The NP-Completeness of Some Edge-Partition Problems

Ian Holyer *
SIAM J. COMPUT, Vol. 10, No. 4, November 1981 (pp. 713-717)
(c)1981 Society for Industrial and Applied Mathematics
0097-5397/81/1004-0006 \$1.00/0

Abstract

We show that for each fixed $n \geq 3$ it is NP-complete to determine whether an arbitrary graph can be edge-partitioned into subgraphs isomorphic to the complete graph K_{n}. The NP-completeness of a number of other edge-partition problems follows immediately.

Key words. computational complexity, NP-complete problems, edge-partition problems

1. Introduction. Many graph theory problems have been shown to be NP-complete and so are believed not to have polynomial time algorithms. Garey and Johnson [1] give an account of the theory of NP-completeness, a list of known NP-complete problems and a bibliography of the subject. In particular, they list several NP-complete vertex-partition problems [1, p. 193] including vertex-partition into cliques [2] and vertex-partition into isomorphic subgraphs [3].

In this paper, we consider some similar problems for edge-partitions. We define the edgepartition problem EP_{n} as follows. Given a graph $G=(V, E)$, the problem is to determine whether the edge-set E can be partitioned into subsets E_{1}, E_{2}, \ldots in such a way that each E_{i} generates a subgraph of G isomorphic to the complete graph K_{n} on n vertices. Our main result is that the problem EP_{n} is NP-complete for each $n \geq 3$. From this we deduce that a number of other edge-partition problems are NP-complete.

In order to show that EP_{n} is NP-complete, we will exhibit a polynomial reduction from the known NP-complete problem 3SAT which is defined as follows. A set of clauses $C=$ $\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ in variables $u_{1}, u_{2}, \ldots, u_{s}$ is given, each clause C_{i} consisting of three literals $l_{i, 1}, l_{i, 2}, l_{i, 3}$ where a literal $l_{i, j}$ is either a variable u_{k} or its negation \bar{u}_{k}. The problem is to determine whether C is satisfiable, that is, whether there is a truth assignment to the variables which simultaneously satisfies all the clauses in C. A clause is satisfied if one or more of its literals has value "true".
2. The main theorem. Our first task is to find a graph which can be edge-partitioned into K_{n} 's in exactly two distinct ways. Such a graph can be used as a "switch" to represent the two possible values "true" and "false" of a variable in an instance of 3SAT.

For each $n \geq 3$ and $p \geq 3$ we define a graph $H_{n, p}=\left(V_{n, p}, E_{n, p}\right)$ by

$$
\begin{aligned}
V_{n, p}= & \left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}_{p}^{n}: \sum_{i=1}^{n} x_{i} \equiv 0\right\} \\
E_{n, p}= & \left\{\mathbf{x y}: \text { there exist } i, j \text { such that } y_{k} \equiv x_{k}\right. \\
& \text { for } \left.k \neq i, j \text { and } y_{i} \equiv x_{i}+1, y_{i} \equiv x_{j}-1\right\}
\end{aligned}
$$

where the equivalences are modulo p. Note that $H_{n, p}$ can be regarded as embedded in the ($n-1$)-dimensional torus $T^{n-1}=S^{1} \times S^{1} \times \ldots \times S^{1}$, and that the local structure of $H_{n, p}$ is the same for each p (see Fig. 1). The properties of $H_{n, p}$ are given in the following lemma.

[^0]

Figure 1: (i) $H_{3,3}$ embedded in the (2-dimensional) torus. Opposite sides are identified as shown. (ii) The local structure of $H_{4, p}$. The edges of a single K_{4} are shown.

Lemma. The graph $H_{n, p}$ has the following properties:
(i) The degree of each vertex is $2\binom{n}{2}$.
(ii) The largest complete subgraph is K_{n}, and any K_{3} is contained in a unique K_{n}.
(iii) The number of K_{n} 's containing a particular vertex is $2 n$.
(iv) Each edge occurs in just two K_{n} 's.
(v) Each two distinct K_{n} 's are either edge-disjoint or have just one edge in common.
(vi) There are just two distinct edge-partitions of $H_{n, p}$ into K_{n} 's.

Proof. (i) By translational symmetry we need only consider $\mathbf{0}=(0, \ldots, 0)$. This is adjacent to $(1,-1,0, \ldots, 0)$ and the distinct points obtained from it by permuting its coordinates $(0,1,-1$ are distinct modulo p as $p \geq 3$). There are clearly $2\binom{n}{2}$ of these.
(ii) By translation and coordinate permutation we may assume that a largest complete subgraph contains the vertices $\mathbf{0}=(0, \ldots, 0),(1,-1,0, \ldots, 0)$ and $(1,0,-1,0, \ldots, 0)$. It is then forced to be the standard K_{n}, which we call K and whose vertices are:

$$
\begin{gathered}
(0,0,0, \ldots, 0) \\
(1,-1,0, \ldots, 0) \\
(1,0,-1, \ldots, 0) \\
\ldots \\
(1,0,0 \ldots,-1)
\end{gathered}
$$

(iii) The K_{n} 's containing $\mathbf{0}$ are obtained from K and its inverse $-K$ by cyclic permutation of the coordinates. Thus there are $2 n$ of them.
(iv) We need only consider a particular edge containing the vertex $\mathbf{0}$ and check that it is contained in just two of the K_{n} 's given in (iii).
(v) If two K_{n} 's are not disjoint, we may assume that they have vertex $\mathbf{0}$ in common. We may then use (iii) to check that they have just one more vertex in common.
(vi) The edges containing $\mathbf{0}$ can be partitioned in at most two ways, and these extend to the whole of $H_{n, p}$. All the K_{n} 's are obtained from K or $-K$ by translation. One edge-partition consists of the translates of K, and the other consists of the translates of $-K$.

We now make the following definitions. The T-partition of $H_{n, p}$ (corresponding to logical value "true") consists of the translates of K, and the F-partition (corresponding to "false") consists of the translates of $-K$. Two K_{n} 's in $H_{n, p}$ are called neighbors if they have a common edge. A patch is a subgraph of $H_{n, p}$ consisting of the vertices and edges of a particular K_{n} and of
its neighbors. It is a T-patch if the central K_{n} belongs to the T-partition, and it is an F-patch otherwise. Two patches P_{1}, P_{2} in $H_{n, p}$ are called noninterfering if the distance $d(\mathbf{x}, \mathbf{y})$ in $H_{n, p}$ between vertices $\mathbf{x} \in V\left(P_{1}\right)$ and $\mathbf{y} \in V\left(P_{2}\right)$ is always at least 10 , say.

THEOREM. The edge-partition problem EP_{n} is NP-complete for each $n \geq 3$.
Proof. The problem EP_{n} is clearly in NP. Suppose we have an instance $C=\left\{C_{1}, C_{2}, \ldots, C_{r}\right\}$ of 3 SAT in s variables $u_{1}, u_{2}, \ldots, u_{s}$ where each C_{i} consists of literals $l_{i, 1}, l_{i, 2}, l_{i, 3}$. We reduce this instance of 3SAT to an instance $G_{n}=\left(V_{n}, E_{n}\right)$ of EP_{n} as follows.

Choose p sufficiently large so that up to $3 r$ noninterfering patches can be chosen in $H_{n, p}$ say $p=100 r$. Take a copy U_{i} of $H_{n, p}$ to represent each variable u_{i} and copies $C_{i, 1}, C_{i, 2}$ and $C_{i, 3}$ of $H_{n, p}$ to represent each clause C_{i}.

Join these copies of $H_{n, p}$ together as follows. If literal $l_{i, j}$ is u_{k}, then identify an F-patch of $C_{i, j}$ with an F-patch of U_{k}. If $l_{i, j}$ is \bar{u}_{k}, then identify an F-patch of $C_{i, j}$ with a T-patch of U_{k} as indicated for $n=3$ in Fig. 2.

Figure 2: The identification of an F-patch with a T-patch when $n=3$. Similarly labelled vertices (and the edges between them) are identified.

Also join $C_{i, 1}, C_{i, 2}$ and $C_{i, 3}$ for each i by identifying one F-patch from each and then removing the edges of the central K_{n} (see Fig. 3).

Choose all those patches which occur in a single copy of $H_{n, p}$ to be noninterfering.
Denote by $G_{n}=\left(V_{n}, E_{n}\right)$ the graph obtained in this way. We now show that there is an edge-partition of G_{n} into K_{n} 's if and only if the instance C of 3SAT is satisfiable.

Suppose that there is an edge-partition of G_{n} into a set S of K_{n} 's, and consider a particular copy H of $H_{n, p}$ involved in the construction of G_{n}. Take a K_{n} in S, say A, which is in H, but not near any join. Using the properties in the lemma, we see that the neighbors of A do not belong to S, the neighbors of the neighbors of A do belong to S, and so on. Continuing in this way, we deduce that all the edges of H, except perhaps those involved in joins, are T-partitioned, or all F-partitioned. Thus we may say that H is T-partitioned or F-partitioned.

Now suppose $l_{i, j}$ is u_{k} and consider the join between $C_{i, j}$ and U_{k}. We claim that the edges in the vicinity of this join can be edge-partitioned into K_{n} 's if and only if at least one of $C_{i, j}$, U_{k} is T-partitioned. If (say) $C_{i, j}$ is T-partitioned, this accounts for all the edges of $C_{i, j}$ near the joining patch except for those of the patch itself. The patch can then be regarded as belonging to U_{k} which can then be locally partitioned in either way. If on the other hand both $C_{i, j}$ and U_{k} are F-partitioned, the argument of the previous paragraph shows that the edges of the patch not belonging to the central K_{n} are forced to belong to the F-partitions of both $C_{i, j}$ and U_{k}, which is a contradiction.

Similarly, if $l_{i, j}$ is \bar{u}_{k}, then either $C_{i, j}$ is F-partitioned or U_{k} is T-partitioned.
Now consider the join between $C_{i, 1}, C_{i, 2}$ and $C_{i, 3}$. We claim that the edges in the vicinity of this join can be edge-partitioned into K_{n} 's if and only if exactly one of $C_{i, 1}, C_{i, 2}, C_{i, 3}$ is F partitioned. The argument is the same as above, except that now, as the central K_{n} is missing, the remaining edges of the patch must be claimed by an F-partition in exactly one of $C_{i, 1}, C_{i, 2}, C_{i, 3}$.

Figure 3: The join between $C_{i, 1}, C_{i, 2}$ and $C_{i, 3}$ when $n=3$.

Thus if G_{n} can be edge-partitioned into K_{n} 's, then there is a truth assignment to u_{1}, \ldots, u_{s} which satisfies C, namely u_{k} has value "true" if and only if U_{k} is T-partitioned.

If C is satisfiable, we partition G_{n} by partitioning U_{k} according to the truth of u_{k} in a satisfying assignment, choosing one "true" literal $l_{i, j}$ for each i, and F-partitioning the corresponding $C_{i, j}$.

It should be clear that the above reduction from 3 SAT to EP_{n} can be carried out using a polynomial time algorithm, and so the proof of the theorem is complete.
3. Deductions. The following problems are now easily seen to be NP-complete.
(i) Find the maximum number of edge-disjoint K_{n} 's in a graph ($n \geq 3$).
(ii) Find the maximum number of edge-disjoint maximal cliques in a graph.
(iii) Edge-partition a graph into the minimum number of complete subgraphs.
(iv) Edge-partition a graph into maximal cliques.
(v) Edge-partition a graph into cycles C_{m} of length m.

For (i) we use the same construction as for EP_{n}. For (ii), (iii) and (iv) we use the same construction as for EP_{3}. Note that G_{3} contains no K_{4} 's, and every edge K_{2} is in a K_{3}, so the maximal cliques coincide with the K_{3} 's.

For (v) we alter the construction for EP_{3} in the following way. Note that the edges in $H_{3, p}$ occur in three distinct directions, say \mathbf{a}, \mathbf{b} and \mathbf{c}, and that the joins in the construction of G_{3} are made so that edges which are identified have the same direction. In G_{3}, replace each edge with direction a (say) by a path of $m-2$ edges.

We conjecture that the problem of edge-partitioning a graph into subgraphs isomorphic to a fixed graph H is NP-complete for all graphs H with at least 3 edges. The problem is polynomial if H has at most 2 edges, and it is easy to show that the problem is NP-complete for a number of particular small, connected graphs H. The NP-completeness of the problem seems difficult to prove if H is disconnected, e.g., if $H=3 K_{2}$, that is, H has 6 vertices and 3 independent edges.

REFERENCES

[1] M.R. Garey and D.S. Johnson, Computers and Intractability, W.H.Freeman, San Francisco, 1979.
[2] R.M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations, R.E. Miller and J.W. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.
[3] D.G. Kirkpatrick and P. Hell, On the complexity of a generalized matching problem, in Proc. 10th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1978, pp. 240-245.

[^0]: *Received by the editors July 18, 1979, and in final form January 7, 1981
 ${ }^{\dagger}$ University Computer Laboratory, University of Cambridge, Cambridge, England. This work was supported by the British Science Research Council.

