Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Note

A note on a conjecture on maximum matching in almost regular graphs

C. Picouleau

Conservatoire National des Arts et Métiers, CEDRIC Laboratory, Paris, France

A R T I CLE IN F O

Article history:

Received 16 April 2010
Received in revised form 30 August 2010
Accepted 1 September 2010
Available online 28 September 2010

Keywords:

Bipartite graph
Matching
Regular graph

Abstract

Mkrtchyan, Petrosyan, and Vardanyan made the following conjecture: Every graph G with $\Delta(G)-\delta(G) \leq 1$ has a maximum matching whose unsaturated vertices do not have a common neighbor. We disprove this conjecture.

© 2010 Elsevier B.V. All rights reserved.

Mkrtchyan et al. [1] conjectured that every nearly regular graph G (that is, with $\Delta(G)-\delta(G) \leq 1$) has a maximum matching whose unsaturated vertices do not have a common neighbor. As usual, $\Delta(G)$ and $\delta(G)$ denote the maximum and minimum degrees of vertices in G. We present an example disproving this conjecture; it is the graph G in Fig. 1.

Fig. 1. The graph G.
Observe that G is bipartite, with eight white vertices and ten black vertices. Each black vertex has degree 4, and each white vertex has degree 5 . Since G is unbalanced, there is no perfect matching, and the edges matching $2 i-1$ to $2 i$ for $1 \leq i \leq 8$ form a maximum matching. Note that vertices 17 and 18 have the same neighborhood: $\{1,5,9,13\}$.

[^0]We show that for each maximum matching M of G, the two unsaturated vertices have a common neighbor. Let x and y be the two unsaturated vertices; note that x and y must both be black vertices. In fact, we show that every two black vertices have a common neighbor, so we can ignore the matchings. We list the cases:

1. $\{x, y\}=\{17,18\}: x$ and y have four common neighbors.
2. $x \in\{17,18\}, y \notin\{17,18\}: y$ is adjacent to $1,5,9$, or 13 .
3. $x, y \notin\{17,18\}$: If x and y differ by 2 (modulo 16), then the vertex between them on the outer cycle is a common neighbor. We list the other pairs as (x, y, z), where z is a common neighbor of x and y, in increasing order of the distance between the labels of x and $y:(2,6,15),(4,8,7),(6,10,11),(8,12,11),(10,14,9),(12,16,11),(14,2,15),(16,4,3),(2,8,15)$, $(4,10,3),(6,12,7),(8,14,9),(10,16,11),(12,2,3),(14,4,5),(16,6,11),(2,10,3),(4,12,3),(6,14,15),(8,16,15)$.
Hence the conjecture is false when G is bipartite with maximum degree 5 and minimum degree 4 . The question remains open for 4-regular graphs with $r \geq 4$. For bipartite regular graphs, the statement holds trivially, since every such graph has a perfect matching.

Acknowledgement

The author wishes to express gratitude to the Editor, who has improved the English of the paper.

References

[1] V. Mkrtchyan, S. Petrosyan, G. Vardanyan, On disjoint matchings in cubic graphs, Discrete Mathematics 310 (2010) 1588-1613.

[^0]: E-mail address: christophe.picouleau@cnam.fr.

