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a b s t r a c t

Personnel rostering is a personnel scheduling problem in which shifts are assigned to employees, subject to

complex organisational and contractual time-related constraints. Academic advances in this domain mainly

focus on solving specific variants of this problem using intricate exact or (meta)heuristic algorithms, while

little attention has been devoted to studying the underlying structure of the problems. The general assump-

tion is that these problems, even in their most simplified form, are NP-hard. However, such claims are rarely

supported with a proof for the problem under study. The present paper refutes this assumption by present-

ing minimum cost network flow formulations for several personnel rostering problems. Additionally, these

problems are situated among the existing academic literature to obtain insights into what makes personnel

rostering hard.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Research on personnel rostering, and personnel scheduling in

eneral, has focused mostly on solving some problem at hand. As a

esult, a large part of the academic literature details algorithms tai-

ored to one specific problem. Typically, general complexity claims

re made, thereby referring to NP-complete problems that resemble

he problem under discussion. However, in many cases there is no

ertainty that these complexity claims hold for this particular roster-

ng problem. Theoretical studies on models and complexity of per-

onnel rostering are lacking in the present literature.

There are only a few authors who have formally determined the

ardness of a personnel rostering problem. Osogami and Imai (2000)

nd Brunner, Bard, and Köhler (2013) prove that rostering problems

ith constraints on the number of assignments of particular shifts,

nd with constraints on consecutive days worked and days-off are

ard. Lau (1996b) describes a shift assignment problem closely re-

ated to rostering, and proves its NP-completeness. For restricted vari-

nts of the problem, Lau (1996a; 1996b) provide polynomial time al-

orithms, which are discussed in detail in Section 4.2 of the present

aper.

To the best of our knowledge, Brucker, Qu, and Burke (2011) are

he only authors to systematically study personnel scheduling from

theoretical point of view. Based on a general mathematical model,
∗ Corresponding author. Tel.: +3292658704.

E-mail address: pieter.smet@cs.kuleuven.be (P. Smet).
1 Peter Brucker sadly passed away on July 24, 2013. His coauthors dedicate their
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our polynomially solvable cases have been identified, two of which

re closely related to rostering. The first problem, PThm1, considers

ifferent shifts which require a constant number of employees on dif-

erent days. The employees are assumed to be available on all days.

ithout any further restrictions on the assignment of shifts to em-

loyees, the problem can be solved as a series of transshipment prob-

ems. The second problem, PThm2, assumes one type of shift, and the

vailability of employees given by one interval, i.e. employee avail-

bility is assumed to be contiguous. There are no other restrictions. A

eformulation models the problem as a minimum cost network flow

roblem.

The present paper identifies new personnel rostering problems

hat can also be solved in polynomial time. Table 1 compares the two

olynomially solvable rostering problems studied by Brucker et al.

2011) with the problems discussed in this work.

In the light of the new contributions, complexity results from the

cademic literature are revisited to obtain insights into what it is that

akes personnel rostering hard. This work provides an update on the

urrent results, and further establishes the foundations for theoreti-

al studies on personnel rostering models.

Even though all results are discussed in terms of shifts and days,

he ideas can be directly transferred to the domain of tasks and pe-

iods. This observation underpins the idea that the presented results

ave a potential impact not only in different rostering application ar-

as, such as logistics and health care, but also in personnel scheduling

n general.

The remainder of this paper is organised as follows. Section 2

ntroduces basic definitions of concepts in personnel rostering.

ection 3 investigates problems with restrictions on the number of
EURO) within the International Federation of Operational Research Societies (IFORS).
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Table 1

Comparison of characteristics of polynomially solvable rostering problems from Brucker et al. (2011).

Shifts Demand Employee availability Time-related constraints

Single Multiple Stable Varying Full Contiguous Varying

PThm1 � � � �
PThm2 � � � �
This paper � � � � � � � �

6h 12h 18h

Day 1

Shift i

Shift j

(a) In-day overlap

18h 24h 6h

Day 1 Day 2

Shift i

Shift j

(b) Next-day overlap

Fig. 1. Types of overlap between shifts.
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assignments to each employee. Several polynomially solvable cases

are identified by formulating them as minimum cost network flow

problems. Based on these results, an efficient approach to a known

problem from the literature is presented, and the complexity of com-

monly used benchmark datasets for nurse rostering is discussed.

Sections 4 and 5 consider problems with constraints on consecutive

assignments. Again, polynomially solvable cases are presented, and

linked with results from the literature. For all results, the practical

implications are discussed. Finally, Section 6 concludes the paper and

identifies areas for future research.

2. Personnel rostering problems

This section introduces common concepts in personnel rostering

problems, which will be used throughout the paper.

Employees have to be assigned to shifts in a way that satisfies a

variety of constraints. These problems are characterised by a set of

employees E = {1, . . . , e}, a scheduling period of days T = {1, . . . , t}
and a set of shifts S = {1, . . . , s}.

A shift is a fixed time interval which denotes a working period.

Each shift is characterised by a unique type which classifies the shifts

in various ways, e.g., by time interval (morning, late), by required

qualifications (senior, junior), or by a combination of these (morning-

senior, late-junior). A shift is considered to occur on the day where its

time interval starts. The number of employees required for each shift

can vary from day to day, and is typically more than one employee.

An assignment is the allocation of an employee to a shift on a day.

A roster is an e × t matrix which contains in each cell either an as-

signment or a day-off. If the cardinality of S is one, the single shift

represents a day-on, and the solution is referred to as a day-off roster.

This work considers non-cyclic rosters, in contrast to cyclic rosters in

which all employees have the same assignments, but lagged in time

(Rocha, Oliveira, & Carravilla, 2013).

Two shifts are in-day overlapping if their time intervals overlap

when considering the shifts on the same day. An ordered set of two

shifts is next-day overlapping if an employee cannot be assigned to

these shifts on consecutive days without overlap of their time in-

tervals. Fig. 1 visualises these concepts. This distinction is important

since several models for personnel rostering problems assume that at

most one shift can be assigned per day, thereby automatically elimi-

nating in-day overlap, but not necessarily next-day overlap.

Domain constraints define the possible assignments for each em-

ployee on each day. For each employee i and day j, a set of shifts S̄i j

is defined, consisting of the shifts that can be feasibly assigned. In

practice, these constraints can be used to model restrictions such as

‘part-time employees can only work 4 hour or 6 hour shifts’ or ‘an em-

ployee does not want to work late shifts on Wednesday’. This concept
an also be used to model employee skills by only including shifts in
¯
i j for which employee i is qualified.

The demand djk (or coverage requirement) is the required number

f employees on day j, shift k. Demand is stable if the same num-

er of employees is required on each day and shift, i.e. ∀ j ∈ T, k ∈ S :

jk = d. Furthermore, if on each day and shift only one employee is

equired, ∀ j ∈ T, k ∈ S : d jk = 1, there is unit demand. In contrast, de-

and is varying if djk can be any non-negative value.

Demand can be expressed as an exact, ranged, minimum or maxi-

mum requirement. In the case of exact demand, the specified value is

exactly the number of employees to be assigned. A ranged definition

requires that the number of assigned employees should be within a

specified interval. When such an interval has no upper (lower) limit,

the requirement is defined as a minimum (maximum).

In addition to the coverage requirements, personnel rostering

problems are typically also subject to a variety of contractual time-

related constraints, which can be categorised as counters, series or

successions. Counters restrict the number of times a specific roster

item (e.g. assignments or days-off) can occur within a certain period.

Series restrict consecutive occurrences of specific roster items (Smet,

Bilgin, De Causmaecker, & Vanden Berghe, 2014). Similar to the cov-

erage requirements, these different types of constraints can be ex-

pressed as either ranged, minimum, maximum or exact. Finally, suc-

cessions denote a special type of series, which restrict occurrences of

specific roster items on two consecutive days.

. Counter constraints

This section presents results for problems with counter con-

traints. More specifically, constraints on the number of days worked

nd on the number of shifts worked of each type are discussed. The

iterature survey of Van den Bergh, Beliën, De Bruecker, Demeule-

eester, and De Boeck (2013) illustrates the importance of these two

onstraints as they were included in 85 and 47 recent academic stud-

es, respectively.

Each subtitle describes the problem discussed. The first two el-

ments describe the number of shifts and type of demand. The last

lement states the objective, if any. All other elements describe con-

traints of the problem. The type of definition (exact, range, minimum

r maximum) for each constraint is mentioned between parentheses.

.1. Single shift, varying demand (minimum), number of days worked

exact), feasibility

The number of days worked constraint limits the number of as-

ignments per employee in the scheduling period. In practice, this

onstraint is used to model different contract types. For example, a

ull time employee will be required to work 20 days in a monthly

cheduling period, whereas a part time employee should only work

5 days.

Consider the set of employees E to be homogeneous, i.e. each em-

loyee has to work exactly a days. The problem can be formulated as

he following integer linear program.

i j =
{

1 if employee i works on day j
0 otherwise



P. Smet et al. / European Journal of Operational Research 249 (2016) 67–75 69

s f

Day nodes

j i

j = 1,...,t i = 1,...,e

Employee nodes

..
..

..
..

0 1 x = adj 

Source Sink

Fig. 2. Network G1 corresponding with problem P1. x denotes the flow through an arc.
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Table 2

Cases used in the proof of Theorem 2.

N N̄
∑

(p,q)∈(N̄,N)

lpq

∑
(p,q)∈(N,N̄)

upq

{s} {DN, EN, f} 0 �j∈Tdj

{s, DN} {EN, f} 0 et

{s, DN, EN} {f} 0 ea

{DN} {s, EN, f} �j∈Tdj et

{DN, EN} {s, f} �j∈Tdj ea

{DN, EN, f} {s} �j∈Tdj +∞
{EN} {s, DN, f} 0 ea

{EN, f} {s, DN} 0 +∞
{f} {s, DN, EN} ea +∞

a

i

f

p

N

t

s

r

c

w

e

g

s

a

b

3

(

p

V

i

s

n

e

d

t

l

x

P

s

d

∑

k

x

s

1 :
∑
i∈E

xi j ≥ dj ∀ j ∈ T (1)

j∈T

xi j = a ∀ i ∈ E (2)

i j ∈ {0, 1} ∀ i ∈ E, j ∈ T (3)

Constraints (1) are the coverage requirements. Constraints (2) en-

orce the number of days worked. Integrality of the decision variables

s ensured by constraints (3).

Problem P1 is a special case of the many-to-many generalised as-

ignment problem (Pentico, 2007), in which tasks need to be assigned

o agents. The contribution of each task to an agent’s workload is al-

ays one. Furthermore, all agents are required to work an exact num-

er of tasks, while for each task only a minimum number of required

gents are specified.

.1.1. Minimum number of employees

Inspired by Burns and Carter (1985), a lower bound on the number

f employees required for problem P1 can be calculated using param-

ters a and dj (Equation (4)).

= max

(⌈∑t
i=1 di

a

⌉
, d1, d2, . . . , dt

)
(4)

The remainder of this section proves that a solution exists with e

mployees, by applying network flow techniques. First, a layered net-

ork is constructed in which a feasible flow corresponds to a solution

or problem P1. Let G1 = (V, A) be a network with V the set of nodes,

nd A the set of arcs. The set V consists of four types of nodes: day

odes (DN), employee nodes (EN), one source node (s), and one sink

ode (f).

The structure of G1 is shown in Fig. 2. The supply in all nodes

�{s, f} is zero. The supply in the source is ea, which is the maximum

umber of possible assignments, based on the number of employees

nd the parameter a. The supply in the sink is −ea.

Due to the configuration of G1, a flow respecting the capacity and

emand constraints is equivalent to a solution for problem P1. One

nit of flow in an arc between day node j and employee node i indi-

ates that employee i is working on day j.

emma 1. A feasible flow in the network G1 corresponds to a feasible

olution for problem P1.

Based on Lemma 1, there exists a solution with e employees for

roblem P1 if a feasible flow exists in G1. Ahuja, Magnanti, and Orlin

1993) show that the latter can be proven by verifying that the circu-

ation feasibility condition (CFC) holds in network G1.

heorem 1. CFC: A circulation problem with non-negative lower

ounds on arc flows is feasible if and only if, for every set N of nodes,

ith N̄ = V \ N (Ahuja et al., 1993)∑
p,q)∈(N̄,N)

lpq ≤
∑

(p,q)∈(N,N̄)

upq (5)

heorem 2. There exists a solution for problem P1 with e employees as

alculated by Equation (4).

roof. First, G1 is transformed to a network G′
1, representing the cor-

esponding circulation problem. This is done by adding a circulation
rc from the sink to the source with infinite positive capacity. Next, it

s verified that the CFC holds in network G′
1

by checking Equation (5)

or nine cases which, due to the network’s layered structure, cover all

ossibilities. Table 2 shows, for each case, which types of nodes are in

and N̄, as well as the left and right hand sides of Equation (5). Note

hat it is assumed that all nodes of a type are in the set for the cases

hown in Table 2. Changing this assumption does not change the cor-

ectness of the proof, but makes the calculation of the CFC terms more

omplicated.

Table 2 shows that most of the cases are trivial, except the ones

ith DN ∈ N and s ∈ N̄. From Equation (4) directly follows that

a ≥ �j∈Tdj. Furthermore, since a ≤ t always holds, et will always be

reater than or equal to �j∈Tdj. It will thus always be possible to con-

truct a feasible flow in G′
1. From Lemma 1 follows that there will

lways be a solution for problem P1 with e employees, as calculated

y Equation (4). �

.2. Multiple shifts, varying demand (range), number of days worked

exact), domain constraints, optimise preferences

A common objective in personnel rostering is to respect the em-

loyees’ preferences as much as possible (Bard & Purnomo, 2005;

anhoucke & Maenhout, 2007). This is modelled by minimising an

nteger cost cijk defined for assigning employee i to shift k on day j.

Let ai be the number of days employee i is allowed to work in the

cheduling period. Note that this constraint definition generalises the

umber of days worked constraint in problem P1, since now, different

mployees can be required to work a different number of days. Let
l
jk

, du
jk

be the minimum, maximum number of employees required

o work shift k on day j. The problem can be formulated as an integer

inear program.

i jk =
{

1 if employee i works shift k on day j
0 otherwise

2 : min
∑
i∈E

∑
j∈T

∑
k∈S

ci jkxi jk (6)

.t.
∑
k∈S

xi jk ≤ 1 ∀ i ∈ E, j ∈ T (7)

l
jk ≤

∑
i∈E

xi jk ≤ du
jk ∀ j ∈ T, k ∈ S (8)

j∈T

∑
k∈S

xi jk = ai ∀ i ∈ E (9)

∑
∈S\S̄i j

xi jk = 0 ∀ i ∈ E, j ∈ T (10)

i jk ∈ {0, 1} ∀ i ∈ E, j ∈ T, k ∈ S (11)

The objective function (6) minimises the assignment costs. Con-

traints (7) limit the number of shifts assigned per employee and per
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Fig. 3. Flow network G2 for problem P2, x denotes the flow through an arc.

Table 3

Hard constraints in benchmark instances.

INRC NOTT KAHO

C1 Single assignment

per day

Single assignment

per day

Single assignment

per day

C2 Coverage

requirements

Coverage

requirements

Qualification

requirements

C3 Qualification

requirements

Fixed assignments

C4 Only defined

assignments

C5 No overlapping

assignments

N

N
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day to at most one. Constraints (8) are the coverage requirements.

Constraints (9) restrict the number of days worked. Constraints (10)

are the domain constraints. Constraints (11) require the decision vari-

ables to be either zero or one.

Problem P2 can be reformulated as a minimum cost network flow

problem in a directed network G2 = (V, A), with V the set of nodes

and A the set of arcs. The set V consists of five types of nodes: shift

nodes, work nodes, employee nodes, one source node (s), and one sink

node (f).

Fig. 3 shows the structure of G2. Note that the domain constraints

are modelled by only adding arcs between shift nodes associated with

day j and shift k, and work nodes associated with employee i and day

j, if k ∈ S̄i j . All nodes, except the source and sink nodes, are transship-

ment nodes. The supply in the source node is �i∈Eai, the supply in the

sink node is equal to
∑

i∈E −ai.

The total number of nodes in G2 is t(s + e) + e + 2; the total num-

ber of arcs is t(s + e(s + 1)) + e, if S̄i j = S for each i ∈ E, j ∈ T. Smaller

sets S̄i j will result in fewer arcs.

Lemma 2. The size of network G2 is polynomially bounded by the num-

ber of days, employees and shifts.

Due to the configuration of G2, a minimum cost solution respect-

ing the capacity and demand constraints is equivalent to a solution

for problem P2. Lower and upper bounds on the arc capacities are ap-

propriately defined to correctly represent the minimum (maximum)

staffing demand and the required number of days worked. Shift as-

signments correspond to flows in the arcs between the shift nodes

and the work nodes. A flow from the shift node associated with day

j, shift k to the work node associated with day j, employee i, corre-

sponds to employee i working shift k on day j, thereby incurring cost

cijk. As these arcs have a capacity upper bound of one, employees can

be assigned to at most one shift per day.

Lemma 3. A minimum cost flow in the network G2 corresponds to an

optimal solution for problem P2.

From Lemmas 2 and 3, it follows that problem P2 can be trans-

formed in polynomial time to a minimum cost network flow prob-

lem with integer capacities and arc costs. The resulting network

flow problem can be solved in polynomial time (Ahuja et al., 1993),

thereby establishing the following theorem.

Theorem 3. Problem P2 can be solved in polynomial time.

In the remainder of this section, two results will be derived from

Theorem 3. First, a discussion on the complexity of academic nurse

rostering benchmark datasets is presented. Second, a problem from

the literature is revisited and a new network flow-based solution ap-

proach is presented.

3.2.1. Complexity of nurse rostering benchmark instances

Benchmark datasets provide interesting indicators for compar-

ing the performance of different algorithms. Table 3 shows the hard

constraints in three commonly used datasets in nurse rostering: the

Nottingham dataset (NOTT; Brucker, Burke, Curtois, Qu, and Vanden

Berghe, 2010), the dataset from the first International Nurse Roster-

ing Competition (INRC; Haspeslagh, De Causmaecker, Schaerf, and

Stølevik, 2012), and the KAHO dataset (Smet et al., 2014). Based on

the hard constraints, INRC can be considered to be a special case of
OTT. Indeed, any algorithm that constructs a feasible solution for

OTT can construct feasible solutions for INRC.

The NOTT instances can be straightforwardly transformed to prob-

em P2 by setting ai to the (maximum) number of days each employee

is allowed to work. Note that, if there is no constraint on the num-

er of days worked, ai can be set to the total number of days in the

cheduling period, resulting in a feasible, albeit possibly poor qual-

ty, solution. The qualification requirements can be modelled using

he domain constraints. The coverage requirements in NOTT can be

efined as a range, minimum, maximum or exact number. To model

hese different definitions, the parameters dl
jk

and du
jk

should be mod-

fied appropriately. An algorithm that generates a feasible solution for

roblem P2 can thus produce feasible solutions for NOTT and INRC.

he following corollary is an immediate consequence of Theorem 3.

orollary 1. A feasible solution for the instances from the NOTT and

NRC datasets can be obtained in polynomial time.

The objective in NOTT and INRC is to minimise the weighted sum

f soft constraint violations. These soft constraints are various time-

elated constraints limiting the number of consecutive days worked,

eekends worked, etc. The cost of a solution thus depends on the ex-

ent to which certain constraints are violated, which is quite different

rom the assignment cost minimised in problem P2.

State of the art optimisation algorithms for personnel rostering

ften use a greedy method to construct an initial solution. Burke,

urtois, Qu, and Vanden Berghe (2013), for example, use a ran-

omised greedy constructive algorithm to generate initial solutions

y assigning uncovered shifts to the employee who incurs the small-

st penalty gain. A simple example illustrates how this greedy

ethod can fail to find a feasible solution: consider an instance with-

ut any soft constraints and with two employees A and B. Employee

has qualifications DH and RN, while employee B only has qualifica-

ion RN. The coverage constraints require one RN-shift and one DH-

hift to be assigned. If the greedy algorithm of Burke et al. (2013) se-

ects employee A to be assigned to the RN-shift, the DH-shift cannot

e assigned, and thus no feasible solution can be constructed without

estarting the algorithm. However, by applying the method presented

n Section 3.2, Corollary 1 states that a feasible solution can be guar-

nteed in polynomial time.

Corollary 1 cannot be extended to the KAHO dataset due to the

ard constraint forbidding overlapping assignments (C5). The struc-

ure of network G2 cannot prevent next-day overlap. All other hard

onstraints can be included in G by making small modifications as
2
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ollows. Assignments can be fixed by changing the capacity bounds

n the arcs between shift nodes and work nodes. Constraint C4 states

hat only assignments with a corresponding coverage requirement

re feasible. This can be modelled in G2 by adding shift nodes only

f at least one employee is required on that day and shift.

.2.2. A pseudo-polynomial time algorithm for a days-off rostering

roblem with hierarchical substitution

Hung (1994) and Billionnet (1999) describe a days-off roster-

ng problem with hierarchical substitution. Based on their qualifica-

ions, employees are classified into m types, with ek the number of

mployees of type k. Coverage requirements are defined in terms of

hese qualifications: djk is the number of workers required on day j

ith qualification k. The qualifications are organised in a hierarchi-

al manner, i.e. a higher qualified employee can substitute for a lower

ualified employee, but not the other way around. A cost ck is asso-

iated with each type k employee. When an employee substitutes for

lower qualification, cost ck still corresponds to the employee’s orig-

nal, higher qualification. The scheduling period is one week. Each

mployee should receive n days off, or, equivalently, each employee

hould work a = 7 − n days. The objective is to find the least cost

orkforce composition, and to construct a days-off roster.

Hung (1994) presents sufficient conditions for a workforce com-

osition to be feasible. A two phase approach is used for solving the

roblem: the workforce composition is determined first, and the ac-

ual roster is constructed afterward. An exhaustive search determines

he workforce composition, suitable for problems with m ≤ 3. Fur-

hermore, a single pass method is described, which does not guaran-

ee feasible solutions. Billionnet (1999) presents an integer program-

ing formulation to determine the number of employees working

particular qualification each day. A feasible roster is constructed

ased on the solution for the integer program.

Given the least cost workforce, a roster can be efficiently con-

tructed by reformulating and solving the problem as a minimum

ost flow problem in network G�. Fig. 4 shows that G� has a structure

imilar to G2, however, skills are used instead of shifts. Arcs between

kill nodes and work nodes are only present if the employee is quali-

ed or can substitute for the skill. Lemma 3 holds for G�; a minimum

ost flow solution in network G� thus corresponds with a feasible

oster.

Note that network G� has a pseudo-polynomial number of nodes

ith respect to the coverage requirements of an instance, since the

overage requirements directly impact the workforce composition,

nd thus the number of work nodes and employee nodes.

Arcs between the employee nodes and the sink model the cost of

ach employee. These arcs have li j = ui j = a and a flow cost of ci/a,

ith ci = ck if employee i is of type k. If the employee is working, a

nits of flow result in a cost of ci/a × a = ci, which is the employee’s

ost in the original problem definition.

.3. Multiple shifts, varying demand (range), number of shifts worked

f each type (range), domain constraints, feasibility

The constraint on the number of days worked discussed in

ection 3.1 is a special case of the number of shifts worked of each

ype constraint. The former limits the number of assignments in the

cheduling period, whereas the latter restricts the number of assign-

ents of each shift type within the scheduling period. This constraint
as various applications in practice, e.g. balancing undesirable shifts

mong employees or applying health and safety regulations.

Osogami and Imai (2000) discuss a feasibility problem with one

ounter constraint on the number of shifts worked of each type. This

onstraint is defined as a range, e.g. employee i has to be assigned to

hift j on at least two days, and at most five days in the scheduling

eriod. Furthermore, there are coverage requirements for each day,

hift, also expressed as a range.

Let al
ik

, au
ik

be the minimum, maximum number of days employee

is allowed to work shift k. The problem can be formulated as an

nteger linear program.

i jk =
{

1 if employee i works shift k on day j
0 otherwise

3 :
∑
k∈S

xi jk ≤ 1 ∀ i ∈ E, j ∈ T (12)

l
jk ≤

∑
i∈E

xi jk ≤ du
jk ∀ j ∈ T, k ∈ S (13)

l
ik ≤

∑
j∈T

xi jk ≤ au
ik ∀ i ∈ E, k ∈ S (14)

∑
∈S\S̄i j

xi jk = 0 ∀ i ∈ E, j ∈ T (15)

i jk ∈ {0, 1} ∀ i ∈ E, j ∈ T, k ∈ S (16)

Constraints (12) ensure that at most one shift is assigned per day,

er employee. Constraints (13) are the coverage requirements. Con-

traints (14) limit the number of shifts worked of each type. Con-

traints (15) are the domain constraints. Constraints (16) require the

ecision variables to be either zero or one.

Problem P3 is proven to be NP-complete by reduction from a

imetabling problem (Osogami & Imai, 2000). However, by relaxing

he constraint on the number of shifts worked of each type to a con-

traint on the number of days worked, problem P3 can be reduced

o a feasible circulation problem (Ahuja et al., 1993) in a network ob-

ained by modifying network G2 in the following way. One additional

rc is added to G2 from the sink node to the source node with infinite

ositive capacity. Furthermore, the capacities on the arcs between

mployee nodes and sink node are modified to correctly model the

ange on the number of days worked.

The following theorem follows from Lemmas 2 and 3.

heorem 4. Problem P3 without ranged constraints on the number of

hifts worked of each type can be solved in polynomial time.

From Theorem 4 follows that the granularity of a counter con-

traint has a significant impact on a problem’s complexity. Defining a

ounter for days worked allows the problem to be solved as a mini-

um cost network flow problem, whereas restricting the number of

hifts worked of each type makes the problem NP-complete. This re-

ults in interesting practical considerations when solving personnel

ostering problems. It might be sufficient to model regulations at day-

evel, rather than at shift-level, thereby inevitably making abstraction

f some of the administration’s guidelines. The result, however, is a

omputationally tractable problem.



72 P. Smet et al. / European Journal of Operational Research 249 (2016) 67–75

s f

Shift nodes Work nodes

<j,k> <i,j> i

j = 1,...,t k = 1,...,s i = 1,...,e j = 1,...,t i = 1,...,e

Employee nodes

..
..

..
..

..
..

0 1 x = aidl
jk

u
jk

Source SinkCompatibility nodes

<i,F>

..
..

0 1

iff j is in Di
-

cijk

ml
iF

u
iF

arc exists iff k is in Sij
-

i = 1,...,e F in Di
-

Fig. 5. Network G4 corresponding with problem P4. x denotes the flow through an arc. Arcs from work nodes to employee nodes for days not in a set F are not drawn.

A
Mo

...

...

Employee nodes SinkCompatibility nodesWork nodes

A

f

B
Mo

B
Tu

B
We

B
Th

B
Fr

B
Sa

B
Su

...
B

c1

0 1

x
=

5

x = 5

0
1 2

3

0
1

Fig. 6. Example of network G4 in which employee B has to work at least two days in

the period from Friday (Fr) to Sunday (Su).

b

T

w

i

q

d

c

m

t

C

c

g

w

t

w

H

f

t

d

4

s

i

p

i

r

m

g

f

4. Succession constraints

This section presents results for a problem with succession con-

straints on days and shifts. First, a problem is discussed with a con-

straint that generalises the number of days worked constraint, and

which can be used to model constraints on day successions. After-

ward, the relationship between this problem and a known academic

result is discussed. Van den Bergh et al. (2013) list 73 recent academic

studies where constraints on day successions, shift successions and

more general forbidden shift sequences appear.

As in Section 3, the titles of the subsections describe the problems

discussed.

4.1. Multiple shifts, varying demand (range), number of days worked

(exact), domain constraints, incompatible days (range), optimise

preferences

Problem P2 can be extended by adding constraint (17) to re-

strict assignments on days from pairwise disjoint sets. This extended

problem is denoted as P4.

ml
iF ≤

∑
j∈F

∑
k∈S

xi jk ≤ mu
iF ∀ i ∈ E, F ∈ D̄i (17)

For each employee i, let D̄i be a set of day sets F, from which at

least ml
iF

, and at most mu
iF

days can be worked. All sets in D̄i must

be pairwise disjoint, i.e. each day in T can occur in at most one set

F ∈ D̄i. There should thus be no overlap between the sets in D̄i. The

incompatible days constraint restricts the number of days worked by

employee i in the set F to values between ml
iF

and mu
iF

.

This constraint can be interpreted as a number of days worked con-

straint for periods which are subsets of the scheduling period. This

first interpretation allows various practical restrictions to be mod-

elled, e.g. balancing the number of assignments per week, or limiting

the number of Sundays worked in the scheduling period.

The incompatible day sets furthermore offer the opportunity to

model succession constraints. Consider the example in which a hos-

pital’s administration requires a nurse to have a day-off after working

on a bank holiday. For each bank holiday, a set F is added to D̄i con-

sisting of the bank holiday and the day after. By setting ml
iF

= 0 and

mu
iF

= 1, nurse i will not be allowed to work on both the bank holi-

day and the day after. Note that, in this example, it is assumed that

there are no consecutive bank holidays, since this would lead to non-

disjoint sets in D̄i.

Problem P4 can be transformed into finding a minimum cost flow

in a network G4. This network is obtained by including additional

compatibility nodes in network G2. For each F ∈ D̄i, one compatibil-

ity node is added to the network between the work nodes for days in

F, and the employee node of employee i. Since D̄i is restricted to pair-

wise disjoint sets, the maximum size of D̄i is bounded by t. The flow

in the incoming arcs of each compatibility node is bounded between

zero and one. The flow in the outgoing arc of each compatibility node

is bounded between ml
iF

and mu
iF

. Fig. 5 shows the structure of the

network G4.

Theorem 5. Problem P4 can be solved in polynomial time if D̄i contains

only pairwise disjoint sets of days.

Proof. A large part of network G4 is identical to G2; the main ideas

from Lemma 3 thus hold for G as well. Since the size of D̄ is bounded
4 i
y t, the number of nodes in the network increases maximally with et.

hrough the construction of the compatibility nodes, each employee

ill be working between ml
iF

and mu
iF

days from the set F. �

Fig. 6 illustrates this formulation with an example. Each employee

n the example has to work exactly five days, and employee B is re-

uired to work at least two days in the period from Friday (Fr) to Sun-

ay (Su). To accommodate for this constraint, the compatibility node

1 is included in the network.

The requirement for the sets to be pairwise disjoint is a strong

odelling restriction. If non-disjoint sets would be allowed, addi-

ional constraints could be modelled with the presented networks.

onsider the formulation of a maximum m consecutive days worked

onstraint in Equation (18).∑
∈{0,...,m}

∑
k∈S

xi( j+g)k ≤ m ∀ i ∈ E, j ∈ {1, . . . , t − m} (18)

Equation (18) forces an employee to work at most m days in a

indow of size m + 1, which slides over the scheduling period. Effec-

ively, this formulation transforms the constraint on consecutive days

orked into multiple constraints on non-disjoint incompatible days.

owever, non-disjoint sets F would result in multiple outgoing arcs

rom each work node in G4, which would allow multiple assignments

o one employee on one day, which violates the single assignment per

ay constraint.

.2. Multiple shifts, varying demand (exact), domain constraints, shift

uccession constraints, feasibility

Health and safety regulations concerning rest time are of major

mportance in many organisations. Within this class of guidelines,

roviding sufficient rest time between two consecutive working days

s regarded as one of the most important constraints. Forward shift

otation is a common concept in practice, which requires an assign-

ent to not start earlier than the assignment on the previous day. A

eneralisation of this concept is a shift succession constraint, which

orbids two particular shifts to be assigned on consecutive days.
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Table 4

Comparison of characteristics of polynomially solvable problems from Lau (1996a; 1996b).

Domain Unconstrained Shift Day Number of

constraints days-off roster succession succession days worked

Lau (1996a) �
Lau (1996b) � (�)1

Theorem 5 � � (�)2 �
1 Only monotonic shift succession constraints.
2 Only pairwise disjoint day succession constraints.
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Lau (1996b) discusses a feasibility problem in which the day-off

oster has been predetermined. The goal is to assign shifts to work-

ng employees. Let T̄i be a set of days on which employee i cannot

ork, i.e. the days-off in the predetermined roster. Let R be the set of

hift pairs (k, k′), which cannot be assigned on two consecutive days.

overage requirements are defined for each day and shift. They are

xpressed as an exact value. The problem can be formulated as the

ollowing integer linear program.

i jk =
{

1 if employee i works shift k on day j
0 otherwise

5 :
∑
k∈S

xi jk ≤ 1 ∀ i ∈ E, j ∈ T \ T̄i (19)

i∈E

xi jk = djk ∀ j ∈ T, k ∈ S (20)

i jk + xi( j+1)k′ ≤ 1 ∀ i ∈ E, j ∈ T \ {t}, (k, k′) ∈ R (21)

k∈S

xi jk = 0 ∀ i ∈ E, j ∈ T̄i (22)

∑
∈S\S̄i j

xi jk = 0 ∀ i ∈ E, j ∈ T (23)

i jk ∈ {0, 1} ∀ i ∈ E, j ∈ T, k ∈ S (24)

Constraints (19) ensure that at most one shift is assigned to an em-

loyee on a working day. Constraints (20) are the coverage require-

ents. Constraints (21) are the shift succession constraints. Con-

traints (22) make sure no shifts are assigned on days-off. Constraints

23) are the domain constraints. Constraints (24) require the decision

ariables to be either zero or one.

Problem P5 is proven to be NP-complete by reduction from 3SAT

Lau, 1996b). Additionally, Lau (1996b) presents a greedy algorithm

hich solves P5 under three assumptions: a feasible solution ex-

sts, domain constraints are not included, and only monotonic shift

hanges are allowed. The latter is not a strong restriction as it still

llows for forward shift rotation to be enforced.

The following theorem is due to Lau (1996b).

heorem 6. Problem P5 without domain constraints and with mono-

onic shift succession constraints can be solved in polynomial time (Lau,

996b).

In a follow-up paper, Lau (1996a) presents a polynomial time al-

orithm for problem P5 when the days-off roster has a particular

tructure. All employees’ working days are contiguous and the work

tretches either start or stop on the same day, i.e. the days-off roster

s tableau shaped. A solution for this problem variant can be derived

rom an optimal path cover in a layered network.

The following theorem is due to Lau (1996a).

heorem 7. Problem P5 without domain constraints and with a tableau

haped days-off roster can be solved in polynomial time (Lau, 1996a).

The network flow model presented in Section 3.2 supports the

roof of a related result. By omitting the shift succession constraints,
roblem P5 can be reduced to the problem of finding a feasible

ow in G2. The fixed days-off roster can be modelled in the net-

ork by setting the capacity upper bounds of the correct arcs be-

ween work nodes and employee nodes to zero. Since the num-

er of days worked per employee is predetermined in the days-

ff roster, ai is set to t − |T̄i|, for each employee i ∈ E. Finally, the

upply in the source node is set to �j∈T�k∈Sdjk. The supply in the

ink node is equal to
∑

j∈T

∑
k∈S −d jk. Note that neither the struc-

ure of the days-off roster, nor the domain constraints are subject to

estrictions.

The following corollary is an immediate consequence of Lemmas 2

nd 3.

orollary 2. Problem P5 without shift succession constraints can be

olved in polynomial time.

Table 4 compares characteristics of the polynomially solvable

roblems identified by Lau (1996a; 1996b), and by Theorem 5 pre-

ented in Section 4.1.

Relating the result from Lau (1996b) to Theorem 5 allows fur-

her examination of the boundary between easy and hard defini-

ions of succession constraints. Problems with general shift succes-

ion constraints are NP-complete. However, Theorem 5 proved that

restricted version of the day succession constraints can be solved

s a minimum cost flow problem. Similar to the findings on counter

onstraints, the transition from succession constraints on days to suc-

ession constraints on shifts transforms a tractable problem into an

ntractable one. While for counter constraints, in some cases, the ab-

traction from shifts to days could be justified (e.g. by aggregating

onstraints on the number of shifts worked of each type to restrict

he total number of days worked), it is harder to do so for the suc-

ession constraints. Constraints on day successions are not useless,

ather they have a different purpose than the shift successions. Never-

heless, this result provides valuable insight into the constraints that

ake personnel rostering problems hard.

. Series constraints

Brunner et al. (2013) consider a problem with a single shift and

arying demand, expressed as a minimum. In addition, the assign-

ents of each employee are subject to three other constraints. The

rst constraint limits the number of days worked to a maximum

alue. The second and third constraints define a range on the number

f consecutive days worked and days-off, respectively. The objective

s to minimise the size of the workforce.

Van den Bergh et al. (2013) identify 101 recent academic studies

hat include constraints on the number of consecutive days worked

r days-off.

Let D̄work be the maximum number of days an employee can work

n the scheduling period. Let D̄on, D̄off be the maximum number of

onsecutive days worked, days-off. Let Don, Doff be the minimum

umber of consecutive days worked, days-off. The problem can be

ormulated as the following integer linear program.

i j =
{

1 if employee i works on day j
0 otherwise
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P6 : min number of employees (25)

s.t.
∑
i∈E

xi j ≥ dj ∀ j ∈ T (26)

∑
j∈T

xi j ≤ D̄work ∀i ∈ E (27)

D̄on∑
n=0

xi( j+n) ≤ D̄on ∀i ∈ E, j ∈ {1, . . . , t − D̄on} (28)

xi j + (w −
j+w∑

n= j+1

xin) + xi( j+w+1) ≥ 1

∀i ∈ E, w ∈ {1, . . . , Don − 1}, j ∈ {1, . . . , t − (w + 1)} (29)

D̄off∑
n=0

(1 − xi( j+n)) ≤ D̄off ∀i ∈ E, j ∈ {1, . . . , t − D̄off} (30)

(1 − xi j) +
j+w∑

n= j+1

xin + (1 − xi( j+w+1)) ≥ 1

∀i ∈ E, w ∈ {1, . . . , Doff − 1}, j ∈ {1, . . . , t − (w + 1)} (31)

xi j ∈ {0, 1} ∀ i ∈ E, j ∈ T (32)

The objective function (25) minimises the number of employees.

Constraints (26) are the coverage requirements. Constraints (27) limit

the number of days worked. Constraints (28) and (29) are the min-

imum and maximum number of consecutive days worked, respec-

tively. Constraints (30) and (31) are the minimum and maximum

number of consecutive days-off, respectively. Constraints (32) require

the decision variables to be either zero or one.

Brunner et al. (2013) proved that problem P6 is NP-complete by

showing that it has the circulant problem as a special case. Removing

all constraints regarding consecutive assignments reduces the prob-

lem of finding a feasible solution for P6 to the problem of finding a

feasible flow in network G1. The lower bound on the flow in the arcs

from employee nodes to the sink node needs to be set to zero, the

upper bound should be set to D̄work.

The following corollary is an immediate consequence of Lemmas 1

and 2.

Corollary 3. A feasible solution for problem P6 without ranged con-

straints on the number of consecutive days worked and days-off can be

found in polynomial time.

Limiting the number of consecutive days worked and days-off

thus makes the problem hard. Consequently, almost all problems in

practice are hard.

As was discussed in Section 4.1, the pairwise disjoint incompatible

days constraint strongly resembles the constraint on the maximum

number of consecutive working days. To strengthen Corollary 3, the

same obstacle holds as was discussed in Section 4.1. Satisfaction of

the maximum number of consecutive working days constraint cannot

be guaranteed without the possibility of modelling a constraint on

non-disjoint incompatible days in network G4.
. Conclusions and future research

The present paper systematically studied the complexity of per-

onnel rostering problems, thereby further establishing the founda-

ions for theoretical studies on models for rostering. By presenting

ransformations of different problems to minimum cost network flow

roblems, new cases were identified that can be solved in polynomial

ime. Specifically, decision and optimisation problems were reformu-

ated with multiple shifts, varying demand, and constraints on the

umber of days worked, employees’ domains and incompatible days.

Previously published complexity proofs were discussed in the

ight of these new results, and, as a result, a boundary between

ractable and intractable personnel rostering problems was estab-

ished. The new results show that for both counter constraints and

uccession constraints, the difference between easy and hard prob-

ems corresponds to defining constraints on day-level or on shift-

evel. These insights not only allow decision makers to reconsider the

ormulation of their problem, as it could mean making the problem

omputationally tractable, but also provide efficient approaches to-

ard solving subproblems arising from decomposition.

The new contributions could be relevant outside personnel ros-

ering as well, since the studied constraints also appear in other set-

ings, mainly involving assignments of some type. In other person-

el scheduling problems, tasks are assigned to workers, often subject

o constraints on task changes (Ernst, Jiang, Krishnamoorthy, & Sier,

004). In high school timetabling, the workload of a resource, e.g. stu-

ent, teacher or room, is typically restricted by a minimum and max-

mum value (Post et al., 2012).

Future research should turn its attention toward problems with

eneralised constraints, e.g. restrictions on consecutive assignments,

eekends. Models with such intricate constraints, can possibly

o longer be transformed to the presented minimum cost flow

roblems.
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