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Abstract. We show that for each fixed > 3 itis NP-complete to determine whether an arbitrary graph
can be edge-partitioned into subgraphs isomorphic to the complete rapiihe NP-completeness of a
number of other edge-partition problems follows immediately.
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1. Introduction. Many graph theory problems have been shown to be NP-complete and so
are believed not to have polynomial time algorithms. Garey and Johnson [1] give an account of
the theory of NP-completeness, a list of known NP-complete problems and a bibliography of the
subject. In particular, they list several NP-complete vertex-partition problems [1, p. 193] including
vertex-partition into cliques [2] and vertex-partition into isomorphic subgraphs [3].

In this paper, we consider some similar problems for edge-partitions. We define the edge-
partition problem ER as follows. Given a grap&y = (V, E), the problem is to determine whether
the edge-sef’ can be partitioned into subsely, E-, ... in such a way that each; generates
a subgraph of7 isomorphic to the complete graphki,, on n vertices. Our main result is that
the problem ER is NP-complete for each > 3. From this we deduce that a number of other
edge-partition problems are NP-complete.

In order to show that EPis NP-complete, we will exhibit a polynomial reduction from
the known NP-complete problem 3SAT which is defined as follows. A set of clatises
{C4,Cs,...,C,} in variablesuy,us, ... ,us is given, each clausé€’; consisting of three liter-
alsi; 1,1 2,1; 3 where a literall; ; is either a variabley;, or its negationu,. The problem is to
determine whethe€' is satisfiable, that is, whether there is a truth assignment to the variables
which simultaneously satisfies all the clause<’in A clause is satisfied if one or more of its
literals has value “true”.

2. The main theorem. Ouir first task is to find a graph which can be edge-partitioned into
K,’s in exactly two distinct ways. Such a graph can be used as a “switch” to represent the two
possible values “true” and “false” of a variable in an instance of 3SAT.

For eachn > 3 andp > 3 we define a grapltl,, , = (V;,p, Enp) by

n
Vip = {X:(wla--- » Tp) EZZ:Z%EO},
i=1

E, , = {xy : there exist ¢, j such that y;, = z},
fork #i,jandy; =a;+ 1,y; =x; — 1}
where the equivalences are modplo Note thatH,, , can be regarded as embedded in the

(n — 1)-dimensional torug™ ! = S x S x ... x §1, and that the local structure &f,, ,, is the
same for each (see Fig. 1). The properties éf, , are given in the following lemma.
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Figure 1:(i) H3 3 embedded in the (2-dimensional) torus. Opposite sides are identified as shown.
(i) The local structure off, ,. The edges of a singl&, are shown.

LEMMA. The graphH,, , has the following properties:

(i) The degree of each vertexag)).

(i) The largest complete subgraphig,, and anyK is contained in a uniqués,,.

(iii) The number of{,,’s containing a particular vertex i&n.

(iv) Each edge occurs in just twig,,’s.

(v) Each two distinctK,,’s are either edge-disjoint or have just one edge in common.

(vi) There are just two distinct edge-partitions &, ,, into K,’s.

Proof. (i) By translational symmetry we need only consi@les= (0, ... ,0). This is adjacent
to (1,—1,0,...,0) and the distinct points obtained from it by permuting its coordinaigs, (1
are distinct module asp > 3). There are clearlg () of these.

(i) By translation and coordinate permutation we may assume that a largest complete subgraph
contains the vertice8 = (0,...,0), (1,—1,0,...,0) and(1,0,—1,0,... ,0). Itis then forced
to be thestandardK,,, which we callK" and whose vertices are:

(0,0,0, ... ,0)
(1,-1,0,... ,0)
(1,0,—1,...,0)
(1,0,0...,—1)

(iif) The K,,’s containing0 are obtained frori and its inverse- K by cyclic permutation of
the coordinates. Thus there &ne of them.

(iv) We need only consider a particular edge containing the vértamd check that it is con-
tained in just two of thd<,,’s given in (ii).

(v) If two K,,’s are not disjoint, we may assume that they have veaitexcommon. We may
then use (iii) to check that they have just one more vertex in common.

(vi) The edges containing can be partitioned in at most two ways, and these extend to the
whole of H, ,. All the K,’s are obtained fromK or —K by translation. One edge-partition
consists of the translates &f, and the other consists of the translates-df.

We now make the following definitions. Thepartition of H,, , (corresponding to logical
value “true”) consists of the translatesi®of and theF-partition (corresponding to “false”) consists
of the translates of-K. Two K,,’s in H, , are calledneighborsif they have a common edge.
A patchis a subgraph off, , consisting of the vertices and edges of a particllgr and of



its neighbors. It is &-patchif the central K,, belongs to the T-partition, and it is dfpatch
otherwise. Two patcheB;, P, in H, , are callednoninterferingif the distanced(x,y) in Hy
between vertices € V (P;) andy € V(%) is always at least 10, say.

THEOREM. The edge-partition probler&P, is NP-complete for each > 3.

Proof. The problem ERis clearly in NP. Suppose we have an instaice {C4,Cs, ... ,C,}
of 3SAT in s variablesuy, uo, ... , us Where eaclC; consists of literal$; 1, l; o, [; 3. We reduce
this instance of 3SAT to an instan¢g, = (V,,, E,,) of EP, as follows.

Choosep sufficiently large so that up - noninterfering patches can be choserfip,, say
p = 100r. Take a copyU; of H,, , to represent each variablg and copies”; ;, C; » andC; 3 of
H, , to represent each claugg.

Join these copies dfl,, , together as follows. If literal; ; is uy, then identify anF-patch of
C;,; with anF-patch ofUy. If [; ; is wy, then identify arF-patch ofC; ; with a T-patch ofU;, as
indicated forn = 3 in Fig. 2.
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Figure 2:The identification of an F-patch with a T-patch wher= 3. Similarly labelled vertices
(and the edges between them) are identified.

Alsojoin C; 1, C; 2 andC; 3 for eachi by identifying oneF-patch from each and then removing
the edges of the centrél,, (see Fig. 3).

Choose all those patches which occur in a single cop,pf to be noninterfering.

Denote byG, = (V,, E,) the graph obtained in this way. We now show that there is an
edge-partition of7,, into K,,’s if and only if the instance&” of 3SAT is satisfiable.

Suppose that there is an edge-partitiorGef into a setS of K,'s, and consider a particular
copy H of H,,, involved in the construction of/,,. Take ak, in S, say A, which is inH, but
not near any join. Using the properties in the lemma, we see that the neighbbdoaiot belong
to .S, the neighbors of the neighbors dfdo belong taS, and so on. Continuing in this way, we
deduce that all the edges &Ff, except perhaps those involved in joins, a&rpartitioned, or all
F-partitioned. Thus we may say thatis T-partitioned or--partitioned.

Now supposeé; ; is u; and consider the join betweet} ; andU,. We claim that the edges
in the vicinity of this join can be edge-partitioned inig,’s if and only if at least one ot’; ;,
Uy, is T-partitioned. If (say)C; ; is T-partitioned, this accounts for all the edges(gf; near the
joining patch except for those of the patch itself. The patch can then be regarded as belonging
to U}, which can then be locally partitioned in either way. If on the other hand 6gthand U,
are F-partitioned, the argument of the previous paragraph shows that the edges of the patch not
belonging to the centrak’,, are forced to belong to tHe-partitions of bothC; ; andUj,, which is
a contradiction.

Similarly, if ; ; isuy, then eitheiC; ; is F-partitioned orlUj, is T-partitioned.

Now consider the join betweef; ;, C;» andC; 3. We claim that the edges in the vicinity
of this join can be edge-partitioned infg,,’s if and only if exactly one ofC; ;, C; 2, C; 3 is F-
partitioned. The argument is the same as above, except that now, as the Egrigahissing, the
remaining edges of the patch must be claimed bf-gartition in exactly one ot’; 1, C; 2, C; 3.
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Figure 3:The join betweed; 1, C; » and C; 3 whenn = 3.

Thus if G,, can be edge-patrtitioned intg,,’s, then there is a truth assignmentug, ... , ug
which satisfieq”, namelyu; has value “true” if and only i/, is T-partitioned.

If C'is satisfiable, we partitio¥,, by partitioningU, according to the truth af, in a satisfying
assignment, choosing one “true” litedg); for each:, andF-partitioning the correspondingj; ;.

It should be clear that the above reduction from 3SAT tq, EBn be carried out using a
polynomial time algorithm, and so the proof of the theorem is compléte.

3. Deductions.The following problems are now easily seen to be NP-complete.

(i) Find the maximum number of edge-disjoiit,’s in a graph ¢ > 3).

(i) Find the maximum number of edge-disjoint maximal cliques in a graph.

(iif) Edge-partition a graph into the minimum number of complete subgraphs.

(iv) Edge-partition a graph into maximal cliques.

(v) Edge-partition a graph into cycl€s,, of lengthm.

For (i) we use the same construction as for,EFRFor (ii), (iii) and (iv) we use the same
construction as for EP Note thatG; contains noK,’s, and every edgé<, is in a K3, so the
maximal cliques coincide with th&3’s.

For (v) we alter the construction for Efh the following way. Note that the edges i
occur in three distinct directions, sayb andc, and that the joins in the construction Gf are
made so that edges which are identified have the same directidHs, Ireplace each edge with
directiona (say) by a path ofn — 2 edges.

We conjecture that the problem of edge-partitioning a graph into subgraphs isomorphic to a
fixed graphH is NP-complete for all graph& with at least 3 edges. The problem is polynomial
if H has at most 2 edges, and it is easy to show that the problem is NP-complete for a number
of particular small, connected graphs The NP-completeness of the problem seems difficult to
prove if H is disconnected, e.g., i = 3K>, thatis,H has 6 vertices and 3 independent edges.
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