The NP-Completeness of Some Edge-Partition Problems

Ian Holyer **

SIAM J. COMPUT, Vol. 10, No. 4, November 1981 (pp. 713-717) ©1981 Society for Industrial and Applied Mathematics 0097-5397/81/1004-0006 \$1.00/0

Abstract. We show that for each fixed $n \ge 3$ it is NP-complete to determine whether an arbitrary graph can be edge-partitioned into subgraphs isomorphic to the complete graph K_n . The NP-completeness of a number of other edge-partition problems follows immediately.

Key words. computational complexity, NP-complete problems, edge-partition problems

1. Introduction. Many graph theory problems have been shown to be NP-complete and so are believed not to have polynomial time algorithms. Garey and Johnson [1] give an account of the theory of NP-completeness, a list of known NP-complete problems and a bibliography of the subject. In particular, they list several NP-complete vertex-partition problems [1, p. 193] including vertex-partition into cliques [2] and vertex-partition into isomorphic subgraphs [3].

In this paper, we consider some similar problems for edge-partitions. We define the edgepartition problem EP_n as follows. Given a graph G = (V, E), the problem is to determine whether the edge-set E can be partitioned into subsets E_1, E_2, \ldots in such a way that each E_i generates a subgraph of G isomorphic to the complete graph K_n on n vertices. Our main result is that the problem EP_n is NP-complete for each $n \ge 3$. From this we deduce that a number of other edge-partition problems are NP-complete.

In order to show that EP_n is NP-complete, we will exhibit a polynomial reduction from the known NP-complete problem 3SAT which is defined as follows. A set of clauses $C = \{C_1, C_2, \ldots, C_r\}$ in variables u_1, u_2, \ldots, u_s is given, each clause C_i consisting of three literals $l_{i,1}, l_{i,2}, l_{i,3}$ where a literal $l_{i,j}$ is either a variable u_k or its negation \overline{u}_k . The problem is to determine whether C is satisfiable, that is, whether there is a truth assignment to the variables which simultaneously satisfies all the clauses in C. A clause is satisfied if one or more of its literals has value "true".

2. The main theorem. Our first task is to find a graph which can be edge-partitioned into K_n 's in exactly two distinct ways. Such a graph can be used as a "switch" to represent the two possible values "true" and "false" of a variable in an instance of 3SAT.

For each $n \ge 3$ and $p \ge 3$ we define a graph $H_{n,p} = (V_{n,p}, E_{n,p})$ by

$$V_{n,p} = \left\{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbf{Z}_p^n : \sum_{i=1}^n x_i \equiv 0 \right\},$$
$$E_{n,p} = \left\{ \mathbf{x} \mathbf{y} : \text{there exist } i, j \text{ such that } y_k \equiv x_k \text{ for } k \neq i, j \text{ and } y_i \equiv x_i + 1, y_i \equiv x_j - 1 \right\}$$

where the equivalences are modulo p. Note that $H_{n,p}$ can be regarded as embedded in the (n-1)-dimensional torus $T^{n-1} = S^1 \times S^1 \times \ldots \times S^1$, and that the local structure of $H_{n,p}$ is the same for each p (see Fig. 1). The properties of $H_{n,p}$ are given in the following lemma.

^{*}Received by the editors July 18, 1979, and in final form January 7, 1981

[†]University Computer Laboratory, University of Cambridge, Cambridge, England. This work was supported by the British Science Research Council.

Figure 1: (i) $H_{3,3}$ embedded in the (2-dimensional) torus. Opposite sides are identified as shown. (ii) The local structure of $H_{4,p}$. The edges of a single K_4 are shown.

LEMMA. The graph $H_{n,p}$ has the following properties:

(i) The degree of each vertex is $2\binom{n}{2}$.

(ii) The largest complete subgraph is K_n , and any K_3 is contained in a unique K_n .

(iii) The number of K_n 's containing a particular vertex is 2n.

(iv) Each edge occurs in just two K_n 's.

(v) Each two distinct K_n 's are either edge-disjoint or have just one edge in common.

(vi) There are just two distinct edge-partitions of $H_{n,p}$ into K_n 's.

Proof. (i) By translational symmetry we need only consider $\mathbf{0} = (0, \dots, 0)$. This is adjacent to $(1, -1, 0, \dots, 0)$ and the distinct points obtained from it by permuting its coordinates (0, 1, -1) are distinct modulo p as $p \ge 3$. There are clearly $2\binom{n}{2}$ of these.

(ii) By translation and coordinate permutation we may assume that a largest complete subgraph contains the vertices $\mathbf{0} = (0, \dots, 0), (1, -1, 0, \dots, 0)$ and $(1, 0, -1, 0, \dots, 0)$. It is then forced to be the *standard* K_n , which we call K and whose vertices are:

$$(0, 0, 0, \dots, 0) (1, -1, 0, \dots, 0) (1, 0, -1, \dots, 0) \dots \\ (1, 0, 0, \dots, -1)$$

(iii) The K_n 's containing 0 are obtained from K and its inverse -K by cyclic permutation of the coordinates. Thus there are 2n of them.

(iv) We need only consider a particular edge containing the vertex 0 and check that it is contained in just two of the K_n 's given in (iii).

(v) If two K_n 's are not disjoint, we may assume that they have vertex 0 in common. We may then use (iii) to check that they have just one more vertex in common.

(vi) The edges containing 0 can be partitioned in at most two ways, and these extend to the whole of $H_{n,p}$. All the K_n 's are obtained from K or -K by translation. One edge-partition consists of the translates of K, and the other consists of the translates of -K.

We now make the following definitions. The *T*-partition of $H_{n,p}$ (corresponding to logical value "true") consists of the translates of K, and the *F*-partition (corresponding to "false") consists of the translates of -K. Two K_n 's in $H_{n,p}$ are called *neighbors* if they have a common edge. A patch is a subgraph of $H_{n,p}$ consisting of the vertices and edges of a particular K_n and of

its neighbors. It is a *T*-patch if the central K_n belongs to the T-partition, and it is an *F*-patch otherwise. Two patches P_1 , P_2 in $H_{n,p}$ are called *noninterfering* if the distance $d(\mathbf{x}, \mathbf{y})$ in $H_{n,p}$ between vertices $\mathbf{x} \in V(P_1)$ and $\mathbf{y} \in V(P_2)$ is always at least 10, say.

THEOREM. The edge-partition problem EP_n is NP-complete for each $n \geq 3$.

Proof. The problem EP_n is clearly in NP. Suppose we have an instance $C = \{C_1, C_2, \ldots, C_r\}$ of 3SAT in s variables u_1, u_2, \ldots, u_s where each C_i consists of literals $l_{i,1}, l_{i,2}, l_{i,3}$. We reduce this instance of 3SAT to an instance $G_n = (V_n, E_n)$ of EP_n as follows.

Choose p sufficiently large so that up to 3r noninterfering patches can be chosen in $H_{n,p}$ say p = 100r. Take a copy U_i of $H_{n,p}$ to represent each variable u_i and copies $C_{i,1}$, $C_{i,2}$ and $C_{i,3}$ of $H_{n,p}$ to represent each clause C_i .

Join these copies of $H_{n,p}$ together as follows. If literal $l_{i,j}$ is u_k , then identify an *F*-patch of $C_{i,j}$ with an *F*-patch of U_k . If $l_{i,j}$ is \overline{u}_k , then identify an *F*-patch of $C_{i,j}$ with a *T*-patch of U_k as indicated for n = 3 in Fig. 2.

Figure 2: The identification of an F-patch with a T-patch when n = 3. Similarly labelled vertices (and the edges between them) are identified.

Also join $C_{i,1}$, $C_{i,2}$ and $C_{i,3}$ for each *i* by identifying one *F*-patch from each and then removing the edges of the central K_n (see Fig. 3).

Choose all those patches which occur in a single copy of $H_{n,p}$ to be noninterfering.

Denote by $G_n = (V_n, E_n)$ the graph obtained in this way. We now show that there is an edge-partition of G_n into K_n 's if and only if the instance C of 3SAT is satisfiable.

Suppose that there is an edge-partition of G_n into a set S of K_n 's, and consider a particular copy H of $H_{n,p}$ involved in the construction of G_n . Take a K_n in S, say A, which is in H, but not near any join. Using the properties in the lemma, we see that the neighbors of A do not belong to S, the neighbors of the neighbors of A do belong to S, and so on. Continuing in this way, we deduce that all the edges of H, except perhaps those involved in joins, are T-partitioned, or all F-partitioned. Thus we may say that H is T-partitioned or F-partitioned.

Now suppose $l_{i,j}$ is u_k and consider the join between $C_{i,j}$ and U_k . We claim that the edges in the vicinity of this join can be edge-partitioned into K_n 's if and only if at least one of $C_{i,j}$, U_k is *T*-partitioned. If (say) $C_{i,j}$ is *T*-partitioned, this accounts for all the edges of $C_{i,j}$ near the joining patch except for those of the patch itself. The patch can then be regarded as belonging to U_k which can then be locally partitioned in either way. If on the other hand both $C_{i,j}$ and U_k are *F*-partitioned, the argument of the previous paragraph shows that the edges of the patch not belonging to the central K_n are forced to belong to the *F*-partitions of both $C_{i,j}$ and U_k , which is a contradiction.

Similarly, if $l_{i,j}$ is \overline{u}_k , then either $C_{i,j}$ is F-partitioned or U_k is T-partitioned.

Now consider the join between $C_{i,1}$, $C_{i,2}$ and $C_{i,3}$. We claim that the edges in the vicinity of this join can be edge-partitioned into K_n 's if and only if exactly one of $C_{i,1}$, $C_{i,2}$, $C_{i,3}$ is *F*partitioned. The argument is the same as above, except that now, as the central K_n is missing, the remaining edges of the patch must be claimed by an *F*-partition in exactly one of $C_{i,1}$, $C_{i,2}$, $C_{i,3}$.

Figure 3: The join between $C_{i,1}$, $C_{i,2}$ and $C_{i,3}$ when n = 3.

Thus if G_n can be edge-partitioned into K_n 's, then there is a truth assignment to u_1, \ldots, u_s which satisfies C, namely u_k has value "true" if and only if U_k is T-partitioned.

If C is satisfiable, we partition G_n by partitioning U_k according to the truth of u_k in a satisfying assignment, choosing one "true" literal $l_{i,j}$ for each i, and F-partitioning the corresponding $C_{i,j}$.

It should be clear that the above reduction from 3SAT to EP_n can be carried out using a polynomial time algorithm, and so the proof of the theorem is complete. \Box

3. Deductions. The following problems are now easily seen to be NP-complete.

(i) Find the maximum number of edge-disjoint K_n 's in a graph $(n \ge 3)$.

(ii) Find the maximum number of edge-disjoint maximal cliques in a graph.

(iii) Edge-partition a graph into the minimum number of complete subgraphs.

(iv) Edge-partition a graph into maximal cliques.

(v) Edge-partition a graph into cycles C_m of length m.

For (i) we use the same construction as for EP_n . For (ii), (iii) and (iv) we use the same construction as for EP_3 . Note that G_3 contains no K_4 's, and every edge K_2 is in a K_3 , so the maximal cliques coincide with the K_3 's.

For (v) we alter the construction for EP₃ in the following way. Note that the edges in $H_{3,p}$ occur in three distinct directions, say **a**, **b** and **c**, and that the joins in the construction of G_3 are made so that edges which are identified have the same direction. In G_3 , replace each edge with direction **a** (say) by a path of m - 2 edges.

We conjecture that the problem of edge-partitioning a graph into subgraphs isomorphic to a fixed graph H is NP-complete for all graphs H with at least 3 edges. The problem is polynomial if H has at most 2 edges, and it is easy to show that the problem is NP-complete for a number of particular small, connected graphs H. The NP-completeness of the problem seems difficult to prove if H is disconnected, e.g., if $H = 3K_2$, that is, H has 6 vertices and 3 independent edges.

REFERENCES

[1] M.R. GAREY AND D.S. JOHNSON, *Computers and Intractability*, W.H.Freeman, San Francisco, 1979.

[2] R.M. KARP, *Reducibility among combinatorial problems*, in Complexity of Computer Computations, R.E. Miller and J.W. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.

[3] D.G. KIRKPATRICK AND P. HELL, *On the complexity of a generalized matching problem*, in Proc. 10th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1978, pp. 240-245.