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a b s t r a c t

In 2010, Mkrtchyan, Petrosyan, and Vardanyan proved that every graph Gwith 2 ≤ δ(G) ≤

∆(G) ≤ 3 contains a maximum matching M such that no two vertices uncovered by M
share a neighbor, where ∆(G) and δ(G) denote the maximum and minimum degrees of
vertices in G, respectively. In the same paper they suggested the following conjecture:
every graph G with ∆(G) − δ(G) ≤ 1 contains a maximum matching M such that no two
vertices uncovered by M share a neighbor. Recently, Picouleau disproved this conjecture
by constructing a bipartite counterexample G with ∆(G) = 5 and δ(G) = 4. In this note,
we show that the conjecture is false for graphs Gwith ∆(G)− δ(G) = 1 and ∆(G) ≥ 4, and
for r-regular graphs when r ≥ 7.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this note all graphs are finite, undirected, and have no loops, but may contain multiple edges. Let V (G) and
E(G) denote the sets of vertices and edges of G, respectively. For a graph G, let ∆(G) and δ(G) denote the maximum and
minimum degrees of vertices in G, respectively. An (a, b)-biregular bipartite graph G is a bipartite graph Gwith the vertices
in one part all having degree a and the vertices in the other part all having degree b. The terms and concepts that we do not
define can be found in [2,7].

In [3,4], Mkrtchyan, Petrosyan, and Vardanyan proved the following result.

Theorem 1. Every graph G with 2 ≤ δ(G) ≤ ∆(G) ≤ 3 contains a maximum matching M such that no two vertices uncovered
by M share a neighbor.

Corollary 2. Every cubic graph G contains a maximum matching M such that no two vertices uncovered by M share a neighbor.

In the same paper they posed the following

Conjecture 3. Every graph G with ∆(G) − δ(G) ≤ 1 contains a maximum matching M such that no two vertices uncovered by
M share a neighbor.

The authors did not even knowwhether the conjecture holds for r-regular graphs for any r larger than 3. In [5], Picouleau
showed that the conjecture is false in the class of (5, 4)-biregular bipartite graphs. The question remained open for r-regular
graphs with r ≥ 4 and for the classes of graphs G such that ∆(G) − δ(G) = 1 when ∆(G) ≥ 4 with ∆(G) ≠ 5.

In this note we prove that for r ≥ 2, there exists a (2r, 2r − 1)-biregular bipartite graph G such that for any maximum
matchingM of G, each pair of vertices uncovered byM shares a neighbor. Next we show that for r ≥ 3, there exists a graph
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G with ∆(G) = 2r + 1 and δ(G) = 2r such that for any maximum matching M of G, some two uncovered vertices have
a common neighbor. We also prove that for r ≥ 3, there exists a (2r + 1)-regular graph G such that for any maximum
matchingM of G, some two uncovered vertices have a common neighbor. Finally, we construct an 8-regular graph with the
same property and prove for r ≥ 5 that there exists a 2r-regular graph G such that for any maximummatchingM of G, each
pair of vertices uncovered byM shares a neighbor.

2. Results

Before we formulate and prove our main results, we need two classical results from matching theory.
LetG be a bipartite graphwith bipartition (X, Y ) and S ⊆ X . We denote byNG(S) the set of vertices having a neighbor in S.

Theorem 4 (Hall [1]). If G is a bipartite graph with bipartition (X, Y ), then G has a matching that covers X if and only if
|NG(S)| ≥ |S| for every S ⊆ X.

Let G be a graph. We denote by o(G) the number of components of G that have an odd number of vertices.

Theorem 5 (Tutte [6]). A graph G has a perfect matching if and only if o(G − S) ≤ |S| for every S ⊆ V (G).

First we consider graphs Gwith ∆(G) − δ(G) = 1.

Theorem 6. For r ≥ 2, there exists a (2r, 2r − 1)-biregular bipartite graph G such that for any maximum matching M of G,
each pair of vertices uncovered by M shares a neighbor.
Proof. For the proof, we construct a graph Br for r ≥ 2 that satisfies the specified conditions.We define a graph Br as follows:
V (Br) = X ∪ Y , where

X =

xi,j: 1 ≤ i < j ≤ 2r


, Y =


y(i)
1 , . . . , y(i)

r : 1 ≤ i ≤ 2r


, and

E (Br) =

y(i)
s xi,j, y(j)

s xi,j: 1 ≤ i < j ≤ 2r, 1 ≤ s ≤ r

.

Clearly, Br is a (2r, 2r − 1)-biregular bipartite graph with bipartition (X, Y ). Moreover, |X | =


2r
2


= 2r2 − r and |Y | =

2r2. Thus, Br has no perfect matching. On the other hand, by Theorem 4, it is not hard to see that each maximum matching
M covers X . This implies that for any maximum matching M of Br , we have r vertices from Y uncovered by M . Now let y(i)

k

and y(j)
k′ be any two vertices in Y uncovered by some maximummatchingM . We consider two cases.

Case 1: i = j. In this case, by the construction of Br , the vertices y
(i)
k and y(i)

k′ share a neighbor xi,l with i < l or xl,i with l < i.
Case 2: i ≠ j. In this case, by the construction of Br , the vertices y(i)

k and y(j)
k′ share a neighbor xi,j if i < j or xj,i if j < i. �

Theorem 7. For r ≥ 3,
(1) there exists a (2r + 1)-regular graph G such that for any maximummatching M of G, there is a pair of vertices uncovered by

M that shares a neighbor,
(2) there exists a graph H with ∆(H) = 2r + 1 and δ(H) = 2r such that for any maximum matching M of H, there is a pair of

vertices uncovered by M that shares a neighbor.
Proof. (1) For the proof, we construct a graph G2r+1 for r ≥ 3 that satisfies the specified conditions. We define G2r+1 as
follows:

1) V (G2r+1) = {x, y, z} ∪


v

(i)
1 , v

(i)
2 , v

(i)
3 : 1 ≤ i ≤ 2r + 1


,

2) E (G2r+1) contains all possible pairs of vertices of the set

v

(i)
1 , v

(i)
2 , v

(i)
3


, which are joined by r edges for 1 ≤ i ≤ 2r + 1

and the edges xv(i)
1 , yv(i)

2 , zv(i)
3 for 1 ≤ i ≤ 2r + 1.

Clearly, G2r+1 is a (2r + 1)-regular graph with |V (G2r+1)| = 6r + 6. Let S = {x, y, z}. Since o(G − S) = 2r + 1
and r ≥ 3,G2r+1 has no perfect matching, by Theorem 5. On the other hand, it is not hard to see that each maximum
matching M covers x, y, and z. This implies that for any maximum matching M of G2r+1, we have 2r − 2 uncovered
vertices from V (G2r+1) \ {x, y, z}. Since r ≥ 3, for any maximum matching M of G2r+1 there are at least four vertices in
V (G2r+1) \ {x, y, z} uncovered byM . However, by the construction of G2r+1, the vertices from V (G2r+1) \ {x, y, z} have only
three possible subscripts; thus there are two vertices with the same subscript. Let v

(i)
k and v

(j)
k be these uncovered vertices

from V (G2r+1) \ {x, y, z} with respect to somemaximummatchingM . By the construction of G2r+1, the vertices v
(i)
k and v

(j)
k

share a neighbor, which is x, y, or z when k is 1, 2, or 3, respectively.
(2) For the proof, it suffices to define a graph Hr for r ≥ 3 as follows: V (Hr) = V (G2r+1) and E (Hr) = E (G2r+1) \

v
(i)
1 v

(i)
3 : 1 ≤ i ≤ 2r + 1


. Clearly, Hr is a graph with ∆ (Hr) = 2r + 1 and δ (Hr) = 2r . Similarly as in the proof of (1) it can

be shown that for any maximummatchingM of Hr , there is a pair of vertices uncovered byM that shares a neighbor. �

These results combined with the result of Picouleau show that Conjecture 3 is false for graphs G with ∆(G) − δ(G) = 1
and ∆(G) ≥ 4. Also, Conjecture 3 is false for (2r + 1)-regular graphs when r ≥ 3. Next we consider regular graphs of even
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Fig. 1. The 8-regular graph G.

degree. First we consider the 8-regular graph G shown in Fig. 1. Similarly as in the proof of Theorem 7 it can be shown that
for any maximummatchingM of G, there is a pair of vertices uncovered byM that shares a neighbor.

Theorem 8. For r ≥ 5, there exists a 2r-regular graph G such that for any maximum matching M of G, each pair of vertices
uncovered by M shares a neighbor.

Proof. For the proof, we construct a graph F2r for r ≥ 5 that satisfies the specified conditions. We define F2r as follows:

1) V (F2r) = {x, y, z} ∪


v

(i)
1 , v

(i)
2 , v

(i)
3 : 1 ≤ i ≤ r


,

2) E (F2r) contains all possible pairs of vertices of the set

v

(i)
1 , v

(i)
2 , v

(i)
3


, which are joined by r − 1 edges for 1 ≤ i ≤ r and

the edges xv(i)
1 , xv(i)

2 , yv(i)
1 , yv(i)

3 , zv(i)
2 , zv(i)

3 for 1 ≤ i ≤ r .

Clearly, F2r is a 2r-regular graph with |V (F2r)| = 3r + 3. Let S = {x, y, z}. Since o(G − S) = r and r ≥ 5, F2r has no
perfect matching, by Theorem 5. On the other hand, it is not hard to see that each maximummatchingM covers x, y, and z.
This implies that for any maximummatchingM of F2r , we have r −3 uncovered vertices from V (F2r) \ {x, y, z}. Since r ≥ 5,
for any maximummatchingM of F2r there are at least two vertices in V (F2r) \ {x, y, z} uncovered byM . Now let v(i)

k and v
(j)
k′

be any two vertices in V (F2r) \ {x, y, z} uncovered by some maximummatchingM . We consider two cases.
Case 1: k = k′. If k = k′

= 1 or k = k′
= 2, then v

(i)
k and v

(j)
k′ have x as a common neighbor, by the construction of F2r . If

k = k′
= 3, then they have y as a common neighbor.

Case 2: k ≠ k′. By the construction of F2r , the vertices v
(i)
k and v

(j)
k′ share a neighbor, which is x if {k, k′

} = {1, 2}, is y if
{k, k′

} = {1, 3}, and is z if {k, k′
} = {2, 3}. �

Our results show that Conjecture 3 is also false for r-regular graphs when r ≥ 7. Thus, the question remains open only
for 4-, 5-, and 6-regular graphs.
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