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a b s t r a c t

Westudy the complexity of the problemof deciding the existence of a spanning subgraph of
a given graph, and of that of finding amaximum(weight) such subgraph.We establish some
general relations between these problems, and we use these relations to obtain new NP-
completeness results for maximum (weight) spanning subgraph problems from analogous
results for existence problems and from results in extremal graph theory. On the positive
side, we provide a decomposition method for the maximum (weight) spanning chordal
subgraph problem that can be used, e.g., to obtain a linear (or O(n log n)) time algorithm
for such problems in graphs with vertex degree bounded by 3.
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1. Introduction

We study the complexity of the problem of deciding the existence, in some classes of graphs, of a spanning subgraph of
a given graph, and that of finding a maximum (weight) such subgraph.

We identify the set of all (undirected, simple, loopless, connected) graphs on a set V of vertices with the power set 2
(
V
2

)
of all subsets of the set

(
V
2

)
of all two-element subsets of V . The graphs on V that satisfy a certain property (e.g., chordality,

connectedness, acyclicity, etc.) can thus be identified with families F ⊆ 2
(
V
2

)
.

Given a family F ⊆ 2
(
V
2

)
of graphs and a graph G = (V , E), a subset F of E is called an F -subgraph of G if F ∈ F .

An F -subgraph F of G is called a spanning F -subgraph of G if its edges meet all the nodes of G, i.e., if
⋃
{u,v}∈F {u, v} = V .

Given two families F ,G ⊆ 2
(
V
2

)
of graphs with vertices in V , a graph G = (V , E)with weights we ≥ 0 on its edges and

a subgraph F ⊆ E, we letw(F) =
∑
e∈F we denote the weight of F , and we consider the following decision problems:

• EXISTENCE OF A SPANNING F -SUBGRAPH IN G
Given G in G, does there exist a spanning F -subgraph of G?
• MAXIMUM SPANNING F -SUBGRAPH IN G
Given G in G and any positive integer k, does there exist a spanning F -subgraph F of G such that |F | ≥ k?
• MAXIMUMWEIGHT SPANNING F -SUBGRAPH IN G
Given G in G and any k ≥ 0, does there exist a spanning F -subgraph F of G such thatw(F) ≥ k?

Note that many well-known graph problems fall into one of the three classes of problems just mentioned. Consider,
e.g., the problem of the existence of – or of the maximumweight – Hamiltonian or Eulerian cycles in a graph; the maximum
(weight) matching problem; or the maximum (weight) spanning tree problem.
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The maximum (weight) F -subgraph problem is trivially equivalent to the edge-deletion problem: find a subset E ′ of E of
minimum cardinality (weight) such that E \ E ′ ∈ F .
The edge-deletion problem has been introduced by Yannakakis, who proved its NP-completeness for several classes of

subgraphs (or, equivalently, of families F ) including bipartite, outerplanar, and degree-constrained graphs [23–25].
After thework of Yannakakis, the edge-deletion problem has been proved to beNP-complete (even to approximate) for a

number of other classes of subgraphs [1–3,9,15,18]. On the other hand, not many classes of subgraphs are known for which
this problem is polynomially solvable.
In Section 2 we describe some simple relations among the problem of the existence of a spanning F -subgraph, the

maximum spanningF -subgraph problem, and the maximumweight spanningF -subgraph problem. These relations allow
one to obtain NP-completeness or polynomiality results for one type of problems from analogous results for another type
of problems.
In particular, using also some results from extremal graph theory, we prove in Section 3 that the problem of finding a

maximumchordal subgraph in a planar graphwithmaximumvertex degree 6 isNP-complete by using theNP-completeness
of the existence of 2-trees in such graphs.
On the positive side, we provide a decomposition method for the maximum spanning chordal subgraph problem that

can be used, e.g., to obtain a linear time algorithm for such problem in graphs with node degree bounded by three, and an
O(n log n) time algorithm for the weighted case.
In view of the NP-completeness result above, this leaves open the complexity of the same problem in (planar) graphs of

degree four and five.

2. Relations between subgraph problems

Given a family F ⊆ 2
(
V
2

)
of graphs with vertices in V and a fixed graph G = (V , E)with weightswe on the edges e ∈ E,

we let

FE = {F ∈ F : F ⊆ E}

denote the family of all F -subgraphs of G, and we let

M(F ) = max
F∈F
|F |,

M(E,F ) = max
F∈FE
|F |, and

M(E,F , w) = max
F∈FE

w(F)

denote the maximum number of edges of an F -subgraph, the maximum number of edges of an F -subgraph of G, and the
maximum weight of an F -subgraph of G, respectively.
Furthermore, let F = {F ∈ F : |F | = M(F )} denote the subset of F that is extremal with respect to the number

of edges, so that F E = {F ∈ F : F ⊆ E} is the set of F -subgraphs of G. For example, if F is the family of graphs with
maximum vertex degree q, then F E is the family of q-regular subgraphs of G.
Given two families G and G′ of graphs on a vertex set V , we say that G′ polynomially dominates G, if for every graph F ∈ G

one can find in polynomial time a graph F ′ ∈ G′ such that F ⊆ F ′. In other words, we are requiring that it should always be
possible to extend a graph of G to a graph of G′ in polynomial time. Note that this is trivially true when G′ consists only of
the complete graph on the vertex set V .
The following lemmata provide some reductions among the three subgraph problems described in the introduction. Note

that the inequality M(E,F ) ≤ M(F ) trivially holds for all E and F . Hence, the inequality M(E,F ) ≥ M(F ) is equivalent
toM(E,F ) = M(F ).

Lemma 1 (Existence–Max Reduction). Let F andG be any families of graphs on the vertex set V . Then EXISTENCE OF A SPANNING
F -SUBGRAPH IN G can be reduced to MAXIMUM SPANNING F -SUBGRAPH IN G

Proof. It suffices to observe that F E 6= ∅ ⇔ M(E,F ) ≥ M(F ). �

Lemma 2 (Existence–Max weight Reduction). Let F ,G,G′ be families of graphs on the vertex set V with G′ polynomially
dominating G. Then EXISTENCE OF A SPANNING F -SUBGRAPH IN G can be reduced to MAXIMUM WEIGHT SPANNING F -
SUBGRAPH IN G′

Proof. Given a graph G = (V , E) in G we can find in polynomial time a graph G′ = (V , E ′) in G′ such that E ⊆ E ′. We
define weights we = 1 when e ∈ E and we = 0 when e ∈ E ′ \ E. Then, for F ′ ∈ FE′ we have w(F ′) ≤ |F ′| ≤ M(F ). We
will now show that F E 6= ∅ ⇔ (M(E ′,F , w) ≥ M(F )). Indeed, if there exists an F -spanning subgraph F in G, then F
is also an F -spanning subgraph in G′, so that M(E ′,F , w) ≥ M(F ). Conversely, if M(E ′,F , w) ≥ M(F ), we clearly have
M(E ′,F , w) = M(F ), so that there exists F ′ ⊆ E ′, F ′ ∈ F with w(F ′) = |F ′| = M(F ). Thus we must have we = 1 for all
e ∈ F ′ and hence F ′ ⊆ E. Therefore F E 6= ∅. �
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Note that the proof above shows that the Existence–Max weight reduction holds also when the weights are restricted to
take only two nonnegative values.
In the next section we provide some applications of the reductions described in these two lemmata to obtain, in

conjunction with results in extremal graph theory, some new complexity results for the maximum (weight) spanning
subgraph problem from known results for the problem of the existence of a spanning subgraph.

3. Some NP-complete spanning subgraph problems

Let us consider the family Fchord of all connected chordal graphs on V . As customary, we call a graph chordal if it does not
contain any chordless cycle of length greater than three as an induced subgraph.
Since spanning trees are connected chordal graphs, the problem of the existence of a spanning chordal subgraph is

trivially solvable in linear time.
On the contrary, the complexity of the maximum spanning chordal subgraph problem has been uncertain for a long

time. Dearing, Shier and Warner [14] have explicitly stated this as an open problem and they have described an O(|E|∆)
algorithm for finding a maximal chordal subgraph in a graph, where ∆ is the maximum vertex degree in G. Also Erdős and
Laskar [17] pointed out the interest for this problem and gave an asymptotic estimate on maximum number of edges to
delete to make an n-vertex graph chordal. Yannakakis [25] has proved NP-completeness of the related maximum spanning
F−C`-subgraph problem, whereF−C` is the class of connected subgraphs without cycles of specified length `. The first proof
of NP-completeness of the maximum spanning chordal subgraph is attributed to A. Ben-Dor in [18].
The interest for the maximum spanning chordal subgraph is also due to the possibility of solving several hard graph

problems in polynomial time in chordal graphs. This fact has been used, e.g., by Balas and Yu [4] to find a maximum clique
in a graph.
We now show that the maximum spanning chordal subgraph problem remains NP-complete also in planar graphs with

maximum vertex degree ∆ = 6 by using the Existence–Max reduction Lemma 1, and an analogous NP-complexity result
for 2-trees. On the other hand, in Section 5 we provide a linear time algorithm for the maximum spanning chordal subgraph
problem in general graphs with∆ = 3. This leaves still open the complexity of the problem for (planar) graphs with∆ = 4
or 5.
A q-tree can be recursively defined as follows (see, e.g., [10,12,21] for properties and alternative definitions of q-trees):

1. A clique on q vertices (i.e., a Kq) is a q-tree.
2. From a q-tree T with n > q vertices, we obtain a new q-tree with n+ 1 vertices, by adding a new vertex to T and making
it adjacent to all vertices of a clique Kq of T .

It is known that q-trees are extremal chordal graphs that do not contain a Kq+2 subgraph [8].

Theorem 1 ([12,21]). A chordal graph with n ≥ q vertices that does not contain a Kq+2 subgraph has at most qn− q(q+ 1)/2
edges, and has exactly qn− q(q+ 1)/2 edges if and only if it is a q-tree.

In particular, a 2-treewith n vertices has exactly 2n−3 edges and does not contain a K4 subgraph. Bern [5] has shown that
the existence problem for spanning q-trees in a graph is NP-complete. This result has been refined by Cai and Maffray [11]
who showed that the existence problem for spanning q-trees isNP-complete even in split graphs or in graphswithmaximum
vertex degree 3q+ 2. Furthermore, the existence problem for spanning 2-trees is NP-complete even in planar graphs with
maximum vertex degree 6. In fact, a careful analysis shows that all bounded degree graphs in the family GCM used by Cai
and Maffray in the proof of this result do not contain Kq+2 subgraphs, so that its statement can be slightly strengthened as
follows.

Theorem 2 (Cai and Maffray). The existence problem for spanning 2-trees is NP-complete even in planar graphs with maximum
vertex degree 6 that do not contain a K4 subgraph. The existence problem for spanning q-trees is NP-complete even in split graphs
or in graphs with maximum vertex degree 3q+ 2 that do not contain a Kq+2 subgraph.

We can use Theorems 1 and 2 and Lemma 1 to strengthen the NP-complexity result of Ben-Dor and of Natanzon, Shamir
and Sharan (see [18]) for the maximum spanning chordal subgraph problem.
We first introduce some notation that will be used also in what follows. Let G2 denote the family of planar graphs with

maximumvertex degree 6 that do not contain a K4 subgraph, and for q > 2 letGq denote the family of graphswithmaximum
vertex degree 3q+ 2 that do not contain a Kq+2 subgraph.

Theorem 3. The MAXIMUM SPANNING CHORDAL SUBGRAPH PROBLEM IN Gq is NP-complete.
Proof. Let Fq-chord denote the family of q-chordal graphs on V , defined as chordal graphs on V that do not contain a Kq+2
subgraph. Trivially, a subgraph of a graph G that does not contain a Kq+2 subgraph is chordal if and only if it is q-chordal. In
particular, this holds for all graphs G in the family Gq. Furthermore, from Theorem 1 we derive that F q-chord coincides with
the family Fq-trees of all q-trees on V . Hence, EXISTENCE OF A SPANNING Fq-trees-SUBGRAPH coincides with EXISTENCE OF
A SPANNING F q-chord-SUBGRAPH and, by Lemma 1 the latter can be reduced to MAXIMUM SPANNING Fq-chord-SUBGRAPH,
which coincides with MAXIMUM SPANNING Fchord-SUBGRAPH in the family Gq. Since EXISTENCE OF A SPANNING Fq-trees-
SUBGRAPH in Gq is NP-complete by Theorem 2, the thesis follows. �
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Let us now consider the family FpqT of partial q-trees, where a partial q-tree is any spanning subgraph of a q-tree (see,
e.g., [6]). Note that partial 2-trees actually coincide with series–parallel graphs (see [8] for definitions and characterizations
of series–parallel graphs).
The problem of finding a spanning partial q-tree of a graph G arises often in problems concerning the construction of

reliable networks where the vertices are subject to failure (see [16] for the case q = 2), and in transportation networks.
From the definition of partial q-treeswe haveFq-trees ⊆ FpqT . Furthermore, q-trees are precisely the edgemaximal graphs

in the class of partial q-trees, that is, F pqT = Fq-trees. Hence, with the same argument of Theorem 3 it is straightforward to
prove the following:

Theorem 4. The MAXIMUM SPANNING SERIES–PARALLEL (or PARTIAL 2-TREE) SUBGRAPH PROBLEM is NP-complete even in
planar graphs with maximum vertex degree 6 that do not contain a K4 subgraph. The MAXIMUM SPANNING PARTIAL q-TREE
SUBGRAPH PROBLEM is NP-complete in split graphs or in graphs with maximum vertex degree 3q+ 2 that do not contain a Kq+2
subgraph.

The first part of this theorem strengthens a result from Asano [2] who proved NP-completeness of the problem of finding
a maximum spanning series–parallel subgraph of a planar graph.
We note that partial q-trees are closely related to the concept of treewidth introduced by Robertson and Seymour [20]

that refers to the width of a tree decomposition of a graph G. There are several equivalent characterizations of the notion
of treewidth, but probably the best-known characterization is the one in terms of partial q-trees. Indeed, a graph G has
treewidth at most q if and only if G is a partial q-tree [8]. Treewidth plays an important role in algorithmic graph theory.
Actually, many problems that are NP-hard for general graphs become polynomial or linear time solvable when restricted to
graphs of bounded treewidth (see [6,7] for an overview). Since q-trees are precisely the edge maximal graphs of treewidth
q [19], Theorem 4 can be rephrased by substituting treewidth at most q in place of partial q-trees.
Consider now the family F∆=q of all connected graphs on V with maximum vertex degree q. When |V | or q are even, the

extremal elements of F∆=q with the maximum number of edges are exactly the connected q-regular graphs Fq-reg that have
all vertex degrees equal to q. Clearly, a q-regular graph has exactly 12q|V | edges. Cheah and Corneil [13] have proved the
following NP-completeness result.

Theorem 5 (Cheah and Corneil). The existence problem for connected q-regular spanning subgraphs is NP-complete for graphs
of maximum degree∆ = q+ 1.

Hence, a straightforward application of Lemma 1 implies the following:

Theorem 6. The MAXIMUM SPANNING F∆=q-SUBGRAPH PROBLEM is NP-complete even for graphs of maximum degree ∆ =
q+ 1.

Note that Theorem 6 strengthens an analogous result proved by Yannakakis [25] for general graphs.
We now show three examples of application of Lemma 2 to establish NP-completeness of some maximum weight

spanning F -subgraph problem.

Theorem 7. Let G′q be a family of graphs that do not contain a Kq+2 subgraph, polynomially dominating the family Gq. Then the
MAXIMUMWEIGHT SPANNING CHORDAL SUBGRAPH PROBLEM in G′q is NP-complete.

Proof. By Theorem 1 we have that F q-chord = Fq-trees. Furthermore, every chordal subgraph of a graph G in G′q is also q-
chordal. Hence, EXISTENCE OF A SPANNING Fq-trees-SUBGRAPH in Gq can be reduced to MAXIMUM WEIGHT SPANNING
Fchord-SUBGRAPH in G′q by Lemma 2. The conclusion then follows from Theorem 2, which guarantees NP-completeness of
the former problem. �

A similar argument can be used to prove the following theorem, taking into account that F pqT = Fq-trees.

Theorem 8. Let G′ be either any family of graphs polynomially dominating the family of planar graphs with maximum vertex
degree 6 that do not contain a K4 subgraph, or any family of graphs polynomially dominating the family of split graphs or of graphs
withmaximumvertex degree 3q+2 that do not contain a Kq+2 subgraph. Then theMAXIMUMWEIGHT SPANNING PARTIAL q-TREE
SUBGRAPH PROBLEM in G′ is NP-complete.

Theorem 9. Let G′ be any family of graphs polynomially dominating the familyG of graphs of maximum vertex degree∆ = q+1.
Then the MAXIMUMWEIGHT SPANNING F∆=q-SUBGRAPH PROBLEM in G′ is NP-complete.

Proof. The proof follows from Lemma 2 and from Theorem 5, by observing that F ∆=q = Fq-reg . �

In particular, we obtain that themaximumweight spanningF∆=q-subgraph problem isNP-complete in complete graphs.
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4. A decomposition method

In this section we describe a method for solving the problem of finding a maximum weight spanning chordal subgraph
in a connected graph G = (V , E) by solving analogous problems in a family Gi = (Vi, Ei), i = 1, . . . , k, of induced subgraphs
of G, where V1, . . . , Vk is a partition of the node set V , and an additional maximum spanning tree problem in an associated
graph.
For a partition V1, . . . , Vk of the node set V we consider the following properties:

P1. the subgraph induced by Vi in G is connected for every i = 1, . . . , k;
P2. each triangle of G (i.e., cycle of G of length 3) is contained in exactly one subgraph induced by some Vi, i = 1, . . . , k;
P3. for every i 6= j there is at most one edge in G joining nodes in Vi and nodes in Vj (i.e., |(Vi × Vj) ∩ E| ≤ 1).

LetG′ = (V ′, E ′) be the graph obtained fromG by contracting the nodes in each Vi, i.e., V ′ = {V1, . . . , Vk}, and {Vi, Vj} ∈ E ′
whenever at least one node from Vi is joined to one node from Vj in G (in fact, under assumption P3, this is equivalent to
saying that there is exactly one edge in G joining one node from Vi to one node from Vj for i 6= j). We consider the graph
homomorphism ϕ : G→ G′ defined by ϕ(v) = Vi whenever v ∈ Vi.
Given a subgraph F = (VF , EF ) of G, we denote by ϕ(F) = (Vϕ(F), Eϕ(F)) the image of F in G′ where

Vϕ(F) = ϕ(VF ),
Eϕ(F) = {(ϕ(i), ϕ(j)) : (i, j) ∈ EF }.

In the following lemmata and theorems we always assume that properties P1, P2 and P3 hold.

Lemma 3. Let F be a subgraph of G and assume that ϕ(F) contains a chordless cycle in G′ of length `′. Then F contains a chordless
cycle in G of length ` ≥ max{4, `′}.

Proof. Let C ′ = 〈Vi1 , . . . , Vi`′ 〉 be a chordless cycle in G
′. Then for h = 1, . . . , `′ there exist (not necessarily distinct) nodes

vh, uh ∈ Vih such that (uh, vh+1) ∈ E for h = 1, . . . , `
′
− 1, and (u`′ , v1) ∈ E. Since each Vi is connected, there is a chordless

path Ph (possibly with a single element) in Vih between vh and uh for h = 1, . . . , `
′. Furthermore, since C ′ is chordless, there

is no edge joining nodes in Ph′ to nodes in Ph′′ for h′ 6= h′′. Hence, the path obtained by joining uh ∈ Ph with vh+1 ∈ Ph+1 can
be closed to form a chordless cycle C in G by joining u`′ ∈ P`′ with v1 ∈ P1. Furthermore, since |Ph| ≥ 1 for all h, we trivially
have that the length of C is at least `′. When `′ = 3, at least one of the Ph must have more than one node, since otherwise
there exists a triangle of G not contained in any of the subgraphs induced by Vi, thus contradicting property P2. Thus the
length of C must be at least 4. �

Lemma 4. Let F be a chordal subgraph of G. Then ϕ(F) is acyclic in G′.

Proof. This follows immediately from Lemma 3. �

To simplify notation, in what follows we identify a subgraph with the set of its edges. Furthermore, under assumption
P3, an acyclic subgraph F ′ of G′ is also identified with the unique minimal subgraph F of G satisfying ϕ(F) = F ′.

Theorem 10. A spanning subgraph F of a connected graph G is chordal if and only if

F = S ∪
k⋃
i=1

Fi, (1)

where S is a spanning tree of G′ and, for i = 1, . . . , k, Fi is a spanning chordal subgraph of the subgraph induced by Vi in G.

Proof. (⇐) Assume that there exists a (chordless) cycle 〈v1, . . . , v`〉 in S∪
⋃k
i=1 Fi with ` ≥ 4. Then, there exist Vi1 , . . . , Vim

such that v1, . . . , vh1 ∈ Vi1 ; (v
h1 , vh1+1) ∈ S; vh1+1, . . . , vh2 ∈ Vi2 ; . . .; (v

hm = v`, v1) ∈ S. Thus, Vi1 , . . . , Vim form a cycle
in (V ′, S) contradicting the assumption that S is a tree of G′.
(⇒) Suppose now that F is a spanning chordal subgraph of G and let Fi denote the subgraph induced by Vi in F . Then Fi is

a spanning chordal subgraph of the subgraph induced by Vi in G. Let S = ϕ(F). Then, S is a spanning tree in G′ by Lemma 4.
Furthermore, for every edge (v′, v′′) in F with v′ ∈ Vi and v′′ ∈ Vj, we have (v′, v′′) ∈ Fi whenever i = j, and (v′, v′′) ∈ S
otherwise. �

As a straightforward consequence of Theorem 10 we can find the maximum weight spanning chordal subgraph in G by
solving the maximum spanning tree problem in G′ and finding the maximumweight spanning chordal subgraphs in all V ′i s.

Corollary 1. Let CG denote the set of all (spanning) chordal subgraphs of G and let CVi denote the set of all (spanning) chordal
subgraphs of the subgraph induced by Vi, i = 1, . . . , k, in G. Let SG′ denote the set of all spanning trees of G′. Then, we have:

max
F∈CG

w(F) = max
S∈SG′

w(S)+
k∑
i=1

max
Fi∈CVi

w(Fi).
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a b c

Fig. 1. (a) Triangle. (b) Diamond. (c) Hammock.

a b

Fig. 2. (a) K4 . (b) 3-regular graph containing two triangles.

Remark 1. Let ST (n,m) denote the time required to solve amaximum spanning tree problem in a graphwith n nodes andm
edges,β denote the time required to construct the partition V1, . . . , Vk, andα denote the time needed to solve themaximum
weight spanning chordal subgraph problem in all the subsets Vi for i = 1, . . . , k. Since |V ′| ≤ |V |, the time required to solve
the maximum weight spanning chordal subgraph problem in a graph G with n nodes and m edges with the decomposition
method is O(ST (n,m)+ α + β). This is clearly polynomial in n andmwhenever α and β are polynomial in n andm.

In the next section we show how to use the decompositionmethod in the case where G hasmaximum node degree equal
to 3. In this case, we find that ST (n,m) = n log n, α = O(n) and β = O(n), so that the overall time complexity is O(n log n).

5. Spanning chordal subgraph problems on degree bounded graphs

When the graph G has (small) maximum vertex degree∆, several – but not all – F -subgraph problems can be solved in
polynomial time.
Yannakakis [25] shows that the maximum spanning line-invertible subgraph problem can be solved in polynomial time

in graphs with∆ = 3, but it is NP-complete in graphs with∆ = 4.
Natanzon, Shamir and Sharan [18,22] prove that the maximum spanning F -subgraph problem can be solved in

polynomial time in graphs with bounded degree when F is the family of chain, split, or threshold graphs (see, e.g., [18]
for definitions). The proofs are based on the observation that in all these cases the search space becomes bounded when the
problem is restricted to boundeddegree graphs. Furthermore, the same authors provide a general polynomial approximation
result for graphs with bounded degree.
Okawa, Nishitani, and Honda [26] show that the maximum bipartite subgraph problem is NP-complete even in graphs

with∆ = 3, or in 3-regular graphs (i.e., in cubic graphs).
In this section we provide a polynomial time algorithm, based on the decomposition method, for the problem of finding

a maximum weight spanning chordal subgraph in a graph G = (V , E) with maximum vertex degree ∆ = 3. In particular,
we show how to obtain a suitable partition of the vertex set V into sets V1, . . . , Vk satisfying properties P1, P2 and P3.
Let T be a triangle of G. When T has exactly two nodes connected to another single node v ∈ V , we call the subgraph

D induced by T and v a diamond, while when T has exactly two nodes connected to two nodes of another triangle, we call
hammock the resulting induced subgraph H (see Fig. 1).
In Fig. 1, dashed lines represent edges thatmay connect a given subgraph to the rest of the graphG. Consider the following

procedure for finding a partition of the vertex set V :

- Visit the graph G and find all the triangles of G;
- If a triangle T has three nodes connected to another single node, then G is a complete graph on four vertices (i.e., K4, see
Fig. 2(a)), while if T has three nodes connected to the nodes of another triangle, then G is the graph in Fig. 2(b). In these
two cases the maximum weight spanning chordal subgraph can trivially be found in time O(1).
- If a triangle T does not have two nodes connected to another single node (i.e., it does not belong to a diamond), or to two
nodes belonging to another triangle (i.e., it does not belong to a hammock), or if it does not have two nodes connected to
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a b

Fig. 3. (a) Triangle biconnected to a diamond. (b) Triangle biconnected to a hammock.

a b c

Fig. 4. (a) Diamond biconnected to a single vertex. (b) Two biconnected diamonds. (c) Diamond biconnected to a hammock.

two nodes of a diamond D or to two nodes of a hammock H (see Fig. 3), then we can take T as one of the elements Vi of
the partition;
- If a triangle T is connected to two nodes of (i.e., it is biconnected to) a diamond D or to two nodes of a hammock H (see
Fig. 3), then we can take the subgraphs induced by T and D, and by T and H as elements Vi of the partition of V .
- If a diamond D does not have two nodes connected to another single node or to two nodes belonging to a triangle (see
Figs. 3(a) and 4(a)), or if it does not have two nodes connected to another diamond or to two nodes of a hammock (see
Fig. 4(b) and (c)), then we can take D as one of the elements Vi of the partition;
- If a diamond D is connected to a single node v, or to two nodes of another diamond D′, or to two nodes of a hammock H
(see Fig. 4), we can take the subgraphs induced by D and v, by D and D′, and by D and H as elements Vi of the partition of
the node set V . The case of a subgraph induced by D and a triangle T was already considered (see Fig. 3(a)). Note that the
subgraphs induced by a diamond D biconnected to another diamond, or to a hammock are in fact 3-regular graphs that
must coincide with the whole graph G, so that a maximum weight spanning chordal subgraph problem can be solved in
time O(1).
- If a hammockH does not have two nodes connected to a single node or to two nodes belonging to a triangle (see Figs. 3(b)
and 5(a)), or if it does not have two nodes connected to a diamond (see Fig. 4(c)), or to two nodes of another hammock
(see Fig. 5(b)), then we can take H as one of the elements Vi of the partition;
- If a hammock H is biconnected to a single node v (see Fig. 5(a)), we can take the subgraph induced by H and v as an
element Vi of the partition of the node set V . As before, the cases of subgraphs induced by H biconnected to a triangle
T , and by H biconnected to a diamond D were already considered (see Figs. 3(b), and 4(c)). The subgraph induced by
a hammock H biconnected to another hammock H ′ is in fact 3-regular (see Fig. 5(b)), and must thus coincide with the
whole graph G, so that a maximum weight spanning chordal subgraph can be found in time O(1).
- Each node v of G that has not been inserted in some subsets Vi, i = 1, . . . , k, in the previous steps, can be taken to form
a (singleton) element of the partition of V .

Theorem 11. The partition V1, . . . , Vk obtained with the above procedure satisfies properties P1, P2 and P3.

Proof. Properties P1 and P2 are trivially satisfied by construction. Property P3 is trivially satisfied by all those components Vi
that are connected to the rest of the graph by at most one edge. Note that each element Vi of the partition obtained with the
previous procedure has at most three free edges connecting it with the rest of the graph. However, two different elements
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a b

Fig. 5. (a) Hammock biconnected to a single vertex. (b) Two biconnected hammocks.

Vi and Vj, i 6= j, of the partition cannot be biconnected or triconnected between them, since otherwise they would have been
joined in a larger element in some steps of the procedure. Hence, property P3 holds. �

Remark 2. It can be shown that the partition V1, . . . , Vk obtained by our procedure is the finest possible among all the
possible partitions that satisfy properties P1, P2 and P3. Indeed, for any other partition U1, . . . ,Uh satisfying P1, P2 and P3,
we must have h < k, and for every i there exists j such that Vi ⊆ Uj.

Since the node degree of G is bounded by 3, the overall time complexity of the above procedure is O(|V |) by visiting the
graph G. Hence, the time β needed to construct the partition V1, . . . , Vk is O(|V |). Since each element Vi, i = 1, . . . , k, of the
partition has at most 12 nodes and 18 edges, the time required for finding a maximum weight spanning chordal subgraph
of a subgraph induced by a Vi is O(1), so that α = O(|V |). Hence, since a maximum spanning tree in graphs with n nodes
can be found in time O(n log n) in the weighted case and O(n) in the unweighted case, Remark 1 implies that for a graph G
of maximum node degree∆ = 3 we have the following complexity result.

Theorem 12. The maximumweight spanning chordal subgraph problem can be solved on graphs G with maximum vertex degree
∆ = 3 in O(|V | log |V |) time. Furthermore, a maximum spanning chordal subgraph of G can be found in O(|V |) time.

Corollary 2. The problem of the existence of a spanning 2-tree in a graph G with maximum vertex degree ∆ = 3 can be solved
in O(|V |) time.

Proof. Note that a graph G with maximum vertex degree ∆ = 3 is either a K4 or does not contain a K4. Hence, a chordal
subgraph of G is also a 2-chordal subgraph of G. Thus for these graphs F chord = F2−trees. Then the thesis follows from
Theorem 12 and from the Existence–Max reduction Lemma 1. �

6. Conclusions and further research

This paper contains two tools that might be of some help for analyzing the complexity and for solving spanning subgraph
problems.
The reduction lemmata 1 and 2, in conjunction with results from extremal graph theory, allow us to obtain NP-

completeness results for maximum (weight) spanning subgraph problems from NP-completeness results for the existence
problem. This method has allowed, e.g., to prove NP-completeness of the maximum spanning chordal subgraph problem,
which has been an open problem for some time that has been settled only recently in aweaker form (see [18]). Furthermore,
Corollary 2 shows how to obtain a polynomiality result for the existence problem from a polynomiality result for the
maximum spanning subgraph problem. However, it would be interesting to explore other possible applications of lemmata
1 and 2.
Another useful tool is the decomposition method described in Section 4, that allows us to decompose the maximum

weight spanning chordal subgraph problem in a graph G into analogous subproblems on induced subgraphs of G, thereby
allowing an efficient solution of the problem whenever a suitable partition of the vertex set of G can be found efficiently.
It would be interesting to investigatewhether either of these two tools, or other approaches, could be applied to establish

the complexity status of the problem of finding a maximum spanning chordal subgraph problem in a (planar) graph with
node degree bounded by 4 or 5.
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