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Abstract. We show that for each fixedn � 3 it is NP-complete to determine whether an arbitrary graph
can be edge-partitioned into subgraphs isomorphic to the complete graphKn. The NP-completeness of a
number of other edge-partition problems follows immediately.
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1. Introduction. Many graph theory problems have been shown to be NP-complete and so
are believed not to have polynomial time algorithms. Garey and Johnson [1] give an account of
the theory of NP-completeness, a list of known NP-complete problems and a bibliography of the
subject. In particular, they list several NP-complete vertex-partition problems [1, p. 193] including
vertex-partition into cliques [2] and vertex-partition into isomorphic subgraphs [3].

In this paper, we consider some similar problems for edge-partitions. We define the edge-
partition problem EPn as follows. Given a graphG = (V;E), the problem is to determine whether
the edge-setE can be partitioned into subsetsE1, E2, : : : in such a way that eachEi generates
a subgraph ofG isomorphic to the complete graphKn on n vertices. Our main result is that
the problem EPn is NP-complete for eachn � 3. From this we deduce that a number of other
edge-partition problems are NP-complete.

In order to show that EPn is NP-complete, we will exhibit a polynomial reduction from
the known NP-complete problem 3SAT which is defined as follows. A set of clausesC =

fC1; C2; : : : ; Crg in variablesu1,u2, : : : ,us is given, each clauseCi consisting of three liter-
als li;1; li;2; li;3 where a literalli;j is either a variableuk or its negationuk. The problem is to
determine whetherC is satisfiable, that is, whether there is a truth assignment to the variables
which simultaneously satisfies all the clauses inC. A clause is satisfied if one or more of its
literals has value “true”.

2. The main theorem. Our first task is to find a graph which can be edge-partitioned into
Kn’s in exactly two distinct ways. Such a graph can be used as a “switch” to represent the two
possible values “true” and “false” of a variable in an instance of 3SAT.

For eachn � 3 andp � 3 we define a graphHn;p = (Vn;p; En;p) by

Vn;p =

(
x = (x1; : : : ; xn) 2 Z

n
p :

nX
i=1

xi � 0

)
;

En;p = fxy : there exist i; j such that yk � xk

for k 6= i; j and yi � xi + 1; yi � xj � 1g

where the equivalences are modulop. Note thatHn;p can be regarded as embedded in the
(n� 1)-dimensional torusT n�1 = S1 � S1 � : : :� S1, and that the local structure ofHn;p is the
same for eachp (see Fig. 1). The properties ofHn;p are given in the following lemma.
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Figure 1:(i) H3;3 embedded in the (2-dimensional) torus. Opposite sides are identified as shown.
(ii) The local structure ofH4;p. The edges of a singleK4 are shown.

LEMMA . The graphHn;p has the following properties:
(i) The degree of each vertex is2

�n
2

�
.

(ii) The largest complete subgraph isKn, and anyK3 is contained in a uniqueKn.
(iii) The number ofKn’s containing a particular vertex is2n.
(iv) Each edge occurs in just twoKn’s.
(v) Each two distinctKn’s are either edge-disjoint or have just one edge in common.
(vi) There are just two distinct edge-partitions ofHn;p intoKn’s.
Proof. (i) By translational symmetry we need only consider0 = (0; : : : ; 0). This is adjacent

to (1;�1; 0; : : : ; 0) and the distinct points obtained from it by permuting its coordinates (0; 1;�1

are distinct modulop asp � 3). There are clearly2
�n
2

�
of these.

(ii) By translation and coordinate permutation we may assume that a largest complete subgraph
contains the vertices0 = (0; : : : ; 0), (1;�1; 0; : : : ; 0) and(1; 0;�1; 0; : : : ; 0). It is then forced
to be thestandardKn, which we callK and whose vertices are:

(0; 0; 0; : : : ; 0)

(1;�1; 0; : : : ; 0)

(1; 0;�1; : : : ; 0)

: : :

(1; 0; 0 : : : ;�1)

(iii) The Kn’s containing0 are obtained fromK and its inverse�K by cyclic permutation of
the coordinates. Thus there are2n of them.

(iv) We need only consider a particular edge containing the vertex0 and check that it is con-
tained in just two of theKn’s given in (iii).

(v) If two Kn’s are not disjoint, we may assume that they have vertex0 in common. We may
then use (iii) to check that they have just one more vertex in common.

(vi) The edges containing0 can be partitioned in at most two ways, and these extend to the
whole ofHn;p. All the Kn’s are obtained fromK or �K by translation. One edge-partition
consists of the translates ofK, and the other consists of the translates of�K.

We now make the following definitions. TheT-partition of Hn;p (corresponding to logical
value “true”) consists of the translates ofK, and theF-partition (corresponding to “false”) consists
of the translates of�K. Two Kn’s in Hn;p are calledneighborsif they have a common edge.
A patch is a subgraph ofHn;p consisting of the vertices and edges of a particularKn and of
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its neighbors. It is aT-patch if the centralKn belongs to the T-partition, and it is anF-patch
otherwise. Two patchesP1, P2 in Hn;p are callednoninterferingif the distanced(x;y) in Hn;p

between verticesx 2 V (P1) andy 2 V (P2) is always at least 10, say.
THEOREM. The edge-partition problemEPn is NP-complete for eachn � 3.
Proof. The problem EPn is clearly in NP. Suppose we have an instanceC = fC1; C2; : : : ; Crg

of 3SAT in s variablesu1, u2, : : : , us where eachCi consists of literalsli;1, li;2, li;3. We reduce
this instance of 3SAT to an instanceGn = (Vn; En) of EPn as follows.

Choosep sufficiently large so that up to3r noninterfering patches can be chosen inHn;p say
p = 100r. Take a copyUi of Hn;p to represent each variableui and copiesCi;1, Ci;2 andCi;3 of
Hn;p to represent each clauseCi.

Join these copies ofHn;p together as follows. If literalli;j is uk, then identify anF-patch of
Ci;j with anF-patch ofUk. If li;j is uk, then identify anF-patch ofCi;j with a T-patch ofUk as
indicated forn = 3 in Fig. 2.
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Figure 2:The identification of an F-patch with a T-patch whenn = 3. Similarly labelled vertices
(and the edges between them) are identified.

Also joinCi;1,Ci;2 andCi;3 for eachi by identifying oneF-patch from each and then removing
the edges of the centralKn (see Fig. 3).

Choose all those patches which occur in a single copy ofHn;p to be noninterfering.
Denote byGn = (Vn; En) the graph obtained in this way. We now show that there is an

edge-partition ofGn intoKn’s if and only if the instanceC of 3SAT is satisfiable.
Suppose that there is an edge-partition ofGn into a setS of Kn’s, and consider a particular

copyH of Hn;p involved in the construction ofGn. Take aKn in S, sayA, which is inH, but
not near any join. Using the properties in the lemma, we see that the neighbors ofA do not belong
to S, the neighbors of the neighbors ofA do belong toS, and so on. Continuing in this way, we
deduce that all the edges ofH, except perhaps those involved in joins, areT-partitioned, or all
F-partitioned. Thus we may say thatH is T-partitioned orF-partitioned.

Now supposeli;j is uk and consider the join betweenCi;j andUk. We claim that the edges
in the vicinity of this join can be edge-partitioned intoKn’s if and only if at least one ofCi;j,
Uk is T-partitioned. If (say)Ci;j is T-partitioned, this accounts for all the edges ofCi;j near the
joining patch except for those of the patch itself. The patch can then be regarded as belonging
to Uk which can then be locally partitioned in either way. If on the other hand bothCi;j andUk

areF-partitioned, the argument of the previous paragraph shows that the edges of the patch not
belonging to the centralKn are forced to belong to theF-partitions of bothCi;j andUk, which is
a contradiction.

Similarly, if li;j is uk, then eitherCi;j is F-partitioned orUk is T-partitioned.
Now consider the join betweenCi;1, Ci;2 andCi;3. We claim that the edges in the vicinity

of this join can be edge-partitioned intoKn’s if and only if exactly one ofCi;1, Ci;2, Ci;3 is F-
partitioned. The argument is the same as above, except that now, as the centralKn is missing, the
remaining edges of the patch must be claimed by anF-partition in exactly one ofCi;1, Ci;2, Ci;3.
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Figure 3:The join betweenCi;1, Ci;2 andCi;3 whenn = 3.

Thus ifGn can be edge-partitioned intoKn’s, then there is a truth assignment tou1, : : : , us
which satisfiesC, namelyuk has value “true” if and only ifUk is T-partitioned.

If C is satisfiable, we partitionGn by partitioningUk according to the truth ofuk in a satisfying
assignment, choosing one “true” literalli;j for eachi, andF-partitioning the correspondingCi;j.

It should be clear that the above reduction from 3SAT to EPn can be carried out using a
polynomial time algorithm, and so the proof of the theorem is complete.�

3. Deductions.The following problems are now easily seen to be NP-complete.
(i) Find the maximum number of edge-disjointKn’s in a graph (n � 3).
(ii) Find the maximum number of edge-disjoint maximal cliques in a graph.
(iii) Edge-partition a graph into the minimum number of complete subgraphs.
(iv) Edge-partition a graph into maximal cliques.
(v) Edge-partition a graph into cyclesCm of lengthm.
For (i) we use the same construction as for EPn. For (ii), (iii) and (iv) we use the same

construction as for EP3. Note thatG3 contains noK4’s, and every edgeK2 is in aK3, so the
maximal cliques coincide with theK3’s.

For (v) we alter the construction for EP3 in the following way. Note that the edges inH3;p

occur in three distinct directions, saya, b andc, and that the joins in the construction ofG3 are
made so that edges which are identified have the same direction. InG3, replace each edge with
directiona (say) by a path ofm� 2 edges.

We conjecture that the problem of edge-partitioning a graph into subgraphs isomorphic to a
fixed graphH is NP-complete for all graphsH with at least 3 edges. The problem is polynomial
if H has at most 2 edges, and it is easy to show that the problem is NP-complete for a number
of particular small, connected graphsH. The NP-completeness of the problem seems difficult to
prove ifH is disconnected, e.g., ifH = 3K2, that is,H has 6 vertices and 3 independent edges.
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