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Given an edge-weighted graph G and two distinct ver-
tices s and t of G, the next-to-shortest path problem asks
for a path from s to t of minimum length among all paths
from s to t except the shortest ones. In this article, we
consider the version where G is directed and all edge
weights are positive. Some properties of the requested
path are derived when G is an arbitrary digraph. In addi-
tion, if G is planar, an O(n3)-time algorithm is proposed,
where n is the number of vertices of G. © 2015 Wiley
Periodicals, Inc. NETWORKS, Vol. 000(00), 000–000 2015
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1. INTRODUCTION

In this article, we are concerned with the next-to-shortest
path problem, defined as follows. Given a graph G, let an
edge with endpoints u and v be denoted by uv. We call �(uv)
the weight of uv. A walk in G is a list v0, e1, v1, . . . , ek , vk

of vertices and edges such that, for 1 ≤ i ≤ k, ei = vi−1vi.
A path in G is a walk with no repeated vertices, and a path
may consist of only a single vertex and no edge. Specifically,
a u, v-walk is a walk such that v0 = u and vk = v, and a u,
v-path is defined analogously. The length of a path is the sum
of the weights of all edges in the path. A u, v-path is shortest
if its length is minimum among all u, v-paths. For any two
vertices u and v, the distance between u and v, denoted by
d(u, v), is the length of a shortest u, v-path. A next-to-shortest
u, v-path is a u, v-path whose length is minimum among the
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u, v-paths of length greater than d(u, v). A formal definition
of the next-to-shortest path problem is given in Problem 1.

Problem 1 (the next-to-shortest path problem). The input
and output of the next-to-shortest path problem are specified
as follows.

• Input: a quadruple (G, s, t, �), where G is a graph, s and t are
distinct vertices of G, and � is a real-valued function defined
on the set of edges of G.

• Output: a next-to-shortest s, t-path.

For an instance (G, s, t, �), the graph G is called the under-
lying graph, vertices s and t are the source and destination,
respectively. The next-to-shortest path problem was stud-
ied by Lalgudi and Papaefthymiou [13] on digraphs. They
showed that the problem is NP-hard but can be efficiently
solved if paths are replaced by walks in the problem defi-
nition. The next-to-shortest path problem on special graph
classes was also studied [3, 15]. For undirected graphs with
positive edge weights, the first polynomial-time algorithm
was presented by Krasikov and Noble [12] with time com-
plexity O(n3m), in which n and m are the number of
vertices and edges, respectively. The time complexity has
been improved several times [11, 14, 22], and the currently
best result is a linear time algorithm, assuming that the dis-
tances from s and t to all other vertices are given [22].
Hence, for undirected graphs with positive edge weights, the
next-to-shortest path problem can be solved as efficiently as
the single-source shortest-path problem. The next-to-shortest
path problem becomes much more difficult with respect to the
following two generalizations: either zero-weight edges are
allowed, or the underlying graph is directed. Zhang and Nag-
amochi [26] showed that the version for undirected graphs
with nonnegative edge weights admits an O(n9m)-time algo-
rithm. Independently, Wu et al. showed in a manuscript [23]
that this version can be solved in linear time if the dis-
tances from s and t to all other vertices are given. If the
underlying graph is directed, no polynomial-time algorithm
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is known unless the graph is acyclic. In such a case, a linear
time algorithm can be derived immediately from Lalgudi and
Papaefthymiou [13].

In this article, we focus on the next-to-shortest path
problem where the underlying graph is directed and edge
weights are positive. For an instance (G, s, t, �) with G being
undirected, an important property used to construct a next-to-
shortest s, t-path is that the requested path contains at most
one outward subpath, which is a path not in the union of
all shortest s, t-paths except its endpoints [22, 23]. Unfor-
tunately, as shown later by an example, this property does
not hold for digraphs. Nevertheless, we show that the out-
ward subpaths of a next-to-shortest s, t-path pass through
only a specific set of vertices, and this property is useful in
designing algorithms. By further exploring the properties of
a next-to-shortest s, t-path on a planar digraph, we design an
O(n3)-time algorithm for the planar case.

1.1. Related Work

The next-to-shortest path problem is closely related to
the 2-disjoint paths problem, defined as follows. Two paths
are disjoint if they have no vertex in common and inter-
nally disjoint if they share no vertex except the endpoints.
For a given graph and k source-to-destination pairs, the k-
disjoint paths problem, abbreviated as k-VDP, is to determine
if there exist disjoint paths connecting the given k sources to
their corresponding destinations. When the number of pairs
is fixed, k-VDP is polynomial-time solvable on undirected
graphs [16, 19] but is NP-complete on digraphs [7]. On dags
(directed acyclic graphs), it is known that k-VDP can be
solved in polynomial time for fixed k [7]. Recently, Tho-
ley [20] gave a linear time algorithm for 2-VDP on dags. On
planar digraphs, k-VDP is also polynomial-time solvable for
fixed k [17], and furthermore, it is fixed-parameter tractable
[5]. Similarly, there exists a linear time algorithm for 2-VDP
on planar digraphs [21].

We mention two problems, whose formulations generalize
that of the next-to-shortest path problem. Although these two
problems are more general, the results do not induce an effi-
cient algorithm for the problem we are concerned with. The
first is the problem of determining k Shortest Paths (kSP),
and the second is that of computing shortest paths avoiding
forbidden subpaths (AFS).

In kSP, besides the quadruple (G, s, t, �) as in the next-to-
shortest path problem, a positive integer k is given, and it asks
for the k shortest s, t-paths in nondecreasing order of length.
For G being directed with nonnegative edge weights, the best
known result is proposed by Yen [24, 25], with worst-case
time complexity O(kn(m + n log n)). Recently, Hershberger
et al. [9, 10] gave some results for kSP from both theoretical
and practical aspects. When paths are replaced by walks in
the problem definition, the problem becomes less difficult,
and the best known result to date is provided by Eppstein [6].
A next-to-shortest s, t-path is in fact the (r + 1)th shortest
s, t-path, where r is the number of shortest s, t-paths. As r
may be exponential in terms of n, Yen’s algorithm does not

induce a polynomial-time algorithm for the next-to-shortest
path problem.

In AFS, besides (G, s, t, �), an additional set S of paths is
given, and a shortest path with no subpath being an element
in S is sought. By taking all shortest s, t-paths as the set S,
the solution of AFS is indeed the solution of the next-to-
shortest path problem. However, AFS is NP-hard, even when
S consists of paths with two edges [18]. For the shortest walk
AFSs problem, some efficient algorithms were proposed. See
Ahmed and Lubiw [1] for a brief survey.

The rest of this article is organized as follows. In Section 2,
we give some notation and definitions used in this article, as
well as some basic properties. In Sections 3, we elaborate the
next-to-shortest path problem on digraphs, and the case of
planar digraphs is discussed in Section 4. Concluding remarks
are given in Section 5.

2. PRELIMINARIES

In this section, we define the notation and the terminology.
Fundamental properties of a next-to-shortest path in a digraph
are also summarized. All the analyses related to computa-
tional complexity are based on the uniform-cost RAM model
[2]. In this model, a number is able to be stored in a single
computer word, and arithmetic operations on two numbers
can be done in constant time. For an instance (G, s, t, �), the
vertex set and edge set of G are denoted by V and E, respec-
tively, and we let n = |V | and m = |E|. For a subgraph H
of G, the vertex set and edge set of H is denoted by V (H)
and E(H), respectively. For any U ⊆ V(H), the subgraph
induced by U on H is denoted by H[U].

For vertices x and y on path P, let Pxy denote the subpath
from x to y. When x = y, the path Pxy is a vertex without any
edge. By “P : u �

H
v,” we denote that the path P is a u, v-path

in graph H. If P is a u, v-walk and Q is a v, w-walk, then P
and Q can be concatenated to obtain a u, w-walk. Such an
operation is called a concatenation of walks P and Q, and the
result is denoted by P ◦ Q.

In a graph G, let dG(u, v) denote the distance between u
and v in G. If there is no u, v-path in G, then dG(u, v) = ∞.
The subscript is omitted for succinctness if the distance is
measured in the underlying graph of a given instance. For
convenience, let ds(v) = d(s, v) and dt(v) = d(v, t), where s
is the source and t is the destination.

For two distinct vertices u and v of a dag G, if there is a
u, v-path in G, then u is said to be an ancestor of v, and v is
a descendent of u. Notice that in this definition, a vertex is
not an ancestor of itself. Given an instance (G, s, t, �) with G
being directed, let D be the union of all shortest s, t-paths. If
all edges have positive weights, the subgraph D is a dag. We
define two binary relations ≺D′ and ≺D′ on V(D′), in which
D′ is a subgraph of D, and

• u≺D′ v iff u is an ancestor of v in D′;
• u≺D′ v iff u≺D′ v or u = v.
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FIG. 1. Outward subpaths and mixed subpaths in a digraph with given s
and t. (a) An example of a next-to-shortest path with two outward subpaths,
where edges without indicated numbers are of length one. The solid lines
are edges in D and the dashed lines are outward paths. The graph has only
one next-to-shortest path which contains the two outward subpaths. (b) The
case where a mixed subpath contains a vertex v in D but not an ancestor of
x. (c) The case where a mixed subpath contains a vertex v in D but not a
descendant of y.

For D′ = D, we simplify ≺D and ≺D to ≺ and ≺, respec-
tively. Obviously, for any vertices u and v in V (D), a u, v-path
in D is a shortest u, v-path in G. An outward path, as men-
tioned in Section 1, is a path such that both endpoints are
in V (D), and all edges are from the set E\E(D). We list
some simple properties, which hold immediately from the
definitions, in the following.

Property 1. For any two vertices s and t of a digraph, an s, t-
path containing an outward subpath is longer than a shortest
s, t-path.

Property 2. In a dag, any path leading to a vertex v con-
tains only ancestors of v. Similarly, any path leading from v
contains only descendants of v.

Property 3. In a dag, if u is not an ancestor of v, any path
starting from u contains no ancestor of v.

Property 4. In a dag, any u, v-path and v, x-path are
internally disjoint.

In the following, we simply use the term “next-to-shortest
path” to refer to a next-to-shortest s, t-path when s and t are
the source and destination in the instance being considered.

3. PROPERTIES OF A NEXT-TO-SHORTEST PATH
ON DIGRAPHS WITH POSITIVE EDGE WEIGHTS

In this section, we consider the next-to-shortest path prob-
lem on a general digraph with positive edge weights. As
mentioned in Section 1, the reason why the undirected ver-
sion can be solved efficiently is that a next-to-shortest path
contains exactly one outward subpath. However, in a digraph
with positive edge weights, this property does not hold. In
Figure 1a, we show such an example.

Although, in a digraph, a next-to-shortest path may contain
more than one outward subpath, a similar concept as in a

undirected graph can be obtained by considering the maximal
mixed subpath, which is defined as follows.

Definition 1. For a given instance, a mixed path is a path
starting and ending with outward subpaths. The maximal
mixed subpath of a path is a mixed subpath not properly
contained in another mixed subpath.

Notice that a mixed subpath contains at least one outward
subpath and may be exactly an outward subpath. The next
property is trivial since an s, t-path without any mixed subpath
is a shortest s, t-path.

Property 5. A next-to-shortest path contains exactly one
maximal mixed subpath.

Based on Property 5, a straightforward approach for solv-
ing the next-to-shortest path problem is to find, for all x and
y, a shortest path P = Psx ◦ Pxy ◦ Pyt , in which Psx and Pyt

are two disjoint paths in D, and Pxy is a mixed path. If the
next-to-shortest path problem can be “decomposed” as com-
puting two disjoint paths Psx and Pyt in D with a shortest
path Pxy in a specific subgraph of G, then a polynomial-time
algorithm can be derived. The reason is that if edge weights
are positive, then D is a dag, and the 2-VDP problem on D
can be solved in linear time [20]. In the following, we show
that the next-to-shortest path problem can be decomposed in
some circumstances.

Definition 2. For two vertices x and y in V(D), let C(x, y) =
{v ∈ V(D) : y ≺ v ≺ x}∪{x, y}. Define Hxy = G[(V\V(D))∪
C(x, y)].

Notice that C(x, y) = {x, y} if y is not an ancestor of x
in D.

Lemma 1. If P is a next-to-shortest path with maximal
mixed subpath Q, then V(Q) ∩ V(D) ⊆ C(x, y), where
Q = Pxy.

Proof. Suppose to the contrary that V(Q) ∩ V(D) �⊆
C(x, y). First, we consider the case where there is a vertex v
in (V(Q) ∩ V(D))\C(x, y) such that v � x. Assume that v is
the first such vertex when traveling along P, and R1 is any v,
t-path in D (Fig. 1b). We claim that R = Psv ◦ R1 is a better
solution, which contradicts the optimality of P. By definition,
Psv contains at least one outward subpath, and, therefore,
�(R) > d(s, t). Since the vertices in D passed through by
Psv are all ancestors of x, and R1 contains no ancestor of x,
Property 2 implies that R is a path.

The other case is that each vertex v in (V(Q) ∩
V(D))\C(x, y) satisfies v ≺ x and y ⊀ v. Let v be one of
those vertices with minimum distance from s, and let R1 be
any s, v-path in D (Fig. 1c). We claim that R = R1 ◦ Pvt is
a better solution. By definition, Pvt contains at least one out-
ward subpath and, therefore, �(R) > d(s, t). Since R1 passes
through only ancestors of v and Pvt contains no ancestor of
v, we have that R is a path. ■
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By Lemma 1, Pxy is a path in Hxy. Notice that Pxy may
not be a shortest x, y-path in Hxy, and thus, it is not feasi-
ble to compute Pxy via computing the shortest x, y-path in
Hxy. However, there is an easier case that can be solved via
Lemma 1. The details are provided in Corollary 1.

Corollary 1. If P is a next-to-shortest path with maximal
mixed subpath Pxy such that y ⊀ x, then Pxy is an outward
path. Furthermore, Pxy is a shortest x, y-path in Hxy.

When y ⊀ x, any s, x-path and y, t-path in D are disjoint,
and therefore, we have the next result.

Corollary 2. Suppose that P is a next-to-shortest path with
maximal mixed subpath Pxy such that y ⊀ x. If Q1 : s �

D
x

and Q2 : y �
D

t are disjoint and Q0 is a shortest x, y-path in

Hxy, then Q1 ◦ Q0 ◦ Q2 is a next-to-shortest path.

4. AN O(N3)-TIME ALGORITHM ON PLANAR
DIGRAPHS WITH POSITIVE EDGE WEIGHTS

As mentioned in Section 3, a next-to-shortest path P is of
the form s �

D
x �

G
y �

D
t, where Pxy is a maximal mixed

subpath. The idea to solve the next-to-shortest path problem
on planar digraphs with positive edge weights is to enumerate
all possible vertex pairs (x, y) and for each of them, compute
a shortest path of the form s �

D
x �

G
y �

D
t. For the case

where y ⊀ x, Corollary 2 leads to the following result.

Lemma 2. Given (G, s, t, �), if G is planar and there exists
a next-to-shortest path P with maximal mixed subpath Pxy

such that y ⊀ x, a next-to-shortest path can be computed in
O(n2) time.

Proof. By Corollary 2, our goal is to find two vertices
u, v ∈ V(D) with v ⊀ u such that ds(u)+dt(v)+dHuv(u, v) is
minimized. As Huv can be computed in O(n) time for given
u and v and the single-source shortest-path problem can be
solved in O(n) time [8], the requested vertices can be com-
puted in O(n3) time by evaluating ds(u) + dt(v) + dHuv(u, v)
for all u, v ∈ V(D) with v � u. Nevertheless, we show that the
requested vertices can be computed more efficiently by com-
puting minv∈Vu(ds(u) + dt(v) + dHuv(u, v)) for all u ∈ V(D),
where Vu = {v ∈ V(D) : v � u}, and then choosing the pair
of vertices for which the minimum is achieved.

For any u ∈ V(D), let Gu be the subgraph obtained by
removing all edges of D and all ancestors of u from G, and
let φu : Vu → R+ be defined as

φu(v) = ds(u) + dt(v) + dGu(u, v).

For any u, v ∈ V(D) with v ⊀ u, as Huv is a subgraph of
Gu, we have

φu(v) ≤ ds(u) + dt(v) + dHuv(u, v). (1)

We claim that for v∗ ∈ argminv∈Vuφu(v), the equation

φu(v
∗) = ds(u) + dt(v

∗) + dHuv∗ (u, v∗) (2)

holds, and then by (1), one can derive that v∗ ∈
argminv∈Vu(ds(u) + dt(v) + dHuv(u, v)).

Suppose to the contrary that equation (2) does not
hold. It follows that there exists a vertex v∗ belonging
to argminv∈Vuφu(v) such that φu(v∗) < ds(u) + dt(v∗) +
dHuv∗ (u, v∗). Therefore, the path P : u �

Gu

v∗ with �(P) =
dGu(u, v∗) passes through a vertex w in Vu\{v∗}, and thus

dGu(u, v∗) = dGu(u, w) + dGu(w, v∗). (3)

Recall that in Gu, all edges of D have been removed. If
w ≺ v∗, then d(w, v∗) < dGu(w, v∗), and we have

ds(u) + dt(w) + dGu(u, w)

= ds(u) + d(w, v∗) + dt(v
∗) + dGu(u, w)

< ds(u) + dGu(w, v∗) + dt(v
∗) + dGu(u, w)

=
(3)

ds(u) + dt(v
∗) + dGu(u, v∗).

Otherwise, w ⊀ v∗, and thus dt(w) < d(w, v∗) + dt(v∗).
We have

ds(u) + dt(w) + dGu(u, w)

< ds(u) + d(w, v∗) + dt(v
∗) + dGu(u, w)

≤ ds(u) + dGu(w, v∗) + dt(v
∗) + dGu(u, w)

=
(3)

ds(u) + dt(v
∗) + dGu(u, v∗).

Both cases contradict that φu(v∗) is minimum. Conse-
quently, equation (2) holds.

The pair (u, v) that minimizes φu(v) can be computed in
O(n2) time as follows. In a preprocessing stage, we compute
ds(v) and dt(v) for all v ∈ V(G) by solving the single-source
shortest-path problem on G. As G is planar, the preprocessing
can be done in O(n) time [8]. For each u ∈ V(D), we can
construct Gu and compute the distances from u to all vertices
in Vu on Gu in O(n) time. Thus, the overall time complexity
is O(n2). ■

Next, we consider the case where y ≺ x. For any y ≺ x, we
show in the following that if there exists a next-to-shortest
path with a maximal mixed subpath from x to y, then one
can compute a shortest such path in O(n) time. Similarly, the
strategy is to decompose the problem into a 2-VDP and a
shortest path problem. In the discussion below, we assume
that G is a plane graph. The embedding is represented by
adjacency lists satisfying that all neighbors of a vertex appear
in clockwise order. Such adjacency lists can be computed in
O(n) time using PQ-trees [4]. The vertices and edges are
also treated as points and polygonal curves, respectively, in
a two-dimensional plane. This assumption makes the notion
of a region enclosed by some curves clear.
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FIG. 2. Valid vertex pairs and extreme vertex pairs with respect to (x,
y). The subgraph D consists of all the vertices and solid edges. The set of
entrances of C(x, y) is {y, λ, λ′}, and the set of exits of C(x, y) is {α, λ′, x}.
An entrance can simultaneously be an exit, e.g. λ′. Valid vertex pairs with
respect to (x, y) are (λ, α) and (λ′, α). There is exactly one extreme vertex
pair (λ′, α) with respect to (x, y).

For any x, y ∈ V(D) with y ≺ x, the boundary B of
G[C(x, y)] is defined as two x, y-paths B1 and B2 enclos-
ing all the vertices and edges of G[C(x, y)]. Notice that B1

and B2 may not be internally disjoint. With the embedding
given in [4], the boundary of C(x, y) can be computed in O(n)
time by applying breadth-first search from y and then back-
track from x. For any two vertices u and v with u≺Bv in B, we
denote by Buv a u, v-path in B1 or in B2. Notice that Buv may
be simultaneously a subpath in B1 and B2. Vertex v is said
to be an entrance of C(x, y) if there is an edge uv satisfying
u ∈ V(D)\C(x, y). Similarly, vertex v is said to be an exit of
C(x, y) if there is an edge vw such that w ∈ V(D)\C(x, y). A
vertex pair (λ, α) is said to be valid with respect to (x, y) if
λ and α are an entrance and an exit of C(x, y), respectively,
and there are disjoint paths P1 and P2 such that

P1 : s �
D

λ �
B

x and P2 : y �
B

α �
D

t.

An illustration is given in Figure 2. We say that (λ, α)

is an entrance-exit pair on an s, t-path P if, when traveling
along P, λ, and α are the first and the last vertices in C(x, y),
respectively.

Lemma 3. If P is a next-to-shortest path with maximal
mixed subpath Pxy and (λ, α) is an entrance-exit pair on P,
then (λ, α) is valid with respect to (x, y).

Proof. By definition, we have that Psλ and Byα are dis-
joint and so are Bλx and Pαt . We claim that the paths Psλ ◦Bλx

and Byα ◦ Pαt are disjoint by showing the following:

• Psλ and Pαt are disjoint.
These two paths are disjoint as P is of the form s �

D
λ �

D
x �

G
y �

D
α �

D
t.

• Bλx and Byα are disjoint.
As Pλx and Pyα are disjoint and are enclosed within the region
G[C(x, y)], it follows that V(Bλx) ∩ V(Byα) = ∅. ■

Based on Lemma 3, the following corollary can be derived.

Corollary 3. Let P and (λ, α) be defined as in Lemma 3.
There is a next-to-shortest path P′ such that P′ = Psλ ◦ Bλx ◦
Pxy ◦ Byα ◦ Pαt .

Proof. We prove this corollary by showing that P′ is a
path with the same length as P. To show that P′ is a path, we
claim that V(Bλx)∩V(Pxy) = {x} and V(Pxy)∩V(Byα) = {y}.
Suppose to the contrary that there is a vertex v satisfying
v ∈ V(Bλx) ∩ V(Pxy) and v �= x. One may construct a path
P′′ = Psλ ◦ Bλv ◦ Pvy ◦ Byα ◦ Pαt , which is shorter than P.
Similarly, V(Pxy) ∩ V(Byα) = {y} holds.

Next, we show that the lengths of P and P′ are equal. One
can easily show that �(Bλx) = �(Pλx) and �(Byα) = �(Pyα).
The reason is that paths in D with the same endpoints are of
the same length. Therefore, P′ is a next-to-shortest path. ■

Based on Corollary 3, we may focus on computing a next-
to-shortest path of the form of P′. In other words, for any
y ≺ x, we intend to compute a shortest path P of the form
s �

D
λ �

B
x �

G
y �

B
α �

D
t, where λ and α are an entrance

and an exit of C(x, y), respectively. The set of candidates of
λ and α can be further reduced by considering only so-called
“extreme” vertex pairs defined as follows. For y ≺ x, a vertex
pair (λ, α) is said to be extreme with respect to (x, y) if λ and
α are an entrance and an exit of C(x, y), respectively, and
there is no entrance λ′ and exit α′ of C(x, y) such that λ≺Bλ′
or α′≺Bα, where B is the boundary of C(x, y). See Figure 2
for an illustration. Notice that for any x, y ∈ V(D), there are
at most four extreme vertex pairs. We show in Lemma 4 that
there is a next-to-shortest path P′ passing through an extreme
vertex pair with respect to (x, y), where P′

xy is the maximal
mixed subpath.

Lemma 4. Let P be a next-to-shortest path with maximal
mixed subpath Pxy such that y ≺ x. There is a next-to-shortest
path P′ passing through an extreme vertex pair (λ, α) with
respect to (x, y), and Pxy is the maximal mixed subpath of P′.
In particular, P′ is of the form s �

D
λ �

B
x �

G
y �

B
α �

D
t,

where B is the boundary of C(x, y).

Proof. Let P = Psλ′ ◦Pλ′x ◦Pxy ◦Pyα′ ◦Pα′t with (λ′, α′)
being an entrance-exit pair on P. By Corollary 3, there is a
next-to-shortest path P′′ = Psλ′ ◦ Bλ′x ◦ Pxy ◦ Byα′ ◦ Pα′t .
Let (λ, α) be the extreme vertex pair with respect to (x, y)
satisfying λ′≺Bλ and α≺Bα′. We claim that there is a path
P′ : s �

D
λ �

B
x �

P
y �

B
α �

D
t, which is a next-to-shortest

path. First, as Bλx and Byα are subpaths of Bλ′x and Byα′ ,
respectively, Bλx◦Pxy◦Byα is a path. Second, by the definition
of C(x, y), any descendant of α not in C(x, y) cannot be an
ancestor ofλ, and therefore any s, λ-path andα, t-path passing
through only vertices in D\C(x, y) must be disjoint. ■

We are now ready to handle the case where y ≺ x by
decomposing it into a 2-VDP and a shortest path problem.
By Lemma 4, there is an optimal solution P of the form
s �

D
λ �

B
x �

G
y �

B
α �

D
t, and the subpaths Psλ and Pαt are

two disjoint paths in Dλα
xy , which is the subgraph induced by

(V(D)\C(x, y)) ∪ {λ, α}.

NETWORKS—2015—DOI 10.1002/net 5



FIG. 3. Taking arbitrary y, x-paths as the boundary is infeasible. (a) A
nonplanar digraph G with source s and destination t. Solid edges belong to
D. (b) The only next-to-shortest path P, on which edges are thickened. The
subpath Pxy is a maximal mixed subpath. (c) A “boundary” B of C(x, y). The
edges of B are thickened. The white vertices are the entrances of C(x, y),
given B as the boundary, while the grey ones are the exits. Each of the four
entrance-exit pairs is not valid with respect to (x, y).

By Lemma 1 and Lemma 4, one may derive that the max-
imal mixed subpath Pxy is a shortest x, y-path in Hλα

xy , which
is the subgraph induced by

(V\V(D)) ∪ (C(x, y)\V(Bλx)\V(Byα)) ∪ {x, y}.
As a result, we conclude this section by the following

theorem.

Theorem 1. When G is a planar digraph with positive edge
weights, the next-to-shortest path problem can be solved in
O(n3) time.

Proof. By Corollary 2, the case where y ⊀ x can be
solved in O(n2) time. For the case where y ≺ x, the solution
can be found by computing disjoint s, λ-path and α, t-path in
Dλα

xy and a shortest x, y-path in Hλα
xy . Assuming that Dλα

xy and
Hλα

xy are given, both problems can be solved in O(n) time as
Dλα

xy is a dag and Hλα
xy is planar [8, 20].

For given x, y ∈ V(D) with y ≺ x, there are at most four
extreme vertex pairs (λ, α) with respect to (x, y), which can
be computed by identifying the boundary B of C(x, y) and
determining all the entrances and exits. The procedure given
above can be done in O(n) time with the embedding given
in [4], and both Dλα

xy and Hλα
xy can then be computed in O(n)

time. As a result, the overall time complexity is O(n3) as there
are O(n2) such possible (x, y) pairs. ■

5. CONCLUDING REMARKS

In this article, we show that the next-to-shortest path prob-
lem on planar digraphs with positive edge weights can be
solved in polynomial time. An important open problem is
the time complexity for the problem on general digraphs
with positive edge weights. We did not manage to exploit the
properties presented in Section 3 for obtaining a polynomial-
time algorithm to solve the next-to-shortest path problem
on arbitrary digraphs with positive edge weights. For planar

digraphs, we show that the mixed subpath cannot intersect
the sub-boundaries as defined in Lemma 4. For nonplanar
digraphs, the difficulty in applying Lemma 4 is that it is
nontrivial to determine the “requested boundary” of C(x,
y) as in the planar case. Taking two arbitrary y, x-paths as
the boundary is not feasible, as shown in Figure 3; however,
enumerating all such paths is inefficient as there may be expo-
nentially many y, x-paths in G[C(x, y)]. It is also interesting to
know if the problem is polynomial-time solvable on a larger
class of graphs than planar graphs.
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