the all-pairs LCA
problem to the problem of finding maximum witnesses for Boolean ma-
trix product. We solve the latter problem and hence also the all-pairs

LCA problem in time O(n2+ 1
4−ω), where ω = 2.376 is the exponent of

the fastest known matrix multiplication algorithm. This improves the

previously known O(n
w+3

2) time-bound for the general all-pairs LCA
problem in dags.

1 Introduction

The problem of finding a lowest common ancestor (LCA) in a tree, or more gen-
erally, in a directed acyclic graph (dag) is one of the basic algorithmic problems.
An LCA of vertices u and v in a dag is an ancestor of both u and v which has no
descendant that is an ancestor of u and v, see Fig. 1 for example. We consider the
problem of preprocessing a dag such that LCA queries can be answered quickly
for any pair of vertices. It has a variety of important applications, e.g., in object
inheritance in programming languages, analysis of genealogical data and lattice
operations for complex systems (see [2] for details and further references).

For trees, linear-time preprocessing is sufficient to answer LCA queries in
constant time [7]. For general dags, after an O(n

w+3
2)-time preprocessing, LCA

queries can be answered in constant time [2] (where n is the number of vertices
and ω = 2.376 is the exponent of the fastest known matrix multiplication algo-

� Research supported by KBN grant 4T11C04425.
�� Research supported in part by VR grant 621-2002-4049.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 241–248, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

242 M. Kowaluk and A. Lingas

1

2 3
4

5

6 7

8 9

Fig. 1. The LCA of 8 and 9 are 1 and 5

rithm). A lower bound Ω(nw) by reduction of the transitive closure problem to
all-pairs LCA in dags is also given in [2].

We present two methods of efficiently preprocessing a directed graph on n
vertices and m edges in order to answer an LCA query for any pair of vertices
in constant time, subsuming the previously known best results from [2].

The first method is surprisingly natural and solves the all-pairs LCA problem
for the input dag on n vertices and m edges in time O(nm). For sparse dags,
this method is optimal and substantially faster than the known O(n

w+3
2)-time

general method from [2]. As a corollary, we obtain an O(n2)-time algorithm
for finding genealogical distances considerably improving the previously known
O(n2.575) time-bound for this problem [2].

The second method efficiently reduces the all-pairs LCA problem to the
problem of finding maximum (index) witnesses for Boolean matrix product.
We solve the latter problem and hence also the all-pairs LCA problem in time
O(n2+ 1

4−ω). Since 2 + 1
4−ω ≈ 2.616 and w+3

2 ≈ 2.688, our result subsumes the

previously known O(n
w+3

2) time-bound for the general all-pairs LCA problem in
dags [2].

The first and second methods are respectively described in Sections 2 and 3
whereas Section 4 presents the algorithm for finding genealogical distances. Our
paper concludes with final remarks.

2 Optimal Method for Sparse Dags

First, we shall describe preprocessing for answering queries about existence of a
common ancestor for arbitrary pair of vertices in constant time.

For the input dag, we shall denote by n and m its number of vertices and
edges, respectively. Also for a vertex v in the dag, indeg(v) and outdeg(v) stand
respectively for the in-degree and out-degree of v. If outdeg(v) = 0 then v is
called a terminal vertex and if indeg(v) = 0 then v is called a source vertex.

We may assume without loss of generality that the input dag is connected
since otherwise we can decompose it into connected components and solve the

LCA Queries in Directed Acyclic Graphs 243

problem for each component separately. For technical reasons, we shall also as-
sume that every vertex is its own ancestor.

The following lemma immediately follows from the definition of a dag.

Lemma 1. If two vertices have a common ancestor then there is a source vertex
that is their common ancestor.

In the first stage of the preprocessing, for each vertex of the input dag we form a
table containing its descendants. In other words, we create the transitive closure
of the dag which obviously can be done in time O(nm). For the sake of Section
4, we describe this stage in more details below.

We initialize the tables in time O(n2) and start from the terminal vertices,
filling their tables with single vertices in time O(n). Next we iterate the following
step: remove the vertices of out-degree 0 with incident edges and fill the tables
for the new vertices v of out-degree 0 by merging the information from the tables
associated with the removed direct descendants of v, and taking into account
the set of direct descendants of v. We also add v to its table. For each vertex
v such an operation takes time O(n) × outdeg(v). Thus, for the whole graph it
takes O(nm) time.

Lemma 2. The tables of descendants for all vertices can be formed in time
O(nm).

In the second stage of the preprocessing, we determine for each vertex v
the set of vertices which have a common ancestor with v. We proceed simi-
larly as in the first stage of preprocessing starting from source vertices instead
of the terminal ones. For the source vertices s, the sets are already computed,
they are just the sets of descendants of s. Next, we iterate the following step:
remove the vertices of in-degree 0 with incident edges and fill the tables for
the new vertices v of in-degree 0 by merging the information from the ta-
bles associated with the removed direct ancestors of v. For each vertex v such
an operation takes time O(n) × indeg(v). Thus, for the whole graph it takes
O(nm) time.

By the height of a vertex v in a dag, we shall mean the length of the longest
path from a source vertex to v in the dag.

Note that the set of vertices having a common ancestor with a vertex v is the
union of the sets of vertices having common ancestors with the ancestors of v
(recall that v is also an ancestor of itself). Hence, we obtain the following lemma
by induction on the height of v.

Lemma 3. For all vertices v, the tables of vertices having a common ancestor
with v can be computed in time O(nm).

In order to answer LCA queries we need to refine the preprocessing slightly. Dur-
ing the second descending phase of the preprocessing we additionally enumerate
the vertices in their visiting order. Since an ancestor is always visited before its
descendant, we obtain the following lemma.

244 M. Kowaluk and A. Lingas

Lemma 4. A vertex of a higher number cannot be an ancestor of a vertex of a
lower number.

For all vertices v, in the table keeping vertices w having a common ancestor with
v, we keep also the maximum of the numbers assigned to the common ancestors
of v and w. To achieve this, when we merge the information from the tables of
direct ancestors of v, we pick the maximum number of a common ancestor of a
direct ancestor of v and w. Clearly, the refinement can be accomplished within
the same asymptotic time O(mn). By induction, we obtain the following lemma.

Lemma 5. For all vertices v, the tables of vertices w having a common ancestor
with v with a pointer to a lowest common ancestor of v and w can be computed
in time O(nm).

Hence, we obtain immediately the following theorem.

Theorem 1. A dag on n vertices and m edges can be preprocessed for constant-
time LCA queries in time O(nm).

If m = O(n) then the preprocessing is optimal.

Corollary 1. The all-pairs LCA problem for a dag on n vertices and m edges
can be solved in time O(n(n + m)).

3 O(n2+ 1
4−ω)-Time Method for General Dags

If an entry C[i, j] of the Boolean product of two Boolean matrices A and B is
equal to 1 then any index k such that A[i, k] and B[k, j] are equal to 1 is a
witness for C[i, j]. If k is the largest possible witness for C[i, j] then it is called
the maximum witness for C[i, j].

In [3], Galil and Margalit presented an O(nω+ε)-time method for the problem
of computing witnesses for all positive entries of the Boolean product of two n×n
Boolean matrices. Their method (too involved to describe shortly) can be viewed
as a sequence of algorithms for a generalization of the problem. The first algo-
rithm corresponds to the straightforward cubic method testing all the n witness
possibilities for each positive entry of the product. The consecutive algorithms
partition the input into blocks. Next, they use the fast algorithm for Boolean
matrix product to compute the product of the blocks pairwise, and use the re-
sulting products to partition the problem into subproblems. In the subproblems,
for a row of the first input matrix and a column of the second input matrix,
only an unique index fragment induced by the block partition and containing
a witness is considered. The subproblems are solved recursively by permutting
rows and columns and using the previous algorithms from the sequence.

Only the first two algorithms in the sequence of algorithms constructed by
their recursive method do not rely on row and column permutations. Therefore,
the method does not seem adaptable to produce the maximum witnesses without
altering its asymptotic time.

LCA Queries in Directed Acyclic Graphs 245

n
l

A r

n
l

B q

C rq
n/lBpq

B1q

A r1 A rp
C rq

1 C rq
pl

nn

n n

l

........

Fig. 2. The relationship between A′
rps, B′

pqs and C′
rqs

Our method for maximum witnesses of the Boolean product C of two n × n
Boolean matrices A and B can be viewed as a modification of the second of
the algorithms for witnesses of C in the aforementioned sequence of algorithms
from [3].

Let l be a positive integer smaller than n. Partition the matrices A and B
into l× l sub-matrices Arq, Brq, where 1 ≤ r, q ≤ n/l, such that for 1 ≤ r ≤ n/l,
the sub-matrices Arq, 1 ≤ q ≤ n/l, cover the rows (r − 1)l + 1 through rl of A
whereas for 1 ≤ q ≤ n/l, the sub-matrices Brq, 1 ≤ r ≤ n/l, cover the columns
(q − 1)l + 1 through ql of B.

For 1 ≤ r, q ≤ n/l, p = 1, ..., n/l, compute the Boolean product Cp
rq of Arp

and Bpq using the fast algorithm. The following remark is straightforward.

Remark. Suppose that the (i, j) entry of the product matrix C is positive and
(r − 1)l < i ≤ rl and (q − 1)l < j ≤ ql. Let p′ be the maximum value of p such
that the entry of Cp

rq which is the dot product of the row of Arp corresponding
to the i-th row of A and the column of Bpq corresponding to the j-th column
of B is 1. The maximum witness of the (i, j) entry of the Boolean product of A
and B belongs to the interval [(p′ − 1)l + 1, p′l].

By this remark, after computing all the products Cp
rq, 1 ≤ p, r, q ≤ n/l, we need

O(l) time per positive entry of C to find the maximum witness. Thus, the total
time taken by our method for maximum witnesses is O((n

l)3lω + n2l).
By solving the equation (n

l)3lω = n2l, we conclude that for l = n
1

4−ω our
method achieves minimum worst-case time complexity at O(n2+ 1

4−ω). Hence, we
obtain the following theorem.

Theorem 2. The maximum witnesses for all positive entries of the Boolean
product of two n × n Boolean matrices can be computed in time O(n2+ 1

4−ω).

The following obvious lemma leads to an efficient reduction of the problem of
all pairs LCA in a dag to that of determining maximum witnesses of the Boolean
product of two Boolean matrices.

Lemma 6. Let G be a dag and let G∗ be its transitive closure. For vertices u, v
in G, let w be its common ancestor of highest rank among all common ancestors

246 M. Kowaluk and A. Lingas

of u and v in the ordering resulting from a topological sort of G∗. The vertex w
is a lowest common ancestor of u and v.

Our algorithm for all pairs LCA in a dag is as follows.

Algorithm 1

1. Compute the transitive closure of the input dag G.
2. Topologically sort the vertices of G and number them by their ranks in the

resulting sorting order.
3. Form two Boolean n × n matrices A and B such that for i, k ∈ {1, ..., n}

the k-th coordinate of the i-th row of A and the i-th column of B is set to 1
if the k-th vertex is an ancestor of the i-th vertex, or k = i, otherwise these
two coordinates are set to 0.

4. Find maximum witnesses for the Boolean product C of A and B and for
each non-zero entry C[i, j] output the vertex whose number is the index of
maximum witness of C[i, j] as the lowest common ancestor of the i-th and
j-th vertices.

The correctness of the algorithm follows from Lemma 6. Step 1 can be imple-
mented in time O(nω). Steps 2 and 3 take O(n2) time. Finally, Step 4 requires
O(n2+ 1

4−ω) time by Theorem 2. Hence, we obtain our second main result.

Theorem 3. For a dag on n vertices, we can determine for each pair of ver-
tices having a common ancestor their lowest common ancestor in time
O(n2+ 1

4−ω).

4 Shortest Genealogical Distances

The authors of [2] discuss the so called pedigree graphs which are sparse dags
used to model human ancestor relations. Since each human has at most two
parents, a pedigree graph has maximum in-degree bounded by two. For the
fundamental applications of pedigree graphs in the identification of genes as-
sociated with genetic diseases the reader is referred to [4, 6]. In these appli-
cations, computing the so called shortest ancestral distance between a pair of
vertices in a pedigree graph is important [2]. The shortest ancestral distance
between two vertices u and v in a dag is defined as the length of a shortest
path between u and v which passes through a common ancestor of u and v
(observe that the common ancestor is not necessarily the lowest one 1). Bender
et al. showed that the all-pairs shortest ancestral distances can be computed in
time O(n2.575) [2]. In this section, we show that the all-pairs shortest ancestral
distances can be optimally computed for sparse dags, in particular, pedigree
graphs.

1 One can also consider the so called shortest ancestral lca distance where the common
ancestor is required to be lowest [2].

LCA Queries in Directed Acyclic Graphs 247

We can modify our first method to obtain an O(mn)-time algorithm to com-
pute the all-pairs shortest ancestral distances as follows. In the ascending phase,
for each vertex v, and for each descendent u of v, we additionally compute the
shortest directed distance between u and v. This can be easily accomplished
within the same asymptotic time O(mn). At the beginning of the descending
phase, the previously computed shortest directed distances yield the shortest
ancestral distances between sources and their descendents. While descending
the shortest ancestral distances between the parents of the current vertex v and
each other vertex u are increased by one. Next, the minimum of them and the
shortest directed distance between v and u (it can be infinite) is taken as the
shortest ancestral distance between v and u. In this way for all pairs of vertices
v and u the shortest ancestral distance is computed.

Similarly, the so modified descending phase can be also implemented in time
O(mn). We conclude with the following theorem.

Theorem 4. For a dag on n vertices and m edges, the all-pairs shortest ances-
tral distances can be computed in time O(nm).

Corollary 2. For a pedigree graph on n vertices, the all-pairs shortest ancestral
distances can be computed in time O(n2).

5 Final Remarks

The problems of finding LCA are classical and central in the area of algorithms
and data structures [2, 5, 7]. In spite of the long history of studies devoted to
LCA problems, we have succeeded to design two quite natural methods for
finding LCA in dags considerably subsuming the previously known best re-
sults [2].

The problem of finding maximum witnesses of Boolean matrix product seems
to be of interest in its own rights. At first glance it seems that the recursive
O(nω+ε)-time method of Galil and Margalit [3] could be adapted to produce the
maximum witnesses by considering the fragments containing maximum witnesses
in the subproblems without substantially altering its asymptotic time. However,
the aforementioned method may permute rows or columns in recursive steps
which may disturb the search for maximum witnesses. Thus, the problem of
whether or not our O(n2+ 1

4−ω)-time method is optimal is open.
It is also an interesting question whether or not the instances of the prob-

lem of finding maximum witnesses of Boolean matrix product occurring in our
reduction from the LCA problem in dags are computationally easier than the
general ones.

Acknowledgments

The authors are grateful to Pavel Sumazin for inspiration and to Leszek Ga̧sieniec
for some discussions.

248 M. Kowaluk and A. Lingas

References

1. N. Alon and M. Naor. Derandomization, Witnesses for Boolean Matrix Multipli-
cation and Construction of Perfect hash functions. Algorithmica 16, pp. 434-449,
1996.

2. M.A. Bender, G. Pemmasani, S. Skiena and P. Sumazin. Finding Least Common
Ancestors in Directed Acyclic Graphs. Proc. the 12th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 845-853, 2001.

3. Z. Galil and O. Margalit. Witnesses for Boolean Matrix Multiplication and Shortest
Paths. Journal of Complexity, pp. 417-426, 1993.

4. R.W. Cottingham Jr., R.M. Idury, and A.A. Shäffer. Genetic linkage computations.
American Journal of Human Genetics, 53, pp. 252-263, 1993.

5. M. Nykänen and E. Ukkonen. Finding lowest common ancestors in arbitrarily di-
rected trees. Inf. Process. Lett., 50(6), pp. 307-310, 1994.

6. A.A. Shäffer, S.K. Gupta, K. Shriram, and R.W. Cottingham Jr. Avoiding recom-
putation in linkage analysis. Human Heredity, 44, pp. 225-237, 1994.

7. R.E. Tarjan. Applications of path compression on balanced trees. Journal of the
ACM 26(4), pp. 690-715, 1979.

	Introduction
	Optimal Method for Sparse Dags
	$O(n^{2+\frac 1 {4-\omega}})$-Time
Method for General Dags
	Shortest Genealogical Distances
	Final Remarks

