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Abstract

An undirected biconnected graghwith nonnegative integer lengths on the edges is given. The problem we consider is that
of finding a cycle basi® of G such that the length of the longest cycle includediis the smallest among all cycle bases of
G. We first observe that Horton’s algorithm [SIAM J. Comput. 16 (2) (1987) 358—-366] provides a fast solution of the problem
that extends the one given by Chickering et al. [Inform. Process. Lett. 54 (1995) 55-58] for uniform graphs. On the other hand
we show that, if the basis is required to be fundamental, then the problem is NP-hard and cannot be approximated within 2
Ve > 0, even with uniform lengths, unless=PNP. This problem remains NP-hard even restricted to the class of complete
graphs; in this case it cannot be approximated withifil13- ¢, Ve > 0, unless P= NP; it is instead approximable within 2 in
general, and within 2 if the triangle inequality holds.
00 2003 Elsevier B.V. All rights reserved.
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1. Introduction or cyclomatic numbepr(G) of G. Let the length of a
cycle be the sum of the lengths of its edges.
Throughout this paper b&t = (V, E) be an undi- The Shortest Maximal Cycle Basis (SMCB) prob-

rected biconnected graph without loops or multiple lem is that of finding a cycle basiB of G with the
edges, withs verticesyn edges and a nonnegative in- property that the length of the longest cycle included
teger lengthw(e) assigned to each edges E. (In the in B is the smallest among all bases®f The interest
sequel wordengthand wordweightwill be used as in this problem has been motivated in [2] by a possible
synonyms.) Associated witty there is a vector space  application as a preprocessing step in a Bayesian in-
over GF(2), called thecycle spacgconsisting of the  ference algorithm [5]. Here we observe that Horton’s
incidence vectors of all cycles (including the null cy-  algorithm [3] provides a fast solution of the problem
cle) and of all unions of edge-disjoint cycles@f The  thus extending the one given in [2] for uniform graphs.

dimension of this space is —n + 1, called thenullity WhenG is connected there are special cycle bases
that can be derived from the spanning trees@f
E-mail addressgiulia.galbiati@unipv.it (G. Galbiati). which we callfundamental cycle base# 7 is an
URL: http://mate.unipv.it/~galbiati (G. Galbiati). arbitrary spanning tree a, by adding anyone of the
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m —n+1 edges of; which do not belong t@’, the so-
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the one given in [3], it extends the one given in [2]

called chords, one creates a cycle and the set of theseand works if there is a unique shortest path between

m —n + 1 cycles forms a cycle basis, which is referred
to as a fundamental cycle basis.

The Shortest Maximal Fundamental Cycle Basis
(SMFCB) problem is that of finding a fundamental cy-
cle basisB of G with the property that the length of the
longest cycle included iB is the smallest among all
fundamental bases @f. As far as we know this prob-

any two vertices ofG. If this is not the case it is
enough, before applying the algorithm, to use standard
perturbation techniques in order to guarantee unique-
ness (see [1]). For instance, let E — {1, ..., |E|}

be an arbitrary permutation of the edges®f De-
fine the perturbation on an edge= E to bee(e) =
20@-IEI-1 |t is easy to see thaX_,., e(e¢) < 1 and

eckE

lem, addressed in [4], is new, and interesting both in a that, for all subset&'1, E» C E we haveZeeE1 e(e) #

theoretical contest and in the practical context of elec-
trical and communication networks. Matrix analysis
of electrical networks provides examples of dynamic

ZeeEzg(e) if and only if E1 # E2. Thus if one in-
crease the integral lengtin(e) of any edgee € E
by e(e) different paths get different lengths and every

circuits (with capacities and inductances) whose state shortest path is unique.

equations can be solved more or less rapidly depend-

ing on the choice of a fundamental cycle basis.

We show that this problem is NP-hard and can-
not be approximated within 2 ¢, Ye > 0, even with
uniform weights, unless B NP. When restricted to

Algorithm 1.

(1) Find the shortest patR(x, y) between each pair
of verticesx, y of G.

the class of complete weighted graphs, the problem (2) For each vertew and edge{x, y} in G, create

remains NP-hard and cannot be approximated within
i—f — ¢, Ve > 0, unless P= NP; it is instead approx-
imable within 2 in general and within/2 if the trian-

gle inequality holds.

2. Preliminaries

LetG be asaboveand |& = {b1, ..., by—_,+1} bE
a cycle basis foilG. Thelength W(b;) of cycleb; is

defined as the sum of the lengths of all the edges in the

cycle, whereas thglobal lengthW (B) of baseB is
defined as the maximum among the lengths of its cy-
cles. If C € B we denote byG ¢ the subgraph ot;
consisting of the cycles i@ In [6] two useful charac-
terizations of fundamental cycle bases are given.

Theorem 1. A cycle basisB of G is fundamental if
and only if B contains no cycle which consists entirely
of edges belonging to other cyclesif

Theorem 2. A cycle basis B of G is fundamental if and
only if v(G¢) = |C| for everyC C B.
3. The Shortest Maximal Cycle Basis problem

The algorithm that we present in this section for
solving the SMCB problem on grapti is essentially

the cycleC (v, x, y) = P(v, x) + P(v, y) +{x, y},

and calculate its length. Degenerate cases in which
P(v,x) and P(v, y) have vertices other thanin
common can be omitted.

(3) Order the cycles by increasing lengths.

(4) Use the greedy algorithm to find from this reduced
set of cycles a cycle basis @, i.e., add to an
initial empty basis the next shortest cycle if it is
independent from the already selected ones.

Theorem 3. Algorithm 1 solves the problem of finding
in a graph G a cycle basisB with shortest global

length if any two vertices af are joined by a unique
shortest path.

Proof. It is well known that the cycle space of graph
G is a matroid; the reduced set of cycles used by
Algorithm 3, being a finite subset of a vector space,
is also a matroid. It is known that in a matroid the
greedy algorithm finds a basis that simultaneously
minimizes the sum of the lengths of its elements
and the maximum among the lengths of its elements.
Theorem 4 in [3] proves that, if all shortest paths in
G are unique, the reduced set of cycles used by the
algorithm contains all cycles appearing in any cycle
basis of G that minimizes the sum of the lengths of
its elements. Hence it follows easily that the greedy
algorithm in step (4) finds a basis for the cycle space
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of G that minimizes the maximum among the lengths
of its elements. O

4. The Shortest Maximal Fundamental Cycle
Basis problem

In this section we investigate the complexity of the
SMFCB problem. We prove that it is NP-hard even
when restricted to uniform graphs, i.e., havinge)
equal to 1 for each edgec E.

Theorem 4. The problem of finding in a uniform graph
G a fundamental cycle basiB with shortest global
length isNP-hard.

Proof. We prove the theorem by exhibiting a reduc-
tion of the Satisfiability problem to the recognition
form of our problem. Given an instandeof Satisfi-
ability, i.e., a CNF formulaF on a setU of boolean
variables, we define an instanfefor the recognition
form of the SMFCB problem, i.e., a gragh and an
integerk, such thatl is satisfiable iff there exists i6
a fundamental cycle basis of global length at nkost

Let I be a collectionC = Cy, ..., Cy of h disjunc-
tive clauses of literals, where a literal is a variable or a
negated variable itV = {u1, ..., u,}.

First we define a grapty having arcs with lengths
equal to 1 or to a large integ@f to be defined later
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Fig. 2. Additional edges and vertices for clauge

We start the construction of tree from the treeT’
consisting of the edgefu;, it }, {u;, x;}, {uj, x;},
forall j =1,...,n and of the edges$i;, u;,1}, for
all j=1,...,n — 1. Then in order to obtaiT we
add to 7', for each variable:; set to true (respec-
tively false) in the assignment, the edgg, u ;} (re-
spectively{v;, i;}); moreover for each clausg; we
choose a literal that satisfies the clause and if the cho-
sen literal is variable ; (respectively negated variable
ii;) we add the edgé&’, v;} and the edgéc;, u;} (re-
spectively{c;, i ;}). It is easy to verify that, ifM is
chosen to satisfy the inequality2- 3 < M + 3, the

and we prove the result for this graph; then we observe set of fundamental cycles with respectitdas cycles
that the result is not affected if we replace each arc of length at most/ + 3.

having lengthM with a chain of M arcs of unitary
length.

We start the construction af from the graphG’
given in Fig. 1 where the only lengths indicated are
those equal ta/.

Then, in order to obtainG from G’, for each
clauseC; we add toG’ two verticesc; and ¢! and
the edge{c;, ¢’} with length equal toM; moreover
if C; contains the variable:; or its negation we
add the edge{ci,vj}; finally if C; contains the
variableu ; (respectivelyz; ) we add the edgg;, u;}
(respectively{c;, u;}) (see Fig. 2). We complete the
reduction by setting equal toM + 3.

Now if I is satisfiable there exists a truth assign-
ment for U that satisfies each clause; we show that
we can find a spanning tre@ of G having a funda-
mental set of cycles of global length at magt+ 3.

Conversely, suppose that there existsGina fun-
damental cycle basis of global length at mést- 3,
with M = 2n. Observe that all cycles that are funda-
mental cycles with respect to the chordsTdf(these
chords have length equal t&) must belong to the
basis; moreover for each clausg the edge{c;, ¢’}
must belong to a cycle in the basis that goes through a
vertexv;, for somej = 1,...,n; call this cycleA;
(respectively A ;) if it goes also through vertex ;
(respectivelyii ;). It is crucial to notice that all cy-
cles of the basis containing the eddes c'}, for all
i =1,...,h, cannotcontain botf ; andA ;, for some
index j, otherwise Theorem 2 would be violated: the
A; and Aj plus the cycle that goes through the ver-
tices{u;,u, x;, x;} would represent a sétof cycles
such thatv(Gs) = |S| + 1, since the additional cycle
through the vertice$u ;, v;, u;} would be generated.
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Fig. 3. GraphG”.
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Fig. 4. TreeT”.

Now it is easy to conclude that all the; or A; con-

taining the edge$c;, ¢'}, for eachi =1, ..., i, allow

to identify a truth assignment fdv that satisfies all
clausesini/. O

The next theorem proves a non-approximability
result for the SMFCB problem, again for uniform
graphs.

Theorem 5. The problem of finding in a uniform
graph G a fundamental cycle basiB with shortest
global length cannot be approximated withzZn— ¢,
Ve > 0, unlessP = NP.

Proof. We prove the theorem by giving a more so-
phisticated reduction, from Satisfiability to the opti-
mization form of our problem, which exhibits a gap.

More precisely, we show that yes-instances of Satisfi- B, ..

in Fig. 3; the addition of edges and verticesdd is
identical to the one fo6’.

It is easy to see that yes-instances of Satisfiability
are mapped into instances that exhibit a fundamental
cycle basis of global length at mo&t + 3 and hence
into instances whose shortest global length is at most
M + 3. Such a basis is the set of fundamental cycles
with respect to the tre& built as in Theorem 4, but
starting here from the tre&” illustrated in Fig. 4.
The only necessary requirement fbf is to satisfy
M—-3>2.

We now show that ifG had a fundamental cycle
basis where all cycles have length less th&fy then it
would be possible to satisfy instanteln fact, in such
a case, all cycles that are fundamental with respect
to the chords off'” with length equal toM and no
vertexa as an endpoint would belong to the basis;
we group these cycles naturally ingroups, called
., B,. We observe that the cycles of the basis that

ability are mapped into instances that have an optimum include the edgeg;, ¢'}, for alli = 1, ..., k, cannot

solution of global length at mogif + 3, whereas no-

include both edgesv;,u;} and {v;,u;} for some

instances are mapped into instances that have an opti-j, otherwise Theorem 2 would be violated, because

mum solution of global length at leasd2 From this

of the cycles inB;; and this would be sufficient to

we will be able to conclude that the problem cannot be identify a true assignment satisfying instardcélence

approximated within 2- €, Ve > 0, unless P= NP.
The reduction constructs a grapghfrom a starting

graph in a way identical to the one used in Theorem 4;

here the starting graph is n6t but the graplG” given

no-instances are mapped into instances whose shortest
global length is at least ™. At this point we may
conclude that the problem cannot be approximated
within 2M /(M + 3) — ¢/, Ye¢’ > 0, unless P= NP.
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It follows that Ve > 0, if we choosec’ to be less . .
than or equal t&/2 andM is chosen in such a way ] T us Y2 iy un yn N\, @,
that 6/ (M + 3) < ¢/2, then the inequality 2/ /(M +_ O P e paang
3) — ¢ > 2 — € becomes true and the conclusion ™ 2 NN 2 T2 n Zn n
follows. O

b
4.1. A special case ‘

Fig. 5. GraphG””.

In this subsection we consider complete graphs. We conclude this paper by observing that it is easy

Of course the only significant case is the nonuniform prove that any spanning tree of minimum diameter
case. The next theorem shows that this case is just agp, g complete weighted graph is a solution to the

interesting as the general case of uniform graphs. SMFCB problem within 2 in general and withiry3
if the weights satisfy the triangle inequality.

Theorem 6. The problem of finding, in a complete
weighted graphG, a fundamental cycle basiB with
shortest global weight isNP-hard and cannot be
approximated withing? — ¢, Ve > 0, unlessP = NP. The author wishes to thank Francesco Maffioli
and Edoardo Amaldi for drawing her attention to
this problem and for generously devoting time to
discussing its various aspects.
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