
T

Augustine M. Moshi 
in Graphs 

DEPARTMENT OF MATHEMATICS 
UNlVERSlN OF DAR ES SALAAM, TANZANIA 

ABSTRACT 

Let G = ( Y  E )  be an undirected graph. A subset F of E is a matching cut- 
set of G if no two edges of Fare incident with the same point, and G-F 
has more components than G. ChGatal [2] proved that it is NP-complete 
to recognize graphs with a matching cutset even if the input is restricted 
to graphs with maximum degree 4. We prove the following: (a) Every 
connected graph with maximum degree 1 3  and on more than 7 points 
has a matching cutset. (In particular, there are precisely two connected 
cubic graphs without a matching cutset). (b) Line graphs with a matching 
cutset can be recognized in O( IE 1 )  time. (c) Graphs without a chordless 
circuit of length 5 or more that have a matching cutset can be recog- 
nized in O( IVI [El 3, time. 

1. INTRODUCTION 

Let G = (V, E) be an undirected graph with maximum degree A. We shall say 
that G has a matching cutset if there exists F C E such that F is a matching and 
G-F has more components than G .  Ronald R. Graham [3] asked whether it is 
NP-complete to recognize graphs with a matching cutset. This was answered by 
ChQatal [2], who proved that it is NP-complete to recognize graphs with a 
matching cutset even if the input is restricted to graphs with A = 4. ChQatal 
also gave a fast algorithm to recognize those graphs with A 5 3 that have a 
matching cutset. We will show that, in fact, all connected graphs with A 5 3 
and IVI 2 8 have a matching cutset. 

For convenience, we shall sometimes abbreviate by matching cut the prob- 
lem of recognizing graphs with a matching cutset. We prove that matching cut 
is solvable in polynomial time if the input is restricted to line graphs or to 
graphs without a chordless circuit of length 25. Line graphs are well explained 
in [4] and [ 5 ] ,  where they are called interchange graphs. 
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2. GRAPHS WITH MAXIMUM DEGREE 3 

One of the most famous problems in mathematics has been to prove or disprove 
that every 2-edge connected 3-regular planar graph is 1-factorable. (A graph is 
l-factorable if its edge set can be decomposed as the direct sum of perfect 
matchings.) This problem derives its fame from the fact that it is equivalent to 
the Four Colour Problem. (See for example [l] ,  p. 263.) In view of this, the 
following proposition does at first look quite interesting. 

Proposition 1. 
cutset. Then G is 1-factorable. 

Let G be any 3-regular graph that does not have a matching 

Proof. Since G does not have a matching cutset, then G cannot have a cut- 
edge, and so G is 2-edge connected. Now, a well-known corollary to Tutte’s 
Perfect Matching Theorem (see [l] ,  p. 158) states that every 2-edge connected 
3-regular graph has a perfect matching. Thus, G has a perfect matching F, and 
G-F is a connected spanning 2-regular subgraph of G, that is, a hamilton circuit 
of G. Since G is 3-regular, then IV(G)l is even. Thus, G-F has two disjoint 
perfect matchings. Now, F together with the two disjoint perfect matchings of 
G-F give a 1-factorization of G. I 

The usefullness of Proposition 1 is unfortunately ruined by the following result: 

Theorem 1. 
from K4 and K 3 , 3 .  Then G has a matching cutset. 

Let G be a simple connected 3-regular graph that is different 

Proof. G is not a tree, so we can choose a shortest circuit C in G. Let d(C) 
be the set of edges with precisely one endpoint in C. If IV(C)l 2 5 then d(C) 
is a matching cutset, otherwise we can find a circuit that is shorter than C. 
Consider the cases when IV(C) 1 5 4. 

Case 1 .  IV(C)l = 3: If d(C) is not a matching, then let x E V(G) - V(C) 
such that N(x) n V(C) consists of two points {z, y}. (Here, N(x)  is the neighbor 
set of x . )  Since G # K4, then xt  g E(G) ,  where t E V(C)  - {z,y}. Let 
x ’  € N ( x )  - (u,z}, t ’  E N ( t )  - (u,z}. If x ’  = t ’  then G has a cut-edge 
(which is incident with x ’). If x ’  # t ’  then { x x ’ ,  tt ’} is a matching cutset of G. 

Case 2. IV(C)l = 4: Let C = (x,,x2,x3,x4). If d(C) is not a matching cut- 
set of G then let y € V(G) - V(C) such that IN(u) n V(C)( = 2. Moreover, we 
know that the neighbors of y on C are not adjacent, by minimality of C. So, let 
{ x , , x J  = N(y) n ~ ( c ) .  Let {x;} = N ( x , )  - V(C) ,  {xi}  = ~ ( x , )  - v(C),  
(y ’} = N(u) - V(C). (The third neighbor of y cannot be on C, by minimality of 
C . )  Since G is not K3,3, we cannot have x i  = x i  = y’. If no two of the points 
x i ,  x ; ,  and y ’ are the same point, then {xlxi, x+X;, yy ’} is a matching cutset of 
G. We assume now that x ;  = x i  # y ’  (the cases x ;  = y ’  # x; and x ;  = 
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y ’  # x i  are the same, mututis mutundis). Let t E N ( x i )  - { x I , x g } .  If t = y ’  
then the edge y ‘z where z € NO,‘) - { x i , y }  is a cut-edge of G. If t # y ’, then 
{ x l t , y y ’ }  is a matching cutset of G. I 

Using essentially the same argument as in the proof of the preceeding theo- 
rem, one can in fact prove the stronger result that every simple connected graph 
on more than 7 points and with maximum degree at most 3 must have a match- 
ing cutset. 

3. LINE GRAPHS 

We shall prove in this section that we can recognize line graphs with a match- 
ing cutset in polynomial time. We give a procedure that, when given a line 
graph G = (V,E) ,  takes OlEl) steps either to find a matching cutset of G or to 
arrive at the conclusion that G does not have a matching cutset. 

Definition. 
d,(u) = 2 for each point u in T, and G [ T ]  = Pk-l (a path of length k - 1). 

A special k-set of a graph G is a set T of k points of G such that 

In the definition above, G[T]  refers to the subgraph of G that is induced by 
T. Observe that a 2-connected graph on more than 3 points that has a special 
2-set has an obvious matching cutset. 

Definition. A graph G = (V, E )  has a degree k stable cutset if there is a sub- 
set S of V, consisting of pairwise nonadjacent points such that G - S has more 
components than G and d,(u) = k for each u E S. We can now state the obser- 
vation that is the basis of our algorithm for solving matching cut when the input 
is restricted to line graphs. We shall denote the line graph of G by L(G). If 
U V, we shall write a(u) to mean the set of edges of G that have precisely 
one endpoint in U. For x E V, we shall write a(x) instead of d({x}). 

Lemma 1. Suppose that L(G) is a connected line graph with a root graph G 
and with more than 2 points. Then L(G) has a matching cutset if and only if G 
has a degree 2 stable cutset. 

Proof. Let G = ( V , E ) .  Then L(G) = ( E , E ’ ) ,  where E ’  = {ef: e,f E E 
and e andfhave a common endpoint in G}. Let F be a minimal matching cut- 
set of L(G).  Put S = {x  € V :  there are e and f in E such that x is incident 
with both e and f and efE F}. We claim that d,(x) = 2 for each x E S. If 
not, let x E S have degree at least 3 in G. Let ef€ F with e , f E  a(x). Let 
g E 4(x) - {e,f}. Now by construction of L(G), we have that the edges ef, eg, 
andfg are edges of L(G), and these three edges induce a triangle in L(G). This 
contradicts the fact that ef E F, since no edge of a triangle can possibly be in a 
minimal matching cutset. So, dG(x) = 2 for each x E S. 
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We claim further that S is a stable set. If not, let x,y  E S be coincident with 
an edgef. Let {e) = d(x) - { f }  and {g) = d(y) - {f). Suppose that e = g .  
Then x and y induce a component of L(G) that has just two points (this uses the 
fact that &(x) = dG(Y) = 2). This is a contradiction, and so e # g. Now we 
have ef and f g  are distinct edges of L(G), and since x, y E S ,  we also have 
ef,fg E F. This contradicts the fact that F is a matching. Hence S is a stable 
set, as claimed. 

To show that S is a cutset of G ,  we will show that G - S has as many com- 
ponents as L(G) - F. Let G ,  and G, be any two components of L(G) - F, and 
choose h,  and h2 any points of G ,  and G, respectively. Let u and u be endpoints 
of the edges h,  and h2 respectively in G ,  such that S f l  {u, u) = 0. Then there 
is no path in G - S from u to u. Thus, S is a degree 2 stable cutset of G .  

We suppose now that G has a minimal degree 2 stable cutset S and show that 
L(G) has a matching cutset. Define F = {ef E E ’ :  there is x E S with e , f  E 
d(x)}. Suppose that two edges in F have a common endpoint. Then the two 
edges are of the form efandfg, where e ,  f, and g are distinct edges of G. Let 
x , y  E S such that e,f E d,(x) and f , g  E d,(y). Now g B d,(x) since 
d,(x) = 2 and e , f E  dG(x). So, x # y. Now we get that the edgefjoins two 
points of S, and this is a contradiction. So, F is a matching. We can see that F 
is an edge cutset of L(G) as follows: Let ef E F. Then there is an x E S such 
that e , f  E a,(x). Now there is no path in L(G) - F from the point e to the 
pointf. I 

Before we give our algorithm for recognizing graphs with a matching cutset, 
we need two more lemmas. 

If e is an edge, we shall use G / e  to denote the graph obtained from G by 
contracting the edge e (deleting e and identifying u with u. We allow the possi- 
bility that G / e  may have parallel edges). 

Lemma 2. Let G be a 2-connected graph that does not have a special 3-set. 
Suppose {u, u} is a special 2-set in G .  Let e = uu. Then G has a degree 2 stable 
cutset if and only if G / e  has a degree 2 stable cutset. 

Proof. Let S be a degree 2 stable cutset of G and let t = IS fl {u,u}I.  If 
t = 0 then S is a degree 2 stable cutset of G / e .  If t = 1, say u E S and u fE S 
then let w = N(u) - {u} and u’ be the point obtained by identifying u with u 
(contracting e ) .  The point w is not in S ,  otherwise {u, u,  w} would be a special 
3-set of G .  Let S’ = (S - u) U {u’}. Then S’ C V(C/e), and d , , ( x )  = 2 for 
each x E S ’  and S’ is a stable set. Let z be a point of G that is disconnected 
from u in G - S .  Now z E V(G/e) and w E V(G/e), and there is no path from 
z to w in (G/e)  - S’. Thus, S’ is a degree 2 stable cutset of G / e .  

Let S ’ be a degree 2 stable cutset of G / e  and u‘ be the point obtained from G 
by identifying u and u. Note that if u and u have a common neighbor 4 in G ,  
then 4 E S‘. If u’ E S’ then S = S’ is a degree 2 stable cutset of G .  If u E S ’  
then place u in the component of ( G / e )  - S ’ ,  which contains the neighbor of u 
other than u (in G )  to get a degree 2 stable cutset of G .  I 
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Lemma 3. Let G be a connected graph that does not have a special 3-set. 
Suppose that G has a stable set S with d,(x) = 2 for each x E S. Then S con- 
tains a degree 2 stable cutset of G if and only if S is a degree 2 stable cutset of G. 

Proof. Let S’ be a minimal degree 2 stable cutset of G that is contained in 
S, and let x E S‘. Since S’ is a minimal vertex cutset, then x has neighbors in 
every component of G - S ’ . Let GI and G, be any two components of G - S ’ . 
For i = 1 ¶ 2, let xi  E N(x)  fl V(G,).  Suppose that dG(y) = 2 for each y E 
V(G,) .  Let { z }  = N ( x , )  - {x}.  Now z E V(G,)  or z E S’, and in either case 
d,(z) = 2. Hence {z,x,x,) is a special 3-set. This contradiction proves that 
there is a pointy, E V(G,) such that d,(y,) # 2. Similarly, there is a y, E V(G,) 
such that d,(y,) # 2. Now, in G - S there is no path from y ,  to y,. Thus, S 
disconnects G. The other direction of the proof is clearly true. I 

The algorithm that we give below accepts as input a 2-connected line graph. 
The restriction of 2-connectedness is sensible since a connected graph with a 
cutpoint u has a matching cutset if and only if the vertices of at least one of the 
components of G - u together with u induce a subgraph with a matching cutset. 

Algorithm A 

Input: 
Output: Either a matching cutset F of C or the message that G does not have 

Step 1: If G has a special 2-set {u, u} then d({u, u}) is a matching cutset of 

Step 2: Construct the graph H whose line graph is G. (If G is not K3 or K3,3  
then it is well known that G has a unique root graph). 

Step 3: For each special 2-set {x,y} of H, contract the edge xy. Let H’ be 
the resulting graph. 

Step 4: Let S ‘ be the set of points of degree 2 in H ’. If H ’ - S ‘ is discon- 
nected¶ then let T be a set obtained by selecting, for each vertex q of 
S’, a vertex in the preimage of q in H. Let S be any minimal vertex 
cutset of H that is contained in T, and F = {ef E E(G): there exists 
an x E S with e,f E d,(x)}; stop. If H’ - S’ is connected then G 
does not have a matching cutset; stop. 

A 2-connected line graph G = (V,E),  where If l  2 4. 

a matching cutset. 

G;  stop. 

Theorem 2. 
O(lE1) time whether G has a matching cutset. 

Let G = ( V , E )  be a line graph. Then we can determine in 

Proof. First suppose that G is 2-connected, and apply Algorithm A to G .  If 
G has a special 2-set then the algorithm stops in Step 1. Otherwise, control pro- 
ceeds to Step 2, and by Lemma 1, it is enough to decide whether the graph H, 
which is constructed in Step 2, has a degree 2 stable cutset. Since we now have 
the case that G does not have a special 2-set, then H does not have a special 
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3-set. Hence, by Lemma 2, we can contract all edges e = x y  where { x , y )  is a 
special 2-set in H. Lemmas 1 and 3 establish the correctness of Step 4. 

We now consider a bound on the complexity of the algorithm. If G is 2- 
connected, then Algorithm A will accept G directly as input. Step 1 takes O ( ( E ( )  
work. An algorithm of Philippe G. H. Lehot [4] can be used to execute Step 2 
in O(\E/) time. Step 3 takes O ( J E ( )  work. The set S’ of Step 4 can be found 
by examining each point of H’ once, that is, O ( ( E ( )  work. Thus, when G is 2- 
connected, the whole algorithm takes O(lEl) work. 

Suppose now that G is not 2-connected. We have said that it is enough to ap- 
ply the algorithm to subgraphs induced by the vertices of the 2-connected com- 
ponents together with the relevant cut-points. Searching for the 2-connected 
components of G can be done in O((E1) work by using depth first search. 
Algorithm A will then be applied at most once to each resulting subgraph. This 
gives a complexity of O(1El). I 

4. QUADRANGULATED GRAPHS 

A graph G is quadrangulated if it does not have a chordless circuit of length 5 
or more. Thus, every triangulated graph is quadrangulated, but there are quad- 
rangulated graphs that are not triangulated (a 4-cycle is an example). We shall 
prove in this section that matching cut can be solved in polynomial time when 
the input is restricted to the class of quadrangulated graphs. In fact, we show 
that given a quadrangulated graph G and an edge e of G, we can determine in 
polynomial time whether G has a matching cutset that contains the edge e. 

By a partial decomposition coloring of G we shall mean a coloring of some 
of the points of G with two colors so that for each point u, at most one neighbor 
of u is given a color that is different from the color of u. The motivation for 
this terminology is that Ch+atal [2] calls a graph decomposable if its points can 
be colored red and blue so that both colors are assigned, and for each u E V, 
at most one neighbor of u is given a color that is different from that of u. If 
e = MU, the algorithm that we shall give colors u red and u blue. It then colors 
a point t red (respectively blue) only if red (respectively blue) is the color that 
must be assigned to t by every partial decomposition coloring of G that colors u 
red and u blue. If the algorithm finds a point that must be recolored, it halts 
with the message that G does not have a minimal matching cutset containing 
the edge e. The algorithm may (correctly) arrive at the conclusion that G has a 
matching cutset containing e before it colors all the points of G. 

Algorithm B 

Znpur: A simple 2-edge connected quadrangulated graph G(V,E)  and an 
edge e = uu. 

Output: Either a minimal matching cutset F containing e or the message that 
G does not have a minimal matching cutset that contains e. 
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Step 0: Color u red and u blue and let a:V (0, 1,2} be given by 

0, if t is not colored; 

2, if t is a blue point. 
1, if t is a red point; 

Step I: If there is no point x with a neighbor y such that a ( y )  # 0, 
a(x )  # (YO, and y has a neighbor z with 0 # a(z )  # dy), then go 
to Step 4. 

Step 2: If a(x)  # 0, then go to Step 3. Otherwise, put a ( x )  = a(y) and go 

Step 3: G does not have a matching cutset containing e;  halt. 
Step 4: The set F = (fg E E :  a(f) # 0, a(g) # 0, and a( f )  # a(g)} is a 

matching cutset containing e ; halt. 

to step 1. 

Lemma 4. If Algorithm B halts in Step 4, then the set F produced by the al- 
gorithm is a matching. 

Proof. If not, then let ab and ac be edges of F, where b # c. By definition 
of F, neither a@), a(b), and a(c) is 0. We can assume that a(a) = 1. (The 
case when a(a)  = 2 is completely similar.) We thus have a(b) = a(c)  = 2. 
Now, control can only go to Step 4 from Step 1. But in Step 1, with x = b, 
y = a, and z = c, we see that control should have passed from Step 1 to Step 2 
instead of going to Step 4. I 

Lemma 5. 
matching cutset F such that e = uu E F. 

If Algorithm B halts in Step 3, then G does not have a minimal 

Proof. Suppose that the algorithm halts in Step 3 and yet G has a minimal 
matching cutset F containing e. Let GI and G, be two components of G - F 
such that u E V(G,) and u E V(G,) with V(G) = V(G,) U V(G,). Let the ver- 
tex labels 0, 1, and 2 stand for vertices that are not colored, vertices colored 
red, and vertices colored blue, respectively. Define a vertex coloring map y:  
V - {1,2} by 

1, if t E V(G,); 
2 ,  if t E V(G,). 

Then y is a decomposition coloring of G. We claim that a(t) = y( t )  for each t 
such that a(t) # 0. This is certainly the case when Algorithm B has colored 
only the points u and u. 

Suppose the claim is true when Algorithm B has colored k - 1 points, 
- k 2 3, and let x be the kth point that is colored by Algorithm B. Suppose that x 

is colored red. (The case when x is colored blue is similar.) Then Algorithm B 
found, in Step 1 ,  a path P = ( x , y , z )  where a ( y )  = 1, a ( z )  = 2 ,  and 
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a(x)  # a@). By induction, y@) = 1 and y(z) = 2. Since y is a decomposition 
coloring of G ,  it must then color x red. Hence the claim is true. 

Now, control passes to Step 3 because Algorithm B finds a point a that is 
colored blue (respectively red) such that a neighbor b of a is colored red (re- 
spectively blue), and b has a neighbor c that is colored blue (respectively red). 
Now y agrees with the coloring produced by the algorithm on points a, b, and 
c. This contradicts the fact that y is a decomposition coloring of G .  I 

Theorem 3. Recognizing decomposable graphs can be done in O (  IVI [El3) 
work if the input is restricted to simple graphs without a chordless circuit of 
length 5 or more. 

Proof. Apply Algorithm B using different choices of edges e until Algo- 
rithm B halts in Step 4 or until all possible choices of edges have been tried. 

If the algorithm halts in Step 3, then by Lemma 5 no matching cutset 
containing e exists in G .  Suppose the algorithm halts in Step 4. Then by 
Lemma 4, the set F produced by the algorithm is a matching. We show that F 
is an edge cutset. 

Let V,  and V, be the sets of points colored red and blue, respectively. If G-F 
is connected, then let P be a shortest path in G-F from a red point to a blue 
point. Note that P is incident with at least one noncolored point, and that no 
edge of P joins a red point with a blue point. Moreover, IV(P) fl V,I = 
( V ( P )  n V,l = 1. Let {x} = V ( P )  f l  V,  and (u} = V ( P )  f l  V,. Observe that 
G [ V ,  U VJ is a connected graph. Let Q be a shortest path in G[V,  U V,] from 
x to y. Let C be the circuit formed by P together with Q. From the choices of P 
and Q, we get that C is a chordless circuit. Let z be the noncolored point of C 
that is adjacent to x .  By Step 1 of Algorithm B, x does not have a blue neigh- 
bor. Let x, be the neighbor of x on Q. Then xI is a red point. Let z, be the 
neighbor of z on P other than x .  Note that z, is not a red point. If z ,  is not a 
colored point, then C has at least two red points (x  and x,), two noncolored 
points (z and zl), and at least one blue point. Thus ( V ( C )  I 2 5 and C is chord- 
less, which is a contradiction. 

We can now assume that z, is a blue point. By Step 1 of Algorithm B, z ,  
does not have a red neighbor. Hence the neighbor of z, on Q is a blue point. 
Thus, C has at least two blue points, two red points, and at least one non- 
colored point. Hence ( V ( C )  I 2 5 and C is chordless, which is a contradiction. 

In both cases, therefore, we get that G-F is disconnected. 
Each execution of Step 1 takes O (  (El2) work. For each edge, Step 1 may be 

executed at most (V( times. The algorithm needs to be run at most IEl times, 
and this gives a total of O (  IVI lEI3) work. I 

Note that the time bound on Algorithm B that is given in Theorem 3 simply 
shows that Algorithm B runs in polynomial time. We do not claim that 
O( IVI (El3) is the best possible bound on the running time of Algorithm B. In- 
deed, by maintaining a waiting list of edges yz with 0 # a(y) # a(z) and re- 
peatedly instantiating x to be the neighbors of the current edge yz, followed by 



MATCHING CUTSETS IN GRAPHS 535 

X 

ce  

FIGURE 1 

checking at each vertex for the exit to Step 3 and for additions to the waiting 
list, a running time of O( IV(31EI) can be achieved. 

Remarks. We remark that recognizing graphs with a matching cutset remains 
an NP-complete problem even if the input is restricted to bipartite graphs with 
one side of the bipartition consisting only of points of degree 2. This can be 
seen as follows: 

Given G = (V, E )  we construct from it a graph G’ = (V’ ,E’)  by replacing 
each edge e of G by a 4-cycle C, , as shown in Figure 1 .  G ’ has two types of 
points: old points (points of G )  and new points (points of G ’ that are not points 
of G ) .  In Figure 1, u, u are old points and x ,  y are new points. Every edge of 
G ’ joins an old point to a new point, and so the vertices of G ‘ can be properly 
2-colored by the colors old and new. Hence G ’  is a bipartite graph. Moreover, 
all new points have degree 2. It is easy to verify that G has a matching cutset if 
and only if G ’  has a matching cutset. 
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