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a b s t r a c t

Mkrtchyan, Petrosyan, and Vardanyan made the following conjecture: Every graph Gwith
∆(G) − δ(G) ≤ 1 has a maximum matching whose unsaturated vertices do not have a
common neighbor. We disprove this conjecture.

© 2010 Elsevier B.V. All rights reserved.

Mkrtchyan et al. [1] conjectured that every nearly regular graph G (that is, with ∆(G) − δ(G) ≤ 1) has a maximum
matching whose unsaturated vertices do not have a common neighbor. As usual, ∆(G) and δ(G) denote the maximum and
minimum degrees of vertices in G. We present an example disproving this conjecture; it is the graph G in Fig. 1.

Fig. 1. The graph G.

Observe that G is bipartite, with eight white vertices and ten black vertices. Each black vertex has degree 4, and each
white vertex has degree 5. Since G is unbalanced, there is no perfect matching, and the edges matching 2i − 1 to 2i for
1 ≤ i ≤ 8 form a maximummatching. Note that vertices 17 and 18 have the same neighborhood: {1, 5, 9, 13}.
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We show that for eachmaximummatchingM of G, the two unsaturated vertices have a common neighbor. Let x and y be
the two unsaturated vertices; note that x and y must both be black vertices. In fact, we show that every two black vertices
have a common neighbor, so we can ignore the matchings. We list the cases:

1. {x, y} = {17, 18}: x and y have four common neighbors.
2. x ∈ {17, 18}, y ∉ {17, 18}: y is adjacent to 1, 5, 9, or 13.
3. x, y ∉ {17, 18}: If x and y differ by 2 (modulo 16), then the vertex between them on the outer cycle is a common neighbor.

We list the other pairs as (x, y, z), where z is a common neighbor of x and y, in increasing order of the distance between
the labels of x and y: (2, 6, 15), (4, 8, 7), (6, 10, 11), (8, 12, 11), (10, 14, 9), (12, 16, 11), (14, 2, 15), (16, 4, 3), (2, 8, 15),
(4, 10, 3), (6, 12, 7), (8, 14, 9), (10, 16, 11), (12, 2, 3), (14, 4, 5), (16, 6, 11), (2, 10, 3), (4, 12, 3), (6, 14, 15), (8, 16, 15).

Hence the conjecture is false when G is bipartite with maximum degree 5 and minimum degree 4. The question remains
open for 4-regular graphs with r ≥ 4. For bipartite regular graphs, the statement holds trivially, since every such graph has
a perfect matching.
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