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a b s t r a c t

We consider in this paper a single-item lot sizing problem with a periodic carbon emission constraint. In

each period, the carbon emission constraint defines an upper limit on the average emission per product.

Different modes are available, each one is characterized by its own cost and carbon emission parameters.

The problem consists in selecting the modes used in each period such that no carbon emission constraint

is violated, and the cost of satisfying all the demands on a given time horizon is minimized. This problem

has been introduced in Absi et al. (2013), and has been shown polynomially solvable when only unit carbon

emissions are considered. In this paper, we extend the analysis for this constraint to the realistic case of a fixed

carbon emission associated with each mode, in addition to its unit carbon emission. We establish that this

generalization renders the problem NP-hard. Several dominant properties are presented, and two dynamic

programming algorithms are proposed. We also establish that the problem can be solved in polynomial time

for a fixed number of modes when carbon emission parameters are stationary.

© 2015 Elsevier B.V. and Association of European Operational Research Societies (EURO) within the

International Federation of Operational Research Societies (IFORS). All rights reserved.
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. Introduction

Considering sustainability issues in Supply Chain Management is

ecoming more and more important (Linton, Klassen, & Jayaraman,

007). In particular, optimizing environmental objectives or man-

ging environmental constraints are associated with the concept of

reen Supply Chain (Srivastava, 2007). Recently, various researchers

ave studied how to consider carbon emissions in production and

istribution planning problems. One of the seminal work in the

omain can be found in Benjaafar, Li, and Daskin (2013), where the

uthors propose a mathematical model which includes a global car-

on emission constraint on the planning horizon. They perform a nu-

erical study to derive some managerial insights. Based on the same

ype of constraints, Helmrich, Jans, van den Heuvel, and Wagelmans

2015) show that the problem is NP-hard and propose various solu-

ion methods, including a Lagrangian heuristic and a Fully Polyno-

ial Time Approximation Scheme (FPTAS). A global carbon emission
∗ Corresponding author. Tel.: +33144278740; fax: +33144278889.
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onstraint is also considered in Velázquez-Martínez, Fransoo, Blanco,

nd Mora-Vargas (2014), and models for different scenarios are

iscussed. Carbon emission constraints are taken into account in

tatic inventory and distribution problems (such as in Arıkan &

ammernegg, 2014; Konur, 2014). Various authors have also studied

ow to take carbon emissions into account in the objective function,

ither in static inventory models (such as in Bouchery, Ghaffari,

emai, & Dallery, 2012; Chen, Benjaafar, & Elomri, 2013; Konur &

chaefer, 2014; Toptal, Özlü, & Konur, 2014) or in dynamic lot-sizing

odels (such as in Palak, Ekşioğlu, & Geunes, 2014; Romeijn, Morales,

Van den Heuvel, 2014).

Absi et al. (2013) propose four types of carbon emission con-

traints in multi-mode dynamic lot sizing: (1) Periodic carbon emis-

ion constraint, (2) Cumulative carbon emission constraint, (3) Global

arbon emission constraint and (4) Rolling carbon emission con-

traint. Compared to the carbon emission constraints considered in

ost papers, these constraints impose a maximum value not on the

arbon emissions, but on the average carbon emission per product.

his type of constraints is particularly relevant to the firms who want

o display the carbon footprint of their products. Notice that these

ype of constraints do not limit the supply capacity since it is always

ossible to select a supply mode that can satisfy the constraints. An-

ther advantage, except for the global carbon emission constraint,
EURO) within the International Federation of Operational Research Societies (IFORS).
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is that the constraints do not strongly depend on the length of the

horizon (see Absi et al., 2013 for a more extensive discussion). The

uncapacitated single-item problem with Periodic Carbon emission

constraint, called ULS-PC in this paper, is shown polynomial, and a

dynamic programming algorithm is proposed (Absi et al., 2013).

In this paper, we analyze how fixed carbon emissions impact the

problem with periodic carbon emission constraints. A fixed carbon

emission is incurred at each period a mode is selected, and corre-

sponds for instance to the activities associated with packaging the

products for the associated mode. A mode corresponds to the com-

bination of a production facility and a transportation mode for sup-

plying products. This problem is called ULS-FPC in the following. The

problem consists in selecting in each period the modes to use and the

quantities to order such that the supplying costs and the inventory

costs are minimized, while satisfying in each period a carbon emis-

sion constraint per product.

The paper is organized as follows. The problem is formally intro-

duced and modeled in Section 2. It is important structural properties

are presented in Section 3. We show in Section 4 that the problem

is NP-hard. The special case where carbon emission parameters are

stationary is studied in Section 5, and two dynamic programming al-

gorithms are proposed. Finally, the paper ends with some conclusions

and perspectives in Section 6.

2. Problem modeling

We are interested in optimizing the supply (production and trans-

portation) plan (when and how much to supply) of an item to

satisfy a deterministic time-dependent demand over a planning hori-

zon of T periods. Let us consider M different supplying modes associ-

ated with different available production locations and transportation

modes. Costs to be minimized include holding cost and unitary and

fixed supplying costs which depend on the supplying mode. We study

the problem with periodic carbon emission constraints considering

ef m
t , which is the fixed environmental impact associated with mode

m in period t. This parameter is independent of the supplied quantity.

The parameters and variables of the multi-sourcing lot-sizing

problem are formally defined below.

Parameters:

dt: Demand in period t, t = 1, . . . , T,

ht: Unitary holding cost at the end of period t,

pm
t : Unitary supplying cost of mode m in period t,

f m
t : Supplying setup cost of mode m in period t,

evm
t : Environmental impact (carbon emission) related to supply-

ing one unit using mode m in period t,

ef m
t Fixed environmental impact related to using mode m in

period t,

Emax
t : Maximum unitary environmental impact allowed in pe-

riod t.

ēvm
t = evm

t − Emax
t : Relative environmental impact for mode m

in period t (negative for ecological modes, positive for non-

ecological modes).

Variables:

xm
t : Quantity supplied in period t using mode m,

ym
t : Binary variable which is equal to 1 if mode m is used in period

t, and 0 otherwise,

st: Inventory carried from period t to period t + 1.

The carbon emission constraint of the ULS-FPC problem is a gen-

eralization of the one defined by Absi et al. (2013) for the ULS-PC. It

ensures that the average amount of carbon emission at any period t in

addition to the fixed consumption is lower than or equal to the max-

imum unitary carbon emission. Hence, the unused amount of carbon

emission in a given period cannot be used in the following periods.
ore formally, this tight constraint can be defined as follows for each

eriod t:∑M
m=1

(
evm

t xm
t + ef

m
t ym

t

)
∑M

m=1 xm
t

≤ Emax
t

The mathematical formulation of the multi-sourcing lot-sizing

roblem, with fixed and periodic carbon emission constraints, is

iven below:

in

M∑
m=1

T∑
t=1

(
pm

t xm
t + f m

t ym
t

)
+

T∑
t=1

ht st (1)

.t.

M∑
m=1

xm
t − st + st−1 = dt , t = 1, . . . , T (2)

xm
t ≤ Bym

t , t = 1, . . . , T, m = 1, . . . , M (3)

M∑
m=1

(
ēvm

t xm
t + ef

m
t ym

t

)
≤ 0, t = 1, . . . , T (4)

xm
t ∈ R

+, ym
t ∈ {0, 1}, t = 1, . . . , T, m = 1, . . . , M

st ∈ R
+, t = 1, . . . , T

The objective function (1) minimizes the fixed and variable pro-

uction and transportation costs and the total holding cost. Con-

traints (2) are the inventory balance equations, and Constraints (3),

n which B is a big value, ensure that an item cannot be supplied us-

ng mode m at period t if m is not one of the selected modes. The

arameter B must be calculated according to the sum of the demands∑T
t=1 dt ) and threshold parameters that will be introduced later. The

arbon emission constraints are defined by (4).

Due to Constraints (4), the existence of a feasible solution cannot

e guaranteed.

roperty 1. A feasible solution exists if and only if at least one of the

ollowing conditions holds for periods t′ ≤ t where t is the first period

ith a strictly positive demand:

• ēvm
t′ < 0 for at least one t′

• ēvm
t′ = 0 and ef m

t′ = 0 for at least one t′

roof. If one of the two conditions is verified, it is always possible to

atisfy the total demand from period t′ by setting xm
t′ ≥ ∑T

k=t dk such

hat ēvm
t′ xm

t′ + ef m
t′ ≤ 0. Conversely, if ēvm

t′ > 0 for all m and t′, ēvm
t′ xm

t′ +
f m
t′ > 0 whatever m, t′ and xm

t′ > 0. �

n the remainder of the paper, we consider that the feasibility of the

roblem is always guaranteed.

. Structural properties of optimal solutions

The ULS-PC problem is a particular case of the ULS-FPC problem,

ith no fixed carbon emission (Absi et al., 2013). In this section, we

ecall properties that hold for both ULS-PC and ULS-FPC, and state

ew ones. These properties will be used in Section 5 to derive dy-

amic programming algorithms to solve the ULS-PC problem in the

tationary case.

Recall that the periodic carbon emission constraint ensures that,

n each period t, the average amount of carbon emission per product

rdered does not exceed the impact limit Emax
t . As we assume that

he fixed carbon emission parameter is non-negative, clearly, at least

ne ecological mode m must be chosen if a quantity is supplied in pe-

iod t. In Absi et al. (2013), it was shown that solutions using at most

wo modes in each period are dominant for ULS-PC. This dominance

roperty still holds when considering fixed carbon emissions.

heorem 1. There exists an optimal solution for the ULS-FPC problem

hat uses at most two modes in each period.
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Table 1

Example of two ecological modes.

m ēvm
1 e f m

1 pm
1 f m

1

1 −1 10 1 0

2 −10 1 5 0
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roof. Consider an optimal solution (x̂), and let t be a period where

positive quantity is supplied. Let Mt be the set of mode used in

eriod t, that is {m|x̂m
t > 0} and let X̂t = ∑

m x̂m
t be the quantity sup-

lied. If the total quantity produced at period t is unchanged, then the

tock levels are unchanged. We can then discard holding costs from

he objective function (5). Clearly the quantities (x̂1
t , . . . , x̂M

t ) must be

n optimal solution (and can be replaced by any optimal solution) of

he following linear program:

in
∑

m∈Mt

(
pm

t xm
t + f m

t

)
(5)

.t.
∑

m∈Mt

xm
t = X̂t (6)

∑
m∈Mt

(
evm

t − Emax
t

)
xm

t +
∑

m∈Mt

ef
m
t ≤ 0 (7)

xm
t ∈ R

+, m ∈ Mt

ue to elementary LP theory, there exists an optimal solution

x̄1
t , . . . , x̄M

t ) with only two positive variables since the above LP has

nly two constraints. �

e can also notice that if two modes are actually used in a period,

hen the carbon emission constraint must be saturated in a dominant

olution:

roperty 2. There exists an optimal solution for the ULS-FPC prob-

em such that if two modes are used in a period, then the carbon

mission constraint is saturated. In addition, the optimal cost to sup-

ly a quantity X using two modes m and m′, if feasible, is an affine

unction αm,m′
t X + βm,m′

t of X.

roof. Considering the LP in the proof of Theorem 1, the

roof follows from complementary slackness and strong duality

heorems. �

otice that using an ecological mode is not sufficient to ensure that

quantity X can be supplied without violating the carbon constraint.

ndeed, the quantity ordered must be large enough to balance the

xed carbon emission associated with the mode. For this reason we

ntroduce the threshold order associated with a mode (or a couple of

odes) and representing the minimum amount of units to order us-

ng this mode such that the periodic emission Constraints (4) can be

atisfied.

efinition 1. The minimum threshold order Qm
t of an ecological

ode m is defined as min{X|ēvm
t X + ef m

t ≤ 0}, and is equal to

m
t = − ef

m
t

ēvm
t

.

efinition 2. The minimum threshold order Q
m1m2
t of two modes

1 and m2 (with at least one ecological mode) is defined as

in{X| min{ēvm1
t , ēvm2

t }X + ef
m1
t + ef

m2
t ≤ 0}, and is equal to

m1m2

t = − ef
m1

t + ef
m2

t

min{ēvm1

t , ēvm2

t }
learly an amount X can be ordered using two modes m1 and m2 if

nd only if X ≥ Q
m1m2
t . Note that the inventory at the end of the hori-

on is not necessary equal to zero in optimal solutions. Indeed, a triv-

al example where the total demand over the horizon is smaller than

he smallest minimum threshold order, i.e.
∑T

t=1 dt < minm,t Qm
t ,

llustrates this situation.

Using the definition of the threshold, we can now de-

ermine a value for parameter B used in the mathematical

odel in Section 2, choosing B ≥ max{∑T
t=1 dt ;

∑M
m=1

∑T
t=1 Qm

t +
M
m1=1

∑M
m2=1

∑T
t=1 Q

m1m2
t }.

In Absi et al. (2013), it was noticed that, if in a given period two dif-

erent modes are used, then one mode should be ecological (ēv < 0)
nd the other one not (ēv > 0). Taking into account fixed carbon

missions, this property is no more dominant, that is, an optimal so-

ution may use two ecological modes in the same period.

roperty 3. The property that states that at most one ecological

ode is used in each period is not dominant for ULS-FPC.

roof. Consider an instance with a single period and two modes. We

ave a demand of 2 to satisfy. Emission and cost parameters are given

n Table 1. The solution using both modes by ordering one unit using

ach mode is feasible and has a cost of 6. Since both modes are eco-

ogical, if one wants to use only one ecological mode, he has either to

rder 2 units using mode 2, or 10 units using mode 1 (since its min-

mum threshold is 10). Both solutions have a cost of 10 and thus are

ot optimal. �

Due to Theorem 1, we can restrict our attention to 2-mode poli-

ies, that use at most two modes in each period. Since a minimum

hreshold order is defined for each couple of modes, see Definition 2,

or this class of policies we can introduce the following definition:

efinition 3. An ordering period is a Threshold Ordering Period (TOP)

f and only if the quantity ordered is equal to the minimum threshold

rder of the single mode (or the couple of modes) used.

If an ordering period is not a TOP, we simply say that it is a NOP

Non-threshold Ordering Period). TOP will be useful to characterize

ominant subplans. Recall that a period t is a regeneration period if

ts entering inventory is null, that is, st−1 = 0. A subplan is a sequence

f periods between two consecutive regeneration periods such that

he stock levels are positive. We have the following property that has

imilarities with some properties in the literature of lot-sizing with

inimum order quantities (see for example Okhrin & Richter, 2011b;

ark & Klabjan, 2013).

roperty 4. Between two consecutive regeneration periods, there

xists at most one NOP, and, if it exists, it is the last ordering period

f the subplan. In other words, there exists an optimal solution such

hat in each subplan, all the ordering periods except possibly the last

ne are TOP.

roof. Consider an optimal solution (x̂, ŷ, ŝ), and let k and l be two

rdering periods occurring in the subplan defined by two consecu-

ive regeneration periods u and v (we have u ≤ k < l < v). Let M and

be the modes used in period k and l, respectively. If a single mode

is used in a period t, then the unit supplying cost is simply pm
t at

his period. If two modes are used in a period t, then the unit sup-

lying cost in an optimal schedule is αmm′
, see Property 2. Hence we

an define the unit supplying cost cM as pm
t if M = {m} and αmm′

t if

= {m, m′}. In the same way we can define the minimum thresh-

ld order QM which can be supplied as Qm if M = {m} and Qmm′
if

= {m, m′}. With these notations, any quantity X ≥ QM can be or-

ered with the modes of M, at a unit cost cM.

• If cM + ∑l−1
t=k

ht ≤ cN , then it is cheaper to order a unit at time

k and to store it until period l than ordering it at period l using

modes of N . Hence we can derive a new (optimal) solution from

(x̂, ŷ, ŝ) by ordering all the units of period l in period k. In this new

solution period k is no longer an ordering period.
• Otherwise, we have cN < cM + ∑l−1

t=k
ht . Notice that the solution

in which the supplied quantity at period k is decreased by a

quantity y = min{∑m x̂m
k

− QM, ŝl−1} and the quantity ordered
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in period l is increased by the same amount y is feasible. If y > 0,

the cost of this solution is strictly lower than the cost of (x̂, ŷ, ŝ),

which contradicts the choice of an optimal solution. Thus we

should have y = 0, which implies, since the stocks are positive

within a subplan, that
∑

m x̂m
k

= QM. We can conclude that period

k is necessarily a TOP.

The property immediately follows by comparing the last ordering

period l of a subplan with any other ordering periods within the

subplan. �

4. Complexity analysis: general case

In this section we first analyze the complexity of the ULS-FPC

problem. Then we show that the ULS-FPC problem is a special case

of the ULS with Minimum Order Quantities (ULS-MOQ) which proves

that this problem is also NP-Hard.

Theorem 2. The ULS-FPC problem is NP-hard, even if only two modes

are available and the holding costs are null.

Proof. The reduction is done from the Partition problem which, given

n integers such that
∑n

t=1 at = 2A, consists in answering the ques-

tion: Is there a set S⊆{1, ���, n} such that
∑

t∈S at = A?

The key idea of the reduction is to define an instance for the ULS-

FPC problem where the demands are increasing and the unit ordering

costs are decreasing such that there is no demand anticipation in an

optimal solution. In this case, in an optimal plan, an order will be set

at each period except possibly the last one. In a period t, the choice

between the two modes will correspond to selecting period t in the

Partition problem.

More precisely, let us consider T = n + 1 periods with demands

dt = 4t D for t = 1, . . . , n and dT = A, where D = 2A. We have two

(ecological) modes f and g, with the same unit carbon parameter

ēvt = −1 for all periods. The supplying costs are defined as follows:

p
f
t = 2(4T−t), f

f
t = 0, p

g
t = 4T−t and f

g
t = K

g
t , where K

g
t is positive and

defined in the following. The fixed emission parameters are ef
f

t = 4t D

and ef
g
t = 4t D + at .

The cost of supplying Q
f

t units in period t using mode f is equal

to 2 × 4TD for each period t < T. The cost of supplying Q
g
t units in

period t using mode g is K
g
t + 4T D + 4T−t at . It is always possible to

define the setup cost K
g
t such that the cost of supplying Q

g
t units using

mode g is equal to 2 × 4T D + at for each period t < T. Therefore, K
g
t =

4T D − 4T−t at + at > 0.

The instance is represented in Table 2.

We want to show that an instance I of partition is positive if and

only if there exists a feasible plan of cost at most n(2 × 4T D) + A.

If I is a positive instance, then it exists S such that
∑

t∈S at = A. We

can build a valid solution for the ULS-FPC problem by ordering a min-

imum order quantity using mode g if t ∈ S or using mode f otherwise.

For t = 1, . . . , n, it is possible to see that the demands are satisfied

and to check that sT−1 = A. The cost of the solution is n(2 × 4T D) + A.
Table 2

Instance parameters for proof of Theorem 2.

t dt pm
t f m

t e f m
t = Qm

t

1 4D f 22n+1 0 4D

g 22n Kg
1

4D + a1

� � � �

t 4tD f 22n−2t+3 0 4tD

g 22n−2t+2 Kg
t 4t D + at

� � � �

n 4nD f 23 0 4nD

g 22 Kg
n 4nD + an

T A f 2 0 A

g 1 0 2A

i

q

w

T

Q

P

b

M

r

o

∈
i

q

Conversely, assume that there exists a feasible supplying plan (x)

f cost at most n(2 × 4T D) + A. We define S as the set of periods in

hich mode g is used, that is S = {t = 1, . . . , T | x
g
t > 0}. We want to

how S defines a valid partition.

First, notice that the cost of satisfying the demand at a period t < T

s at least 2 × 4TD, since unit costs are decreasing. Notice also that if a

olicy orders in the last period, it incurs a cost of at least 2A whatever

ode f or g is used. As a consequence, no quantity is supplied in the

ast period T in a solution of cost at most n(2 × 4T D) + A, and thus we

ust have sT−1 ≥ A.

Moreover, in any solution of cost at most n(2 × 4T D) + A, a sup-

lying order must occur at each period 0 ≤ t < T. Indeed, assume

hat k is the first period such that x
f

k
= x

g

k
= 0, then sk−1 ≥ 4kD. Sup-

lying the 4kD units of demand costs at least 4T−(k−1) = 4 × 4T−k >

× 4T−k, which is the cost of supplying the demand at period k. Con-

equently, at least one mode is used in each period 0 ≤ t < T.

We show that in any solution of cost at most n(2 × 4T D) + A, ex-

ctly one mode is used in each period 0 ≤ t < T. If we assume that two

odes are used in period k, then the total cost would be at least the

um of the lowest cost of supplying the demand using a single mode

nd a lower bound on the cost induced by using the two modes in

eriod k, i.e. n(2 × 4T D) + 4D > n(2 × 4T D) + A. Therefore, only one

ode is used in each period 0 ≤ t < T.

In addition, in any solution of cost at most n(2 × 4T D) + A, there

s no incentives to order a quantity larger than the threshold of the

hosen mode, except for the period n = T − 1. Let y be the differ-

nce between xn and the threshold of the mode used in period n.

otice that the unit cost in period n is at least 4. Hence the total

ost of solution x is at least n(2 × 4T D) + ∑
t∈S at + 4y, which implies

hat
∑

t∈S at + 4y ≤ A. However, the entering stock level at period T

s equal to sT−1 = ∑
t∈S at + y and must be greater or equal than A. It

esults that y = 0 and
∑

t∈S at = A. We can conclude that S defines a

alid partition for I. �

Considering the results of Section 3, one can see the ULS-FPC

roblem as a multi-mode lot-sizing problem with a minimum order

uantity for each mode or combination of two modes. These mini-

um order quantities correspond to the minimum threshold orders

efined in Section 3. Only specific versions (with a single mode) of

he ULS with Minimum Order Quantities (ULS-MOQ) were studied

n the literature. Okhrin and Richter (2011b) propose an O(T3) dy-

amic programming algorithm to solve the ULS-MOQ with constant

apacity and minimum order quantities, constant holding costs and

o setup and production costs. Hellion, Mangione, and Penz (2012)

nd Hellion, Mangione, and Penz (2013) address the same problem of

khrin and Richter (2011b) by considering concave production costs.

he authors propose an O(T6) dynamic programming algorithm to

olve this problem. Okhrin and Richter (2011a) develop an O(T2) dy-

amic programming algorithm to solve the ULS-MOQ with constant

inimum order quantities, constant holding costs and no setup and

roduction costs. Park and Klabjan (2013) develop an O(T7) dynamic

rogramming algorithm to solve the ULS-MOQ with constant capac-

ty, non-increasing linear costs and non-increasing minimum order

uantities. To the best of our knowledge, the complexity of ULS-MOQ

as not studied in the literature.

heorem 3. The ULS-FPC is an instance of the ULS with Minimum Order

uantities (ULS-MOQ).

roof. Suppose that the number of modes plus the number of com-

inations of two modes (called sources) for each period t is equal to

t. We can construct an instance of the ULS-MOQ with
∑T

t=1 Mt pe-

iods. Each period t of the ULS-FPC problem is associated with a set

f Mt consecutive periods �t =
{
(t, 1), . . . , (t, Mt)

}
. Each period (t, j)

�t is associated with a source (denoted j). At each period (t, j), it

s possible to produce from a single source j with a minimum order

uantity Q
j
, corresponding to the use of a single ecological mode or
t
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Period t

t,1 t,2 t,Mtt-1,Mt−1 t+1,1

Period t + 1Period t − 1

x
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t

x2
tx1

t x1
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Mt−1
t−1

X

dt−1 dt

Fig. 1. Construction of the instance of the ULS-MOQ problem from the ULS-FPC

problem.
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Table 3

Counterexample for the ZIO property.

t dt p1
t f 1

t ht Q1
t

1 1 0 0 1 2

2 D 0 0 1 2

Table 4

Solution of the instance described in Table 3.

x1 x2 Total cost

Best ZIO solution D + 1 0 D

Optimal solution 2 D − 2 1
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combination of two modes. The inventory cost at the end of each

eriod (t, j) such that j = 1, . . . , Mt − 1 is set to zero. For the last sub-

eriod (t, Mt), the inventory cost is set to ht. Fig. 1 illustrates the

onstruction of the instance of the ULS-MOQ problem. The dashed

ounded rectangles correspond to the ULS-FPC periods and the nor-

al nodes to the ULS-MOQ periods. The flow in arc (X, (t, j)) corre-

ponds to the quantity produced in period t using source j, the flow

n arc ((t, Mt), (t + 1, 1)) corresponds to the stock at the end of pe-

iod t and the arc ((t, j), (t, j + 1)) corresponds to a stock with a zero

ost. The demand is null for each period (t, j) with j < Mt, and dt for

eriod (t, Mt).

In an optimal solution of the ULS-MOQ problem, at most one x
j
t is

trictly greater than 0 for each set of periods �t. This is due to null

nventory costs within each set of periods �t. Indeed, for every sup-

lied quantity x, the best ordering period j is such that Q
j

t ≤ x at low-

st cost.

Then, solving the ULS-FPC problem with T periods is thus equiv-

lent to solving an instance of the ULS-MOQ problem with
∑T

t=1 Mt

eriods.
∑T

t=1 Mt is bounded by O(TM2) since the number of sources

t each period is in O(M2). �

he corollary below can be derived from Theorems 2 and 3.

orollary 1. The ULS with minimum order quantities (ULS-MOQ) is

P-Hard even with null holding costs.

. Solving the ULS-FPC problem in the stationary case

In this section, we develop a first dynamic programming algo-

ithm to solve the problem where only carbon emission parameters

o not vary over time. We propose a second pseudo-polynomial dy-

amic programming algorithm to solve ULS-FPC problem in the sta-

ionary case, where carbon emission parameters and costs do not

ary over time. Proposing an efficient solution is challenging. In par-

icular, the Zero-Inventory-Ordering (ZIO) policy is not dominant for

LS-FPC, contrary to the case where the fixed carbon emissions are

ull, see Absi et al. (2013). In fact the best ZIO policy may be arbitrar-

ly bad comparing to the optimal policy. This property is not domi-

ant for several lot-sizing problems such as lot-sizing with minimum

rder quantities.

heorem 4. For the ULS-FPC problem, the cost of the best ZIO policy

ay be arbitrarily large compared to the cost of an optimal policy.

roof. Let us consider an instance with T = 2 and M = 1. The param-

ters of the ecological mode are ev1
t = 1 and ef 1

t = 2. The maximum

arbon emission per product is Emax
t = 2. Consequently ēv1

t = −1 and
1
t = − 2

(−1)
= 2. Demands and costs are given in Table 3.

It is easy to see that the cost of the best ZIO solution is D while the

ost of an optimal (non-ZIO) solution is 1 as shown in Table 4. �
 l
.1. A polynomial dynamic programming algorithm when M is fixed

or the ULS-FPC problem with stationary carbon emissions

In this section we suppose that only carbon emission parame-

ers are stationary. The following dynamic programming approach is

ased on the efficient calculation of the cost of subplans Suv for which

u = sv−1 = 0. A supplying plan consists of a sequence of subplans.

he solution is obtained in O(T2) when the costs of subplans are given

see for example Florian & Klein, 1971). Since the inventory at the end

f the horizon sT can be positive, we introduce a dummy period T + 1

ith a very high demand, the same stationary emission parameters

nd the following costs: f m
T

= 0, pm
T

= 0 ∀m and hT−1 = 0. This en-

ures a zero stock at the end of period T + 1.

In a subplan Suv, an optimal supplying plan is a sequence of TOP

eriods following by a NOP period, possibly interrupted by periods

ithout orders. If Q1, . . . , QMuv ≤ ∑v−1
t=u dt are the possible thresholds

or the subplan, the demand can be expressed as follows:

v−1

t=u

dt =
Muv∑
m=1

amQm + ε(a1,··· ,am)

here 0 ≤ am < v − u are non negative integers, such that
Muv
m=1

am ≤ v − u. The number of vectors a is in O(TM) as each

omponent is in O(T).

For a given vector â, we have to find the best supplying plan. As

e know ε(â1,··· ,âm), the NOP period t′ can be determined. We have

o calculate the best supplying plan from u to t ′ − 1, knowing the

umber of each mode to use (â1, . . . , âm). The recursive formula of

he dynamic program, based on the best cost to reach period t with a

umulative ordering x̂t is as follows:

(t, x̂t) = min
Qm

(
H(t − 1, x̂t) + ht−1

(
x̂t −

t−1∑
k=u

dk

)
,

H(t − 1, x̂t − Qm) + ht−1

(
x̂t − Qm −

t−1∑
k=u

dk

)
+ pm

t Qm

)

Each state can be evaluated in O(M) and we have O(TM) states be-

ause v − u is in O(T), leading to a complexity in O(MTM) for each vec-

or (â1, . . . , âm). The best cost for a subplan (u, v) is given by:

(u, v) = min
â

(
H

(
t ′ − 1,

Muv∑
m=1

âmQm

)
+ht ′−1

(
Muv∑
m=1

âmQm −
t ′−1∑
k=u

dk

)

+ SSQt ′
(
ε(â1,··· ,âm)

))

here SSQt′(Q) is the best cost of supplying the quantity Q at period t′
nd storing demands of periods t ′ + 1 to v − 1. SSQt′(Q) can be calcu-

ated in O(M2). For each subplan (u, v), the complexity is in O(M3T2M).
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As O(T2) subplans must be calculated to obtain the optimal solution,

the total complexity is in O(M3T 2M+2). If M is fixed, this complexity

becomes O(T 2M+2).

The proposed algorithm is polynomial when M is fixed but the

computational complexity is relatively high for large values of M.

When we have only one mode the complexity is reduced to O(T4)

which means that the ULS-MOQ problem with stationary minimum

order quantities can be solved with the same complexity. We con-

clude through this analysis that this algorithm cannot be used in

practice for industrial variants of the ULS-FPC problem with a high

number of modes. In what follows, we propose a pseudo-polynomial

dynamic programming algorithm to solve the ULS-FPC with station-

ary parameters and costs. Its complexity depends mainly on the mean

value of the demands.

5.2. A pseudo-polynomial dynamic programming algorithm for the

ULS-FPC problem in the stationary case

In this section we suppose that carbon emission parameters and

costs are stationary. In the stationary case, it is optimal to order only

when the inventory level at the beginning of period t is strictly lower

than the demand in period t, i.e. when st−1 < dt . This is because it is

always possible to improve a solution in which there is an order in

period t and st−1 ≥ dt by moving the next production period to t + 1.

A forward pseudo-polynomial dynamic programming algorithm

is derived based on the fact that, even though the ZIO policy is not

optimal (see Theorem 4), the number of inventory levels that can be

reached in a given period t can be discretized. Then a state of the

dynamic programming is associated with each period and each stock

level.

From the properties in Section 3, we know that strictly positive

initial inventory levels st−1 can only be reached from Threshold Or-

dering Periods (TOPs) since a Non-threshold Ordering Period (NOP)

leads to a period with zero inventory level.

Let us define some notations to formalize the dynamic program-

ming algorithm:

• Let G(t, st−1) be the minimum cost to attain inventory level st−1

(st−1 < dt ) at the beginning of period t,
• SSC(Q) denotes the smallest cost to supply a quantity Q using a

mode or a combination of two modes considering their threshold

order quantities.

The recursion formula of the dynamic programming algorithm is as

follows for t ∈ {1, . . . , T + 1}:

G(t, st−1) = min
(t ′,st′−1)|t ′<t

(
G(t ′, st ′−1) + SSC(Q)

+
min (t−1,T−1)∑

l=t ′
hl

(
st ′−1 + Q −

l∑
i=t ′

di

))

where the supply quantity is Q = st−1 − st′−1 + ∑t−1
l=t′ dl and the sup-

plying cost for this quantity is SSC(Q). The quantity Q must verify

Q ≥ Qmin where Qmin is the minimum threshold order for the selected

mode or the combination of two modes. The optimal policy is the

minimum among all values G(T + 1, sT ). The complexity of the dy-

namic program is detailed below:

• Each SSC(Q) can be computed in O(M2), but this complexity can

be reduced by using a pre-processing procedure. As at most two

modes are used to supply a given quantity, O(M2) threshold orders

have to be calculated. The pre-processing procedure is used to de-

termine the breakpoints and slopes of SSC(.). This can be done

in O(M3). The value of a given SSC(Q) can then be calculated in

O(log M).
• G(t, st−1) with 0 < st−1 < dt : This state is reachable from TOP pe-

riods (see Property 4) and has then O(M) predecessors. Each state

G(t, st−1) can be computed in O(M). The number of these states is

in O(T d̄t), where d̄t is the mean value of the demands.
• G(t, st−1) with st−1 = 0: This state is reachable from NOP periods

(see Property 4) and has then O(T d̄t) potential predecessors each

one can be evaluated in O(log M). The number of these states is in

O(T).
• The stock at the end of the horizon sT depends on the maximum

threshold orderings. In order to avoid calculating all the states re-

lated to this maximum threshold orderings, we only need to con-

sider each state (t, st−1) and each mode as source to lead to a final

stock sT. This can be done in O(TMd̄t).

Finally, the proposed dynamic program is in O(M3 + (TM +
2 log M)d̄t) and is pseudo-polynomial. This shows that the studied

roblem is NP-hard in the weak sense.

The complexity of this dynamic programming algorithm depends

n the mean value of the demands (d̄t ). If the mean value of the

emands is relatively small, the complexity tends to O(M3 + (TM +
2 log M)) which is a reasonable complexity. Otherwise, for high val-

es of d̄t , the complexity of the algorithm explodes. Note that the

LS-FPC does not correspond to an industrial problem but corre-

ponds to a subset of some industrial constraints. In fact, real-life

roblems consider in particular, multiple items, resource capacity

onstraints and transportation capacity constraints. Solving ULS-FPC

fficiently can help developing decomposition methods for the multi-

tem capacitated version of the ULS-FPC problem. For example, a

ecomposition approach calls the solution method of sub-problems

housands or millions of times. If the algorithm that solves the ULS-

PC problem is not efficient, which means that the CPU time is more

han a second, a decomposition approach for industrial problems will

e non-efficient. Despite the high complexity of this algorithm, we

an derive efficient heuristics approaches by using rounding heuris-

ics. In fact, demands can be normalized in order to obtain low values

f demands. This can be done in order to reduce the global complex-

ty of the algorithm. Such heuristics should be studied by analyzing

heir worst case.

. Conclusions and perspectives

We studied the single-item lot sizing problem with periodic car-

on emission constraints and fixed carbon emissions (ULS-FPC). Sev-

ral structural properties of the problem were presented, and we

howed that considering fixed carbon emissions makes the problem

P-hard. We also proposed two dynamic programming algorithms.

he first dynamic programming algorithm is polynomial when the

umber of modes is fixed. It solves the problem where only carbon

mission parameters are stationary. This complexity grows quickly

ince when the number of modes is not fixed the proposed algo-

ithm is exponential. The second dynamic programming algorithm

s pseudo-polynomial and solves the ULS-FPC problem with sta-

ionary carbon emission parameters and costs, showing that the

tudied problem is NP-hard in the weak sense. The computational

omplexity depends mainly on the mean value of the demands

hich can lead to a high complexity when facing large demand

alues.

Several perspectives could be investigated. In particular, as the

roblem is NP-hard, heuristics could be proposed for ULS-FPC. It

ould also be relevant to work on multi-item problems in at least two

irections. First, supplying (production and/or transportation) capac-

ty could be taken into account. Second, we could extend the present

ork by considering that fixed carbon emissions are associated to the

otal supplied quantity and not the quantity per product. We actually

elieve that combining both extensions would lead to complex but

nteresting research problems.
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