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a b s t r a c t

This paper addresses the problem of target coverage for wireless sensor networks, where the sensing

range of sensors can vary, thereby saving energy when only close targets need to be monitored. Two

versions of this problem are addressed. In the first version, sensing ranges are supposed to be

continuously adjustable (up to the maximum sensing range). In the second version, sensing ranges have

to be chosen among a set of predefined values common to all sensors. An exact approach based on a

column generation algorithm is proposed for solving these problems. The use of a genetic algorithm

within the column generation scheme significantly decreases computation time, which results in an

efficient exact approach.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in signal processing and embedded systems are at the
origin of the growing popularity of Wireless Sensor Networks
(WSN) in a wide range of applications [1]. While they were initially
used in remote or hostile environments (for battlefield surveil-
lance, or tsunami monitoring), WSN are also increasingly used for
health care [12]. Although these applications rely on very different
types of sensors, most of them share the following characteristics:
sensors operate on a battery that cannot be recharged and a large
number of sensors is deployed for improving fault tolerance and
lifetime. This paper is concerned with lifetime maximization, that
is achieved by making the best possible use of sensors redundancy.
Moreover, the sensors are supposed to have adjustable sensing
ranges. Such a feature saves energy in the situation where a sensor
needs to cover close targets only, as power requirement is a non-
decreasing function of the distance between the sensor and the
farthest target it covers.

More formally, suppose n sensors are randomly deployed in
order to cover a set of m targets ft1, . . . ,tk, . . . ,tmg. Each sensor si

has an initial energy bi. Sensors can either be active or inactive. An
inactive sensor does not cover any target, and its power con-
sumption is negligible. When a sensor is active, its power
consumption depends on its sensing range. All the sensors have
the same maximum sensing range, denoted by Rmax: a sensor can
ll rights reserved.
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si),
cover a target if its distance is less than or equal to Rmax. Lifetime
maximization is reached by gathering sensors into non-disjoint
subsets called covers (each cover being such that each target can
be covered by at least one sensor in that cover), and by scheduling
these covers, i.e., by determining the amount of time during
which each cover is used. The sensors that are not part of the
cover that is currently being used are not active. Moreover, covers
are not necessarily disjoint, as this allows for reaching longer
lifetimes [15]. The schedule must be such that the total amount of
energy consumed by sensor si is at most equal to its initial energy
bi. The network lifetime is the sum of these durations: when it is
exceeded, the coverage of all targets is no longer possible.

This paper addresses two close versions of the lifetime max-
imization problem:
�
 Lifetime Maximization with Ad-hoc Sensing Ranges (LM-ASR):
Each sensor can adjust its sensing range so as to cover targets
with the minimum amount of necessary power (for all targets
which distance to the sensor is less than Rmax). In this model,
continuous variations of the sensing range are allowed, this
problem version is addressed in [6],

�
 Lifetime Maximization with Predefined Sensing Ranges (LM-

PSR): Sensors have MPSR nonzero and distinct predefined
sensing ranges, so all the targets that are under such a
predefined range are covered at a predefined power level. In
this model, MPSR predefined sensing ranges are supposed to be
given, this problem version is addressed in [3].

A mathematical formulation based on integer or linear pro-
gramming is proposed in [3,6], but is never used for solving the
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problem, as both formulations rely on an exponential number of
variables. In [17,18,16,11], heuristic methods are proposed for
finding the best possible cover for LM-PSR. More precisely, [11]
uses a NSGA-II approach, where a trade off is sought between the
coverage rate of the sensors in the cover (breach is allowed), the
financial cost of the cover (which is proportional to the number of
sensors in the cover) and the total power of the sensors used in
the cover. These approaches, however, are concerned with the
generation of a single cover, and the problem of maximizing
lifetime is not addressed.

The present paper generalizes both problems, and provides
exact approaches hybridized with metaheuristics for both of
them. These approaches are based on column generation, which
has been successfully used to address lifetime maximization
problems in the literature [2,8,9,14].

The remainder of this paper is organized as follows. Section 2
describes in detail the terminology and notations used in this
paper and illustrates them, wherever appropriate, with suitable
examples. Section 3 describes the problem models and their
resolution approaches. Computational results along with their
analysis are presented in Section 4. Finally, Section 5 outlines
some concluding remarks and ideas for future works.
2. Definitions and notations

All the notations introduced in this section can be found in
Table 1.

2.1. Power consumption and sensor coverage

Dealing with adjustable sensing ranges requires to extend the
notion of covers as follows. A cover Sj is a n-column vector of
nonnegative reals where Si,j40 if and only if sensor si is part
of the cover. Si,j is the power (i.e., the energy consumption rate) of
sensor si in the cover. If sensor si is not part of Sj, then Si,j ¼ 0 as
this sensor does not consume energy when Sj is used. The amount
of energy consumed by active cover Sj is proportional to tj, where
tj is the amount of time during which cover Sj is used.

The battery of sensor si has initial energy bi and the power
consumption of si is denoted by pi(t), as it can vary over time if the
sensing range of si does. Consequently, the constraint on the
limited amount of energy available for sensor si can be stated asZ þ1

0
piðtÞ dtrbi 8iAf1, . . . ,ng ð1Þ

It is assumed that pi(t) is a function of the sensing range r(t):
piðtÞ ¼ f ðrðtÞÞ. As in [3,6], two power consumption models are
Table 1
Notations.

Notation Meaning

n Number of sensors

m Number of targets

si A sensor, for all iAf1, . . . ,ng

tk A target, for all kAf1, . . . ,mg

bi Initial energy of sensor si for all iA
pi(t) Power consumption of sensor si ove

Di Targets covered by sensor si, sorted

pi,r Minimum power consumption of se

Rmax Sensors’ maximum sensing range

M Maximum number of different pow

R Set of the predefined sensing range

Ck,i Power consumption minimum rank

Sj jth cover (i.e., set of sensors). Si,j is

tj Amount of time during which cove

xi,r,j Binary decision variable that is set
considered. The first one is referred to as the linear model, the
second one is the quadratic model.

f linðrÞ ¼ pmax r

Rmax

� �
, 0rrrRmax

f quaðrÞ ¼ pmax r

Rmax

� �2

, 0rrrRmax

In both cases, pi(t) is equal to pmax when the sensing range is
equal to Rmax (its maximum value). Since the models proposed in
this paper do not depend on the form of the power consumption
function, it is denoted by f(r), and is either flin(r) or fqua(r).

In both LM-ASR and LM-PSR, r(t) can only assume a finite set of
numerical values. This is obvious for LM-PSR, and in LM-ASR, r(t)
assumes at most as many different values as there are targets
under a sensor range. Thus, it can be deduced that pi(t) is a step
function of time. Indeed, the step values are either set by the
distance to neighboring targets in LM-ASR, or are taken in a
predefined collection of values in LM-PSR. Eq. (1) can then be
written as

Xc

j ¼ 1

Si,jtjrbi, 8iAf1, . . . ,ng ð2Þ

where c is the number of covers, and Si,j is the power consump-
tion of sensor si associated with the sensing range selected for
that cover.

Every sensor si is associated with an ordered set Di containing
the targets that it can cover, sorted by increasing power require-
ment. In an ideal environment, the targets in Di are those with
distance to sensor si less than or equal to Rmax. We assume such an
environment, even though this hypothesis is not necessary for the
solution approaches proposed in this paper to be valid. The
presence of obstacles in the environment, for example, may cause
the sensors power consumption not to be a function of r(t) alone
as in f. Such a situation can be handled with no inconvenience
using one of the two following approaches. If a more realistic
function for computing power requirement is available, then it is
used instead of flin of fqua. Otherwise, the network can go through
an initialization phase during which the sensing range increases
progressively (in LM-ASR), or takes its predefined values sequen-
tially (in LM-PSR), and the targets discovered during that phase
are stored along with the corresponding power they require.
However in that case, the problem name should refer to adjus-
table power levels, rather than adjustable sensing ranges.

Whatever the method for computing or measuring power
consumption, the targets in Di are sorted by increasing power
requirement, i.e., Dið1Þ is the target that can be covered by sensor
f1, . . . ,ng

r time

by increasing power requirement

nsor si required for covering target Di(r), for all rAf1, . . . ,9Di9g

er consumption values that a sensor can have

s sorted by increasing order (for LM-PSR only)

at which sensor si can cover target tk

the power of sensor si in the cover, 8jAf1, . . . ,cg

r Sj is used

to one iff sensor si is part of cover Sj and is used with power pi,r
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si with minimum power consumption, whereas Dið9Di9Þ is the
target that can be covered by sensor si with maximum power
consumption. pi,r is defined as the minimum power consumption
of sensor si required for covering targets Di(r), for all r in
f1, . . . ,9Di9g. More formally, pi,r�1rpi,r for all i in f1, . . . ,ng, and
for all r in f2, . . . ,9Di9g. The maximum number of different power
consumption values that a sensor can have is denoted by M. In
LM-ASR, M¼maxiA f1,...,ng9Di9. In LM-PSR, M¼MPSR. In the case of
LM-PSR, R is the set of the predefined sensing ranges sorted by
increasing order, with RMPSR

¼ Rmax and 9R9¼MPSR.
For all kAf1, . . . ,mg, Ck,i is defined as the power consumption

minimum rank at which sensor si can cover target tk, if the
distance between si and tk is less than or equal to Rmax. If the
distance is greater than Rmax, then Ck,i is set to Mþ1. For example,
Ck,i ¼ z with zAf1, . . . ,Mg means that target tk can be covered by
sensor si, provided that its power is at least pi,z. If z¼Mþ1, then
target tk is out of range of si.
2.1.1. Example

For the sake of illustration, the ordered sets D, C and p are
computed for the two problem versions LM-ASR and LM-PSR,
with the one-dimensional example shown in Fig. 1. The horizon-
tal axis allows the reader to assess the distances more easily.

There are n¼2 sensors, m¼3 targets, the maximum sensing
range Rmax is set to 4 and sensors power requirements are given
by fqua(r) with pmax ¼ 1. It is also assumed that b1 ¼ b2 ¼ 1. This
implies that each sensor can cover all the targets which are at
distance less than 4 from it, for 1 s before its battery is depleted.
Naturally, the lifetime can be extended further if sensors reduce
their sensing range.

The ordered sets D are common to both LM-ASR and LM-PSR,
they are defined as

D1 ¼ ð1;2Þ, D2 ¼ ð2;3,1Þ

Indeed, it can be seen from Fig. 1 that sensor s1 can cover
targets t1 and t2, and t1 is closer to s1 than t2. Sensor s2 can cover
all the three targets, namely t2, t3 and t1 when sorted by non
decreasing distance to s2. Equivalently, we may have D2 ¼ ð3;2,1Þ.

Sets C and p are different according to the problem version:
�
 LM-ASR
The ordered sets defining the power consumption of sensors
are defined below:

p1 ¼ ð
1
4 ,1Þ, p2 ¼ ð

1
16 , 1

16 , 9
16Þ

Sensor s1 is at distance 2 from the closest target it covers,
hence p1;1 ¼ ð2=Rmax

Þ
2
¼ 0:25. The second target in D1 is at

distance Rmax from s1, hence p1;2 reaches its maximum value
(i.e., 1).
Sensor s2 is at distance 1 from the closest target it covers,
hence p2;1 ¼ ð1=Rmax

Þ
2
¼ 1

16. The second target in D2 is also at
distance 1 from s2, hence p2;2 ¼

1
16, and target t1 is at distance

3 so p2;3 ¼
9

16.
The maximum cardinality of Di over i in f1, . . . ,ng defines the
maximum number of different sensing ranges that a sensor
can have. Here, s1 has two sensing ranges, and s2 has three, so
M¼3.
0 1 2 3 4 5 6

s1 s2�1 �2 �3

Fig. 1. A one-dimensional example.
The ordered sets Ck that indicate the rank in power consump-
tion of the sensors that cover target tk are

C1 ¼ ð1;3Þ, C2 ¼ ð2;1Þ, C3 ¼ ð4;2Þ

Target t1 is covered by s1, which can cover it using its first
(lower) sensing range. t1 is also covered by s2, but it requires
its third sensing range to reach that target.
Target t2 is covered by s1, which can cover it using its second
(highest) sensing range; it is also covered by s2 but only
requires its lower sensing range to reach it.
Finally, target t3 is not covered by s1, hence C3;1 is set to
Mþ1¼ 4. Target t3 is covered by sensor s2, and requires its
second sensing range (or its first sensing range, as they are
equal).

�
 LM-PSR

It is supposed that MPSR ¼ 2, and the two predefined sensing
ranges are R¼ f2;4g. By definition of fqua(r), the corresponding
power consumption levels are 1

4 and 1, respectively.
The ordered sets defining the power consumption of sensors
are

p1 ¼ ð
1
4 ,1Þ, p2 ¼ ð

1
4 ,14,1Þ

Sensor s1 is at distance 2 from the closest target it covers,
hence the first predefined sensing range is needed so
p1;1 ¼ ð

2
4Þ

2
¼ 0:25. The second target in D1 is at distance Rmax

from s1, hence p1;2 reaches its maximum value (i.e., 1).
Sensor s2 is at distance 1 from the closest target it covers, so
p2;1 ¼

1
4. The second target in D2 is at distance 2 from s2, hence

p2;2 ¼
1
4: both targets require the first predefined sensing range

to be used. Target t1 is at distance 3 so the second predefined
sensing range is used, leading to p2;3 ¼ 1.
The maximum number of different sensing ranges is equal to
the number of predefined sensing ranges so M¼2.
The ordered sets Ck that indicate the rank in power consump-
tion of the sensors that cover target tk are

C1 ¼ ð1;2Þ, C2 ¼ ð2;1Þ, C3 ¼ ð3;1Þ

Target t1 is covered by s1, which can cover it using the first
predefined sensing range. t1 is also covered by s2, but it
requires the second predefined sensing range to reach that
target.
Target t2 is covered by s1, which can cover it using the second
sensing range; it is also covered by s2 which can cover it using
the first sensing range to reach it.
Finally, target t3 is not covered by s1, hence C3;1 is set to
Mþ1¼ 3. Target t3 is covered by sensor s2, and requires the
first predefined sensing range.

2.2. Cover dominance properties

This section introduces two equivalent ways of representing
covers. Those two different encodings are necessary as they are
both used in the column generation approach. Then, theoretical
properties are provided for characterizing non-dominated covers
that are useful for maximizing lifetime.

2.2.1. Cover encodings

Real vector encoding: Cover Sj can be defined as a n-column real
vector where Si,j is the power consumption of sensor si, i.e., for all
iAf1, . . . ,ng, Si,j belongs to the discrete set f0,pi,1,pi,2, . . . ,pi,9Di9g for
LM-ASR, and Si,j belongs to the discrete set f0,pi,1,pi,2, . . . ,pi,MPSR

g

for LM-PSR. For both problems, Si,j ¼ 0 if and only if si is not part of
cover Sj.
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Binary encoding: Equivalently, Sj can be represented as a set of
n ordered lists of 9Di9 binary numbers for LM-ASR, and MPSR

binary numbers for LM-PSR. More precisely, xi,r,j is set to one if
sensor si is part of the cover and is used with power pi,r , for all
iAf1, . . . ,ng, it is zero otherwise. In addition, at most one variable
xi,r,j should be set to one for all iAf1, . . . ,ng as each sensor has at
most one power consumption level (and no level at all if it is not
part of the cover).

Changing encoding: The following equation is used for trans-
forming a cover from the binary encoding to the real vector
encoding in LM-ASR:

Si,j ¼
X9Di9

r ¼ 1

xi,r,jpi,r 8iAf1, . . . ,ng, 8jAf1, . . . ,cg ð3Þ

For LM-PSR, 9Di9 and pi,r must be replaced with MPSR and f ðRrÞ,
respectively.

The reciprocal transformation is given in Algorithm 1 for LM-
ASR.

Algorithm 1. From the real vector encoding to the binary
encoding.
for i¼1 to n do

for r¼ 1 to 9Di9 do

if Si,j ¼ pi,r then

9 xi,r,j’1;

else
xi,r,j’0;

j

66666664

66666666664
Algorithm 1 can be used for LM-PSR, by replacing 9Di9 and pi,r

with MPSR and f ðRrÞ, respectively.

2.2.2. Non-dominated covers

All the approaches that use column generation for addressing
lifetime maximization in wireless sensor networks rely on the
notion of cover [2,9,14]. In all these column generation
approaches, the main issue is to find a cover that is likely to
increase further the lifetime of the current solution. To the best of
our knowledge, this article provides the first theoretical study on
how to reduce the search space of such attractive covers. As a
result, it is shown that the search space can be reduced to non-
dominated covers. This provides a significant advantage over
performing a search in the much larger set of valid covers.

A cover is said to be valid if the power level of its sensors is
such that all the targets are covered by at least one sensor. A valid
cover Sj is said to be dominated if there exists another valid cover
Sj0 containing a subset of sensors of Sj that are used at a lower
power level, and at least one sensor is used in Sj0 at a strictly lower
power than in Sj. More formally, Sj is dominated if there exists
another valid cover Sj0 such that Si,j0rSi,j for all iAf1, . . . ,ng, and
there exists at least one integer i0 in f1, . . . ,ng such that Si0 ,j0oSi0 ,j.

Therefore, in any non-dominated cover, decreasing the power
level of any sensor compromises coverage. Consequently, a non-
dominated cover can be built from any valid cover by decreasing
the power of sensors as long as it is possible to do so without
compromising targets coverage. This process is referred to as
cover refinement and is implemented in Algorithm 2.

Lemma 1. There exists an optimal solution to LM-ASR (or LM-PSR) in

which non-dominated covers only are used a non-zero amount of time.

Proof. Lemma 1 is proved by contradiction. Suppose that all
optimal solutions to LM-ASR (or LM-PSR) are such that there
exists a dominated cover Sj used for a nonzero amount of time.
Then a non-dominated cover Sj0 can be built from Sj, and be used
instead of Sj in the optimal solution. Doing so preserves target
coverage by definition of non-dominated covers. Repeating this
process for all dominated covers used a nonzero amount of time
leads to an optimal solution to LM-ASR (or LM-PSR) where non-
dominated covers only are used a non-zero amount of time.
Contradiction.

As a consequence of Lemma 1, the search for an optimal
solution to LM-ASR (or LM-PSR) can be restricted to non-domi-
nated covers only. Enforcing this restriction is efficient when
designing a solution approach to LM-ASR or LM-PSR, as non-
dominated covers are generally a small fraction of valid covers.

Lemma 2. The number of sensors in a non-dominated cover is at

most m.

Proof. Each target has to be covered by at least one sensor, so at
most m sensors are required for covering all the targets. If a valid
cover has more than m sensors, then one of them can be removed,
so it is dominated.

Lemma 2 can be seen as a necessary (but not sufficient)
condition for a cover to be non-dominated. It is used in the
column generation algorithm for building candidate non-domi-
nated covers in Section 3.3.
2.2.3. Example

The Example introduced in Section 2.1.1 is used again for
illustrating both cover encodings, valid covers, dominated and
non-dominated covers, for LM-ASR and LM-PSR.
�
 LM-ASR
There exist 5 valid covers, represented under the real vector
encoding:

SASR
1 ¼

1
4
1

16

" #
, SASR

2 ¼
0
9

16

" #
, SASR

3 ¼
1
1

16

" #
, SASR

4 ¼
1
9

16

" #
, SASR

5 ¼

1
4
9

16

" #

Covers SASR
3 , SASR

4 and SASR
5 are dominated because of cover SASR

1 .
Hence, SASR

1 and SASR
2 are non-dominated.

The binary encoding of covers SASR
1 and SASR

2 are XASR
1 and XASR

2 ,
respectively:

XASR
1 ¼

1 0 �

1 0 0

� �
, XASR

2 ¼
0 0 �

0 0 1

� �

The – sign on the first row indicates that s1 has only two power
consumption levels (9D19¼ 2). In SASR

1 , both sensors are part of
the cover, and are used with their minimum power. In SASR

2 ,
only s2 is part of the cover, and is used at its maximum power.

�
 LM-PSR

There are also five valid covers for LM-PSR, they are shown
below under the real vector encoding:

SPSR
1 ¼

1
4
1
4

" #
, SPSR

2 ¼
0

1

� �
, SPSR

3 ¼
1
1
4

" #
, SPSR

4 ¼
1

1

� �
, SPSR

5 ¼

1
4

1

" #

Again, SPSR
3 , SPSR

4 , and SPSR
5 are dominated. The binary encoding

for SPSR
1 and SPSR

2 are XPSR
1 and XPSR

2 , respectively:

XPSR
1 ¼

1 0

1 0

� �
, XPSR

2 ¼
0 0

0 1

� �

Unlike LM-ASR, all the rows in the binary encoding of a cover
have the same size in LM-PSR because each sensor has exactly
MPSR power consumption levels.



Table 2
Using the MILP formulation of LM-ASR on four instances.

Instances n m Best sol. Opt. sol.

n012m005 12 5 4.0459 4.0459

n025m010 25 10 4.8780 4.8780

n050m015 50 15 11.6013 14.0702

n100m030 100 30 19.8385 38.9922
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3. Problem modeling

3.1. A mixed integer linear programming model

LM-ASR can be modeled as the following mathematical for-
mulation:

Max
Xc

j ¼ 1

tj ð4Þ

s:t:
Xc

j ¼ 1

X9Di9

r ¼ 1

xi,r,jpi,r

0
@

1
Atjrbi, 8iAf1, . . . ,ng ð5Þ

X9Di9

r ¼ 1

xi,r,jr1 8iAf1, . . . ,ng,8jAf1, . . . ,cg ð6Þ

Xn

i ¼ 1

X9Di9

r ¼ Ck,i

xi,r,jZ1 8kAf1, . . . ,mg, 8jAf1, . . . ,cg ð7Þ

Xn

i ¼ 1

X9Di9

r ¼ 1

xi,r,jrm 8jAf1, . . . ,cg ð8Þ

xi,r,jAf0;1g 8iAf1, . . . ,ng, 8rAf1, . . . ,9Di9g, 8jAf1, . . . ,cg ð9Þ

tjZ0 8jAf1, . . . ,cg ð10Þ

The objective function is to maximize the network lifetime. Eq.
(5), which is non-linear, ensures that energy limitations are
respected for each sensor. It is a combination of Eqs. (2) and (3).
Eq. (6) states that in each cover, each sensor is used with at most
one power level. The target coverage requirement are enforced by
Eq. (7), Eq. and (8) restrict the search for covers with at most m

sensors. This model can be used for LM-PSR by replacing 9Di9 and
pi,r with MPSR and f ðRrÞ, respectively.

This mathematical model is linearized by introducing contin-
uous variables zi,r,j for replacing xi,r,jpi,rtj in Eq. (5). These new
variables are linked with xi,r,j and tj as follows:

zi,r,jrpi,rtj 8iAf1, . . . ,ng, 8rAf1, . . . ,9Di9g, 8jAf1, . . . ,cg ð11Þ

zi,r,jrbixi,r,j 8iAf1, . . . ,ng, 8rAf1, . . . ,9Di9g, 8jAf1, . . . ,cg ð12Þ

zi,r,jZpi,rtjþbiðxi,r,j�1Þ, 8iAf1, . . . ,ng, 8rAf1, . . . ,9Di9g, 8jAf1, . . . ,cg

ð13Þ

zi,r,jZ0 8iAf1, . . . ,ng, 8rAf1, . . . ,9Di9g, 8jAf1, . . . ,cg ð14Þ

As the objective function will push zi,r,j downward, Eqs. (11)
and (12) are useless. The linearized model is then

Max
Xc

j ¼ 1

tj

s:t:
Xc

j ¼ 1

X9Di9

r ¼ 1

zi,r,jrbi 8iAf1, . . . ,ng

zi,r,jZpi,rtjþbiðxi,r,j�1Þ 8iAf1, . . . ,ng, 8rAf1, . . . ,9Di9g, 8jAf1, . . . ,cg

X9Di9

r ¼ 1

xi,r,jr1 8iAf1, . . . ,ng, 8jAf1, . . . ,cg

Xn

i ¼ 1

X9Di9

r ¼ Ck,i

xi,r,jZ1 8kAf1, . . . ,mg, 8jAf1, . . . ,cg

Xn

i ¼ 1

X9Di9

r ¼ 1

xi,r,jrm 8jAf1, . . . ,cg
xi,r,jAf0;1g 8iAf1, . . . ,ng, 8rAf1, . . . ,9Di9g, 8jAf1, . . . ,cg

tjZ0 8jAf1, . . . ,cg

zi,r,jZ0 8iAf1, . . . ,ng, 8rAf1, . . . ,9Di9g, 8jAf1, . . . ,cg

This mixed integer linear problem (MILP) has a very large
number of variables and constraints, and it may be used for
addressing very small instances only. Indeed, we have solved that
formulation for LM-ASR with the commercial solver Xpress-MP
[7] on the four instances whose characteristics are shown in
Table 2 (the hardware and software used in all numerical
experiments is described in Section 4). The last column displays
the optimal objective value returned by the column generation
algorithm. The solver was allowed to solve the MILP formulation
for 1 h on each instance, and none of them could be solved to
optimality: even if the optimal solution was found for the first
two instances, the solver could not prove them optimal. More-
over, it can be seen that solution quality drastically decreases
when problem size increases.

The last two instances of Table 2 are also used in Section 4, and
can be solved to optimality in less than 10 s with the column
generation based algorithms introduced in Section 3.2. In addi-
tion, as solving the LP relaxation of the MILP formulation requires
even more time than solving the problem to optimality with the
column generation based algorithms, using rounding procedures
for generating initial covers for the column generation algorithms
is too costly. However, this MILP formulation shows that variables
tj and xi,r,j are connected together with a single constraint, which
suggests to perform a Dantzig–Wolfe decomposition, resulting in
the proposed column generation algorithm.

3.2. Master problem

LM-ASR and LM-PSR can be formulated as the following linear
program, where Sj is a non-dominated cover written under the
real vector encoding, and c is the number of non-dominated
covers:

Max
Xc

j ¼ 1

tj

s:t:
Xc

j ¼ 1

Si,jtjrbi 8iAf1, . . . ,ng

tjZ0 8jAf1, . . . ,cg

The objective function is the sensor network lifetime, and the
constraints enforce that each battery has a limited amount of
energy. This linear program cannot be solved in practice because
it requires enumerating the exhaustive set of non-dominated
covers, which cardinality is exponential in n.

Furthermore, as this linear program has n constraints (apart
from nonnegativity), a feasible basis is a collection of at most n

variables tj, therefore at most n non-dominated covers are used
for a nonzero amount of time in any basic optimal solution [4].

That is the reason why the proposed approach relies on
column generation [13]. This iterative approach consists in
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solving the linear program above with a limited number c of
columns (this problem is referred to as the master problem), then
the auxiliary problem introduced in Section 3.3 is solved for
generating an attractive column, i.e., a non-dominated cover to be
introduced in the master problem for further maximizing its
objective function. To this end, cover Sj is built so as to maximize
the reduced cost that its associated variable tj would have once
introduced in the master problem. If its reduced cost is strictly
positive, Sj is actually added to the master problem as a new
column, and the master problem is solved again. This iterative
process stops when it is no longer possible to find a non-
dominated cover with a strictly positive reduced cost: this proves
that the current solution to the master problem is optimal, and
the algorithm stops.

The master problem is initialized with a single cover (i.e., initially
c¼1) that involves all the sensors, used at their maximum power
level. If the master problem is infeasible, then there exists at least one
target out of the range of any sensor, hence the problem has no
solution. This initial cover is obviously dominated, but replacing it
with a non-dominated one has a very marginal impact on conver-
gence. This is due to the fact that this cover becomes useless and is
replaced with more efficient ones after a few iterations.

3.3. Auxiliary problem ILP formulation

At every iteration, the master problem finds the optimal
lifetime value based on a restricted set of c columns. The auxiliary
problem is to generate an additional attractive column, referred
to as cover Scþ1, that may allow to increase lifetime further once
it is introduced in the master problem. If such a column is found,
it is added to the master problem, c is increased by one and the
master problem is resolved. If no such column exists, then the
current solution of the master problem is optimal, as introducing
even all the columns would not allow to increase the lifetime.

Unlike the master problem, the cover under construction in
the auxiliary problem is written under the binary encoding. As a
cover (or a column) is said to be attractive if and only if its
reduced cost is strictly positive, the auxiliary problem objective
function is to maximize the reduced cost value associated with
the cover Scþ1, which is 1�yT Scþ1, where y is the vector of dual
variables of the master problem solved in the current iteration.
The auxiliary problem for LM-ASR consists of Eqs. (15)–(19). The
auxiliary problem for LM-PSR is obtained by replacing every
occurrence of 9Di9 and pi,r with MPSR and f ðRrÞ, respectively:

Max 1�
Xn

i ¼ 1

X9Di9

r ¼ 1

xi,r,cþ1pi,r

0
@

1
Ayi ð15Þ

s:t:
X9Di9

r ¼ 1

xi,r,cþ1r1 8iAf1, . . . ,ng ð16Þ

Xn

i ¼ 1

X9Di9

r ¼ Ck,i

xi,r,cþ1Z1 8kAf1, . . . ,mg ð17Þ

Xn

i ¼ 1

X9Di9

r ¼ 1

xi,r,cþ1rm ð18Þ

xi,r,cþ1Af0;1g 8iAf1, . . . ,ng 8rAf1, . . . ,9Di9g ð19Þ

The decision variables are xi,r,cþ1, whereas yi, pi,r , Ck and Di are
given data. The objective function is the reduced cost of the new
cover, where Si,cþ1 have been substituted using Eq. (3). Constraint
(16) ensures that each sensor is associated to a single power level
(or no power level at all if it is not part of the cover). Constraint
(17) states that the cover must be valid, i.e., all targets must be
covered by at least one sensor. Note that if sensor si does not
cover target tk, then r¼Mþ1 and so no term involving xi,r,cþ1 is
part of the sum. Constraint (18) is the necessary condition stated
in Lemma 2 for the cover to be non-dominated. Finally, constraint
(19) enforce binary requirements.

The auxiliary problem returns Scþ1 if its objective value is
strictly positive, otherwise the algorithm stops as a zero objective
value implies that there does not exists any attractive cover,
hence the master problem current solution is optimal.

3.3.1. Relationship between LM-ASR and LM-PSR

The auxiliary problem can be strengthened in the case of LM-
PSR. If a sensor is such that there is no target located at distance
dA �Rr ,Rrþ1� with rAf1, . . . ,MPSR�1g, then the corresponding
power level (namely f ðRrÞ) is never used by this sensor. Conse-
quently, variable xi,r,cþ1 can be set to zero. Thus, the following
equation is added to the auxiliary problem:

xi,r,cþ1 ¼ 0 8ði,rÞAf1, . . . ,ng � f1, . . . ,MPSRg, f ðRrÞ=2pi ð20Þ

Such a situation never happens with LM-ASR, as power levels
are defined for each sensor for exactly fitting its neighboring
targets with minimum power requirement. Eq. (20) is then
specific to LM-PSR.

Despite constraint (18), the cover returned after solving the
auxiliary problem may not always be non-dominated. Algorithm
2 is a post-optimization procedure that aims at refining Scþ1

(under binary encoding) so as to make it non-dominated.

Algorithm 2. Refining Scþ1 (under binary encoding) into a non-
dominated cover.
for i¼1 to n do

for r¼ 9Di9 to 1 do

if xi,r,cþ1 ¼ 1 then

xi,r,cþ1’0;

if r41 then
xi,r�1,cþ1’1;

�
breach’false;

k’1;

while breach¼ false and krm do

if
Xn

i0 ¼ 1

X9Di0 9

r0 ¼ Ck,i0

xi0 ,r0 ,cþ1 ¼ 0 then

breach’true;
�
k’kþ1;

666666664
if breach¼ true then

xi,r,cþ1’1;

if r41 then
xi,r�1,cþ1’0;

j
6666664

666666666666666666666666666666666666664

6666666666666666666666666666666666666666664

66666666666666666666666666666666666666666666664
Algorithm 2 attempts to reduce the power of all sensors in Scþ1 to
its closest lower level. If the considered sensor is already using its
minimum power, it is tested for removal. Then, the coverage
constraints (Eq. (17)) are checked. If one of them does not hold,
the Boolean variable breach is set to true, and the sensor is set
back to its original power level. Otherwise, further power reduc-
tions and removals are attempted. When this algorithm termi-
nates, the resulting cover is non-dominated as reducing the
power or removing any sensor compromises target coverage.
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Lemma 3. Whatever MPSR and the values for the predefined sensing

ranges, the objective function value reached by LM-ASR is always

larger than or equal to the objective function value reached by LM-

PSR.

Proof. Let SPSR be an optimal solution to LM-PSR consisting of c

covers denoted by SPSR
j , each of them being used a nonzero

amount of time tj. A feasible solution to LM-ASR consisting in c

covers used the same amount of time and denoted by
fSASR

1 , . . . ,SASR
c g is built from SPSR by transforming the cover SPSR

j

for all j in {1, y, c} as follows.

For all i in f1, . . . ,ng, SASR
i,j is set to pi,r where r is the maximum

integer such that pi,r rSPSR
i,j . Thus, sensor si covers the same targets

in SPSR
j and SASR

j because by definition of pi,r the targets covered by

si are the same for any power value in ½pi,r ,pi,rþ1½. Consequently,

SASR
j rSPSR

j for all jAf1, . . . ,cg so SASR
j can be used for tj units of

time, leading to the same lifetime duration as SPSR. &

Lemma 4. LM-PSR and LM-ASR have the same optimal objective

value if[
i A f1,...,ngr A f1,...,9Di 9g

pi,r D
[

rA f1,...,MPSRg

f ðRrÞ ð21Þ

where pi,r refer to power levels in LM-ASR, f ðRrÞ being the power

levels in LM-PSR, associated with predefined sensing ranges.

Proof. If Eq. (21) holds, then any non-dominated cover for LM-
ASR is also non-dominated for LM-PSR. Then, LM-PSR is identical
to LM-ASR: for each sensor, all useless power levels are associated
a zero decision variable in the auxiliary problem by Eq. (20). Once
zero decision variables are removed, the auxiliary problems for
LM-ASR and LM-PSR are identical. &

The example in Fig. 2 shows that Eq. (21) is not a necessary
condition for LM-PSR and LM-ASR to have identical optimal
objective values. Indeed, all power levels in LM-ASR may not be
used in an optimal solution. More specifically, s1 has to maintain
its sensing range to Rmax

¼ 4 for covering target t2, hence its
sensing range cannot be decreased to 2. In that case, LM-PSR with
only one range (Rmax) and LM-ASR reach the same optimal
lifetime (1 s), whereas Eq. (21) does not hold as p1 ¼ ð

1
4,1Þ and

f ðR1Þ ¼ 1.

3.3.2. Example

The example introduced in Section 2.1.1 is used for illustrating
the proposed approach as well as Lemma 3.
�

Fig
not
LM-ASR
The initial cover is SASR

4 . At the first iteration, the master
problem optimal objective value is LT¼1, and the auxiliary
problem generates a second cover, which turns out to be SASR

2 .
At the second iteration, the master problem optimal objective
value is LT ¼ 16

9 � 1:777, with t1 ¼ 1 and t2 ¼
7
9. The auxiliary

problem generates a third cover, which is SASR
1 . At the third

iteration, the master problem optimal objective value is
LT ¼ 16

3 � 5:333, with t1 ¼ 0, t2 ¼
4
3 and t3 ¼ 4. Then, the aux-

iliary problem has a zero optimal objective value, which
proves that the master problem current solution is optimal.
0 1 2 3 4 5 6

s1�1 �2

. 2. A one-dimensional example for showing that the converse of Lemma 4 is

true.
�
 LM-PSR
The initial cover is SPSR

4 . At the first iteration, the master
problem optimal objective value is LT¼1, and the auxiliary
problem generates a second cover, which turns out to be SPSR

1 .
At the second iteration, the master problem optimal objective
value is LT¼4, with t1 ¼ 0 and t2 ¼ 4, and the auxiliary
problem has a zero optimal objective value, which proves that
this solution is optimal.

As shown in Lemma 3 the objective function value of LM-ASR
is larger than the one of LM-PSR.
3.4. A genetic algorithm for the auxiliary problem

Solving the auxiliary problem to optimality is sometimes very
time-consuming, and results in the production of a single cover.
This section describes the main features of the genetic algorithm,
referred to as GA that we designed for overcoming these draw-
backs. More precisely, in the proposed approach, the regular way
for generating attractive covers is through GA. Upon failure, GA is
again run afresh one more time, and ILP is used as last resort (i.e.,
when both runs of GA have failed to find any attractive cover), and
for proving that the current solution to the master problem is
optimal.

Chromosome representation and fitness evaluation: Each chro-
mosome represents a cover and is encoded using the real vector
encoding introduced in Section 2.2.1. Three fitness functions are
used. The primary fitness function is the objective function of the
auxiliary problem that has to be maximized. The secondary
fitness function is the power of the cover. The third fitness
function is the number of sensors in the cover. The secondary
fitness function is needed for distinguishing between two covers
having the same value for the primary fitness function. Similarly,
the third fitness function is needed for distinguishing between
two covers having the same values for primary and secondary
fitness functions. A cover is considered to be better than the other,
if either it has a higher value according to the primary fitness
function or the primary fitness values are equal but it consumes
less power than the other or both the primary and secondary
fitness values are equal and it has fewer sensors than the other.
Three fitness functions are needed because many covers have the
same value for the primary and secondary fitness functions. This
happens more often in LM-PSR than in LM-ASR.

Selection: Probabilistic binary tournament selection is used to
select the two parents for crossover. In probabilistic binary
tournament selection, two candidates are picked uniformly at
random from the current population and their fitness is com-
pared. With probability pb, the candidate which has better fitness
is selected to be a parent, otherwise the candidate with worse
fitness is selected. The second parent is selected in an analogous
manner.

Crossover: We have used the two crossover operators. The first
crossover operator that is used simply transfers each sensor
present in either of the two parents to the child chromosome.
However, if a sensor is present in both the parents and have
different power levels then for such a sensor the child will have
the higher of the two power levels with probability ph, otherwise
it will have the lower of the two power levels. The second
crossover that is used is the uniform crossover. The first crossover
is used with probability pf , otherwise the second crossover is
used. The two crossovers are needed to maintain a balance
between exploitation and exploration.

Mutation: Mutation is applied to the child obtained through
crossover. The mutation operator considers each sensor one-by-
one, and, if it is present in the child, it deletes it with probability
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pm. If a sensor is not present then mutation operator inserts it at a
random power level with probability pm.

Repair operator The child chromosome obtained after the
application of genetic operators may not be feasible. Therefore,
a repair operator is designed, which not only converts the child
into a feasible cover, but also into a good non-dominated cover. It
consist of three stages. The first stage transforms the child into a
feasible cover. The second stage tries to improve the value of the
auxiliary problem’s objective function (hereafter, refers to as
objective function in the remainder of this section) by removing
some sensors. The third stage tries to further improve the value of
the objective function by reducing the range of some sensors.

The first stage considers each target one-by-one and if the
target under consideration is not covered by any sensor then it
either adds a new sensor to the cover or increases the power level
of an existing sensor in a way that covers the target in question
and that leads to minimum reduction in the value of the objective
function. Coverage information of all targets are updated before
considering the next target.

The second stage deletes those sensors from the cover all of
whose covered targets are covered by other sensors also. It
follows an iterative process. During each iteration it begins by
computing the set Sred of those sensors in the cover, all of whose
targets are redundantly covered. Then from this set it removes the
sensor si corresponding to the maximum yi � pi,r value from the
cover, where pi,r is the current power level of sensor si. This
process is repeated, until the iteration, where Sred is found to be
empty. Note that deleting sensor with maximum yi � pi,r value
leads to maximum increase in the value of the objective function.

The third stage ensures that remaining sensors are used only at
their respective minimum power levels necessary for covering all
targets. It follows an iterative process where during each iteration
it decreases the power of a sensor from its current level to its next
(strictly) lower level if doing so does not result into a coverage
breach. If there are more than one candidate sensors, then the
power level of sensor with maximum yi � ðpi,r�pi,qÞ value is
reduced from its current value pi,r to its next (strictly) lower level
pi,q. Note that for LM-PSR, ðr�qÞ ¼ 1, whereas for LM-ASR as many
power levels can be equal so ðr�qÞZ1 . This process is repeated
until it is not possible to reduce the power level of any sensor.

Replacement policy: Our genetic algorithm uses steady-state
population replacement method [5]. In this method genetic algo-
rithm repeatedly selects two parents, performs crossover and muta-
tion to generate a single child that replaces a less fit member of the
population. This is different from generational method where the
entire parent population is replaced with an equal number of newly
created children every generation. In comparison to the generational
method, the steady-state population replacement method generally
finds better solutions faster. This is due to keeping the best solutions
in the population permanently and the immediate availability of the
generated child for selection and reproduction. Another advantage of
the steady-state population replacement method is the ease with
which duplicate copies of the same individuals are avoided in the
population. In the generational method, duplicate copies of the
highly fit individuals may exist in the population. Within few
generations, these highly fit individuals can dominate the whole
population. When this happens, the crossover becomes totally
ineffective and the mutation becomes the only possible way to
improve solution quality. When this happens, improvement, if any,
in solution quality is quite slow. Such a situation is known as the
premature convergence. In the steady-state method, we can easily
prevent this situation by simply comparing each newly generated
child with current population members and discarding the child, if it
is identical to any current member.

Initial population generation: Each member of the initial popula-
tion is generated randomly by following a three stage procedure.
With probability pa, the first stage includes as many sensors as
possible with yi¼0 at their maximum power level. Actually, these
sensors do not contribute to the objective function irrespective of
their power levels. These sensors are added to the solution one-by-
one in some random order and the coverage information of all the
target are updated whenever a sensor is added to the solution. The
remaining uncovered targets are covered by following an iterative
approach. During each iteration an uncovered target is selected
randomly and then a sensor that can cover this target is also
selected randomly. This sensor can be a new sensor or a sensor
already present in the cover but with a power level lower than
required for covering the target under consideration. The power
level of this sensor is set to the minimum power level necessary for
covering the target in question. The coverage information of all the
targets are updated. This process is repeated until no target is left
uncovered. The second and third stages are exactly similar to the
second and third stages of repair operator except during each
iteration a candidate is selected randomly. This is done to increase
the diversity of initial population.

Each newly generated chromosome is checked for uniqueness
against the population members generated so far, and, if it is unique,
then it is included in the initial population, otherwise it is discarded.

Other features: If our genetic algorithms found an attractive cover
then up to MAXCOVER best attractive covers are returned at each
iteration which accelerates convergence. If the genetic algorithm fails
to find an attractive cover, it is applied afresh one more time before
using the ILP. The stopping criterion that is used for our genetic
algorithm is the maximum number of consecutive iterations itmax

without improvement in best solution quality. However, the value of
itmax varies over the set OPTION¼ f50, 100, 250, 500, 1000, 2000g
from one run to the other. If in the previous run genetic algorithm
returned less than MAXCOVER attractive covers then itmax is set to
next higher value, if possible, in the OPTION, otherwise itmax is set to
next lower value, if possible, in the OPTION. itmax is set to 50 in the
very first run of the genetic algorithm.

In case of LM-ASR, as many power levels are equal, therefore,
whenever a sensor is set to a new power level a check is made to
ensure that all targets that can be covered with that much power,
are indeed covered.
4. Computational results

4.1. Instances and experimental setup

The instances that we have used in our computational experi-
ments have been generated as follows. n sensors and m targets
are generated at random in a 500�500 area. The maximum
sensing range of sensors is set to Rmax

¼ 150. The instance name
format is nXXXmYYY, where XXXAf50, 100, 150, 200, 300, 600g is
the number of sensors, and YYYAf15, 30, 45, 60, 90, 120, 180,
360g is the number of targets. Five instances of the same size have
been generated, leading to a grand total of 60 different instances.

In addition to LM-ASR, LM-PSR is addressed for three different
numbers of sensing ranges. In PSR1, sensors are either sensing up
to their maximum range Rmax, or not used at all; this corresponds
to the problem where sensing ranges are not adjustable. In PSR3,
the three sensing ranges are f50, 100, 150g and in PSR6, the six
considered sensing ranges are f25, 50, 75, 100, 125, 150g. Thus,
the number of sensing ranges considered in this paper is as large
as in [3]. The quadratic model fqua defined in Section 2.1 has been
used for the sensors’ power consumption.

All the approaches presented in this paper are implemented
in C, a function is used for removing the covers used a zero
amount of time when the number of covers exceeds 10ðnþmþ1Þ
in the master problem (this is expected to keep the master



A. Rossi et al. / Computers & Operations Research 39 (2012) 3166–31763174
program fast when GA returns up to MAXCOVER covers per
iteration). Algorithm 2 is also run at every iteration for transform-
ing the cover found by the auxiliary problem into a non-
dominated cover.

For the genetic algorithm, we have used a population of
minðn,100Þ individuals, MAXCOVER¼10, pa ¼ 0:25, pf ¼ 0:8,
ph ¼ 0:9, pm ¼ 0:05. We have used two different values of pb.
The first parent is selected with pb ¼ 0:9, whereas the second
parent is selected with pb ¼ 0:8. All these parameter values are
chosen empirically after large number of trials.

All the computations have been performed on an Intel Xeon
Processor system at 2.66 GHz, with 8 GB RAM under Microsoft
Windows 7. The LP and ILP solver is GLPK [10].
Table 3
Computation time with and without restricting the search for non-dominated

covers.

n150m045 Average CPU time to optimality

PSR-1 PSR-3 PSR-6 ASR

Dominated covers 0.43 2.54 7.93 69.18

Non-dominated covers 0.44 2.17 6.89 52.82

Improvement (%) �2.33 14.57 13.11 23.65

Table 4
Lifetime and computation time when addressing the auxiliary problem with ILP.

Instances Average network lifetime

PSR-1 PSR-3 PSR-6 ASR

n050m015 4.000 7.621 9.561 12.262

n050m030 3.600 6.361 8.474 11.291

n100m030 9.000 19.487 24.089 31.665

n100m060 7.000 12.004 14.088 18.937

n150m045 11.800 24.360 32.502 44.934

n150m090 11.600 23.744 29.814 41.993

n200m060 14.600 32.378 46.867 64.455

n200m120 14.400 32.105 39.699 55.003

n300m090 25.000 55.525 74.139 103.320

n300m180 23.400 54.581 67.643 93.930

n600m180 51.000 105.683 138.292 58.844

n600m360 48.600 96.000 90.625 16.176

Table 5
Lifetime and computation time when addressing the auxiliary problem with ILPþGA.

Instances Average network lifetime

PSR-1 PSR-3 PSR-6 ASR

n050m015 4.000 7.621 9.561 12.262

n050m030 3.600 6.361 8.474 11.291

n100m030 9.000 19.487 24.089 31.665

n100m060 7.000 12.004 14.088 18.937

n150m045 11.800 24.360 32.502 44.934

n150m090 11.600 23.744 29.814 41.994

n200m060 14.600 32.378 46.867 64.455

n200m120 14.400 32.105 39.699 55.015

n300m090 25.000 57.536 74.143 103.320

n300m180 23.400 54.581 67.643 94.239

n600m180 51.000 105.901 138.564 184.887

n600m360 48.600 96.156 122.299 153.522
4.2. Results

As a preliminary result, the benefit of using non-dominated
covers is assessed on the five instances with n¼150 sensors and
m¼45 targets, for LM-ASR and LM-PSR. The first row of Table 3
displays the CPU time in seconds of the column generation
algorithm for which the cover refinement procedure (see
Algorithm 2) is never used, and where Eq. (18) is not present in
the auxiliary problem. The second row of the table shows the
results where the cover refinement procedure is called after each
iteration of the auxiliary problem, and where Eq. (18) is present in
the auxiliary problem formulation. In both cases, ILP only is used
for addressing the auxiliary problem. The last row displays the CPU
time improvement (in percent) when using non-dominated covers.

It can be seen that the benefit of restricting the search for
attractive covers to non-dominated ones is more visible for LM-
ASR, and for LM-PSR with a high number of predefined sensing
ranges. These problems are the most difficult ones, as shown in
Tables 4 and 5. Lifetime values are not reported in Table 3 because
they are identical.

Table 4 reports the results where the auxiliary problem is
addressed with ILP at each iteration, while Table 5 displays the
results where GA is used for addressing the auxiliary problem, the
ILP formulation being solved only when GA fails to find attractive
covers.
Average CPU time to optimality

PSR-1 PSR-3 PSR-6 ASR

0.03(5) 0.06(5) 0.09(5) 0.22(5)

0.03(5) 0.08(5) 0.16(5) 0.37(5)

1.04(5) 0.83(5) 2.66(5) 4.61(5)

0.96(5) 0.96(5) 2.23(5) 178.66(5)

0.44(5) 2.17(5) 6.89(5) 52.82(5)

1.18(5) 11.26(5) 126.39(5) 95.29(2)

1.02(5) 6.36(5) 47.73(5) 235.30(4)

2.81(5) 20.70(5) 67.83(5) 270.79(2)

5.38(5) 82.36(4) 285.88(3) 984.85(1)

14.14(5) 1015.86(5) 373.81(1) 1 h(0)

82.34(5) 722.41(3) 963.55(1) 1 h(0)

221.22(5) 1 h(0) 1 h(0) 1 h(0)

Average CPU time to optimality

PSR-1 PSR-3 PSR-6 ASR

0.01(5) 0.02(5) 0.03(5) 0.08(5)

0.02(5) 0.03(5) 0.04(5) 0.12(5)

0.03(5) 0.47(5) 1.41(5) 3.53(5)

0.04(5) 0.15(5) 0.28(5) 94.69(5)

0.05(5) 0.29(5) 3.48(5) 25.43(5)

0.10(5) 2.69(5) 15.24(5) 10.28(2)

0.08(5) 0.29(5) 21.03(5) 520.87(5)

0.13(5) 1.98(5) 19.27(5) 25.44(2)

0.20(5) 26.73(4) 101.59(3) 934.02(2)

0.32(5) 90.26(5) 50.59(1) 1 h(0)

1.01(5) 114.24(3) 44.34(1) 1 h(0)

2.01(5) 673.56(3) 1 h(0) 1 h(0)



Table 6
Summary comparison of ILP alone and ILPþGA for the auxiliary problem.

Problems PSR-1 PSR-3 PSR-6 ASR

Number of optimal solutions found with ILP 60 52 45 34

Number of optimal solutions found with ILPþGA 60 55 45 36

CPU time cut with ILPþGA vs. ILP alone (for the instances solved to optimality with ILP) 98.78% 88.03% 79.69% 62.24%

Average lifetime with ILP on all instances 18.67 37.40 47.98 46.10

Average lifetime with ILPþGA on all instances 18.67 38.35 48.47 68.07
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The first column displays the instance name. Columns 2–5
show the average lifetime for the five instances associated with
each row for PSR1, PSR3, PSR6 and ASR. Columns 6–9 display the
average CPU time in seconds for returning an optimal solution.
Each problem is allocated a maximum amount of 1 h per
instance; the number of instances solved to optimality is shown
in parenthesis. Consequently, the average CPU time is computed
on these instances only.

Finally, Table 6 summarizes the results shown in Tables 4 and
5, by stressing the differences between addressing the auxiliary
problem with the ILP formulation, and using the proposed hybrid
approach. The table compares both approaches in terms of
number of optimal solutions found, displays the CPU time cut
provided by the hybrid approach compared to the ILP formula-
tion, the average lifetime on all instances.

4.3. Discussion

Tables 4 and 5 show that for the same number of sensors,
doubling the number of targets leads to a smaller lifetime. This is
quite clear for LM-ASR that can take advantage of the actual
distance between sensors and targets, whereas this is less visible
for LM-PSR1 for which the energy consumption of a sensor
depends on Rmax only. It can also be checked that maximum
lifetimes are reached for ASR, which is an experimental verifica-
tion of Lemma 3. The lifetime decreases when the number of
sensing ranges decreases in LM-PSR, which was also a predictable
result. The solution space of the auxiliary problem increases with
the number of sensing ranges, hence LM-ASR is the most difficult
problem and LM-PSR1 is naturally the easiest one. Column
generation algorithms are subject to the well-known tail effect:
a very large number of iterations is required at the end of the
search for proving optimality. Additionally, the last iterations (i.e.,
the last generated columns) lead to a very modest increase in
lifetime. Consequently, the lifetime found after 1 h is often very
close to the optimal lifetime for nr300. It is necessary to
consider large instances for observing a significant gap in terms
of solution quality: 1 h of computation time is not enough for
solving LM-ASR on the set of instances n600m180 and n600m360,
but it can be seen that using GA leads to much better results.
Indeed, the instances must be sufficiently large for avoiding the
tail effect of column generation to mask the gap between GA and
ILP. For smaller instances, this gap is not visible because ILP,
which is much slower than GA, is still in the tail of the search
when the time limit of 1 h is elapsed. The benefit of using GA in
terms of solution quality is more and more visible for difficult
problems; this general trend is clearly visible in the last two rows
of Table 6. At first sight, this table also suggests that the benefit of
using GA is less visible for difficult problems like LM-ASR. But this
is not the case: the benefit of using GA is clearly visible for large
instances (see Tables 4 and 5), and these instances are not taken
into account here as the CPU time cut is computed only for
instances that are solved to optimality by both approaches. And as
can be seen in Table 4, there are less and less large instances
solved to optimality with ILP for difficult problems.
As stated in Lemma 3, the maximum lifetime is reached for
LM-ASR. Naturally, when the number of predefined sensing
ranges increases, the lifetime in LM-PSR converges toward its
value in LM-ASR.

LM-PSR1 is the easiest problem as sensors have only two states
(sensing with range Rmax or not sensing at all), LM-PSR is more
and more difficult as the number of predefined sensing ranges
increases. LM-ASR is the most difficult problem, which is not
surprising as each sensor can have a large number of power levels
if it covers a lot of targets. Furthermore, Eq. (20) ensures that the
number of non-zero decision variables in the auxiliary problem in
LM-PSR is less than in its counterpart in LM-ASR, whatever MPSR.
5. Conclusions

In this paper we have proposed an exact approach for maximiz-
ing the lifetime of a wireless sensor network where sensing ranges
of sensors can be adjusted. Two versions of the problem are
considered. In the first version, sensing ranges can be continuously
adjusted within the maximum sensing range, whereas in the second
one, sensing ranges can be adjusted only within the set of pre-
defined values. We have modelled these problems using a column
generation scheme and devised a matheuristic (i.e., a combination of
a metaheuristic within an exact approach) to efficiently solve the
corresponding models. Theoretical results are provided so as to
characterize efficient covers, and some relationships between the
problems are also highlighted. The proposed approach addresses the
auxiliary problem with an efficient genetic algorithm. Computa-
tional results demonstrate that for both versions, the use of genetic
algorithm within the column generation scheme significantly
reduces the computation time, without compromising optimality.

Our results suggest that the use of non-dominated covers
could be efficiently adapted to different versions of the lifetime
maximization problems. Similar approaches can be designed for
other scheduling problems in wireless sensor networks. As a
future work, we intend to experiment with other population
based metaheuristics within the column generation scheme to
assess their suitability for such use.
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