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a b s t r a c t

We are given a set of jobs, each one specified by its release date, its deadline and its pro-
cessing volume (work), and a single (or a set of) speed-scalable processor(s). We adopt the
standard model in speed-scaling in which if a processor runs at speed s then the energy
consumption is sα units of energy per time unit, where α > 1 is a small constant. Our goal
is to find a schedule respecting the release dates and the deadlines of the jobs so that the
total energy consumption to be minimized. While most previous works have studied the
preemptive case of the problem, where a job may be interrupted and resumed later, we
focus on the non-preemptive case where once a job starts its execution, it has to continue
until its completion without any interruption. As the preemptive case is known to be poly-
nomially solvable for both the single-processor and the multiprocessor case, we explore
the idea of transforming an optimal preemptive schedule to a non-preemptive one. We
prove that the preemptive optimal solution does not preserve enough of the structure of
the non-preemptive optimal solution, and more precisely that the ratio between the en-
ergy consumption of an optimal non-preemptive schedule and the energy consumption
of an optimal preemptive schedule can be very large even for the single-processor case.
Then, we focus on some interesting families of instances: (i) equal-work jobs on a single-
processor, and (ii) agreeable instances in the multiprocessor case. In both cases, we pro-
pose constant factor approximation algorithms. In the latter case, our algorithm improves
the best known algorithm of the literature. Finally, we propose a (non-constant factor) ap-
proximation algorithm for general instances in the multiprocessor case.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

One of the main mechanisms used for minimizing the energy consumption in computing systems and portable devices
is the so called speed-scaling mechanism [1], where the speed of a processor may change dynamically. If the speed of the
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processor is s(t) at a time t then its power is s(t)α , where α > 1 is a small machine dependent constant. The energy
consumption is the power integrated over time. In this setting, we consider the non-preemptive speed scaling scheduling
problem: we are given a set J of n jobs, where each job Jj ∈ J is characterized by its processing volume (work)wj, its release
date rj and its deadline dj, and a single (or a set of identical) speed-scalable processor(s). We call a schedule for the jobs in
J feasible if every job is executed between its release date and its deadline. Moreover, a schedule is called non-preemptive,
if every job is executed without interruption, i.e. once a job starts its execution it has to continue until its completion. We
seek for a feasible non-preemptive schedule of the jobs minimizing the overall energy consumption.

Recently, it has been proved that the non-preemptive speed scaling scheduling problem is N P -hard even for the single-
processor case [6]. Using the standard three-field notation we denote the single-processor (resp. multiprocessor) case
as 1|rj, dj|E (resp. P|rj, dj|E). Our aim is to study the performance of one of the most standard approaches in scheduling
for designing approximation algorithms: construct a non-preemptive schedule from an optimal preemptive one (see for
example [18]). We prove that for general instances this approach cannot lead to a constant factor approximation algorithm
since the ratio between the energy consumption of an optimal non-preemptive schedule and the energy consumption of
an optimal preemptive one can be very large even for the single-processor case. Despite this negative result, we show that
for some important families of instances, this approach leads to interesting results. Moreover, we show how to use this
approach in order to obtain an (non-constant) approximation algorithm for the general case.

1.1. Related work

Different variants of the problem have been considered in the literature: with or without preemptions, with equal or
arbitrary works, arbitrary release dates and deadlines or particular instances. The main families of instances, with respect
to the release dates and the deadlines of the jobs, that have been studied are the following. In a laminar instance, for any two
jobs Jj and Jj′ with rj ≤ rj′ it holds that either dj ≥ dj′ or dj ≤ rj′ . In fact, such instances arise when recursive calls in a program
create new jobs. In an agreeable instance, for any two jobs Jj and Jj′ with rj ≤ rj′ it holds that dj ≤ dj′ , i.e. latter released jobs
have latter deadlines. Such instances may arise in situations where the goal is to maintain a fair service guarantee for the
waiting time of jobs. Note that agreeable instances correspond to proper interval graphs. In a pure-laminar instance, for any
two jobs Jj and Jj′ with rj ≤ rj′ it holds that dj ≥ dj′ . Note that the family of pure-laminar instances is a special case of
laminar instances. Finally, two other interesting special cases of all the above families of instances, studied by several works
in scheduling, are those where all the jobs have either a common release date or a common deadline.

For the preemptive single-processor case (1|rj, dj, pmtn|E), Yao et al. [20] proposed an optimal algorithm for finding a
feasible schedulewithminimumenergy consumption. Themultiprocessor case, P|rj, dj, pmtn|E, where there arem available
processors has been solved optimally in polynomial time when both the preemption and the migration of jobs are allowed
[2,5,8,10]. A schedule is calledmigratory if a jobmay be interrupted and resumed on the same or on another processor. Note
that the parallel execution of parts of the same job is not allowed.

Albers et al. [3] considered the multiprocessor problemwhere the preemption of the jobs is allowed but not their migra-
tion (P|rj, dj, pmtn, no-mig|E). They first studied the problemwhere each job has unitwork. They proved that it is polynomial
time solvable for instances with agreeable deadlines. For general instances with unit-work jobs, they proved that the prob-
lem becomes strongly N P -hard and they proposed an (αα24α)-approximation algorithm. For the case where the jobs have
arbitrary works, the problemwas proved to beN P -hard even for instances with common release dates and common dead-
lines. Albers et al. proposed a 2(2 −

1
m )α-approximation algorithm for instances with common release dates, or common

deadlines, and an (αα24α)-approximation algorithm for instanceswith agreeable deadlines. Greiner et al. [14] gave a generic
reduction transforming an optimal schedule for the multiprocessor problem with migration, P|rj, dj, pmtn|E, to a B⌈α⌉-
approximate solution for the multiprocessor problem with preemptions but without migration, P|rj, dj, pmtn, no-mig|E,
where B⌈α⌉ is the ⌈α⌉-th Bell number. This result holds only when α ≤ m.

Note that for the family of agreeable instances, and hence for its special families of instances (instances with common
release dates and/or common deadlines), the assumption of preemption and no migration is equivalent to the non-
preemptive assumption that we consider throughout this paper. In fact, any preemptive schedule for agreeable instances
can be transformed into a non-preemptive one of the same energy consumption, where the execution of each job Jj ∈ J
starts after the completion of any other job which is released before Jj. The correctness of this transformation can be proved
by induction on the order where the jobs are released. Hence, the results of [3,14] for agreeable deadlines hold for the
non-preemptive case as well.

Finally, Antoniadis and Huang [6] proved that the problem is N P -hard even for pure-laminar instances. They also
presented a 24α−3-approximation algorithm for laminar instances and a 25α−4-approximation algorithm for general in-
stances. Bampis et al. [7] have recently improved these results for small and moderate values of α by providing a 2α−1B̃α-
approximation algorithm, where B̃α is the generalized Bell number and corresponds to the α-th (fractional) moment of
Poisson random variable with parameter 1. Notice that the polynomial-time algorithm for finding an optimal preemptive
schedule presented in [20] for the single-processor case returns a non-preemptive schedule when the input instance is
agreeable.

In Table 1, we summarize themost related results of the literature. Several other results concerning scheduling problems
in the speed-scaling setting have been presented, involving the optimization of someQuality of Service (QoS) criterion under
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Table 1
Complexity and approximability results.

Problem Complexity Approximation ratio

1|rj, dj, pmtn|E Polynomial [20] –
P|rj = 0, dj = d, pmtn|E Polynomial [13] –
P|rj, dj, pmtn|E Polynomial [2,5,8,10] –

P|agreeable, wj = 1, pmtn, no-mig|E* Polynomial [3] –
P|rj, dj, wj = 1, pmtn, no-mig|E N P -hard (m ≥ 2) [3] B⌈α⌉ [14]
P|rj = 0, dj = d, pmtn, no-mig|E* N P -hard [3] PTAS [15,3]
P|rj = 0, dj, pmtn, no-mig|E* N P -hard min{2(2−

1
m )α, B⌈α⌉} [3,14]

P|agreeable, pmtn, no-mig|E* N P -hard B⌈α⌉ [14]
P|rj, dj, pmtn, no-mig|E N P -hard B⌈α⌉ [14]

1|rj, dj, wj = 1|E Polynomial [4,16] –
1|agreeable|E Polynomial [20,6] –
1|laminar|E N P -hard [6] min{24α−3, 2α−1B̃α} [6,7]
1|rj, dj|E N P -hard min{25α−4, 2α−1B̃α} [6,7]
* The problem is equivalent with the corresponding non-preemptive problem.

a budget of energy, or the optimization of a linear combination of the energy consumption and some QoS criterion (see for
example [9,11,19]). Moreover, two variants of the speed-scaling model considered in this paper have been studied in the
literature, namely the bounded speed model in which the speeds of the processors are bounded above and below (see for
example [12]), and the discrete speed model in which the speeds of the processors can be selected among a set of discrete
speeds (see for example [17]). The interested reader can find more details in the recent survey [1].

1.2. Our contribution

In this paper, we are interested in designing approximation algorithms for the non-preemptive speed-scaling scheduling
problem using a standard approach in scheduling: given an optimal preemptive solution, design an algorithm to convert
it into a feasible non-preemptive solution with as small degradation as possible in the approximation ratio. For the single-
processor case, we use the optimal preemptive solution obtained by the algorithm of Yao et al. [20], while for the multi-
processor case, we use the preemptive migratory solution obtained by [2,5,8,10]. Unfortunately, the following proposition
shows that for general instances the ratio between an optimal non-preemptive schedule to an optimal preemptive one can
be very large even for the single-processor case.

Proposition 1. The ratio of the energy consumption of an optimal non-preemptive schedule to the energy consumption of an
optimal preemptive schedule of the single-processor speed-scaling problem can be Ω(nα−1).

Proof. Consider the instance consisting of a single processor, n− 1 unit-work jobs, J1, J2, . . . , Jn−1, and the job Jn of work n.
Each job Jj, 1 ≤ j ≤ n − 1, has release date rj = 2j − 1 and deadline dj = 2j, while rn = 0 and dn = 2n − 1 (see Fig. 1).

The optimal preemptive schedule Spr for this instance assigns to all jobs a speed equal to one. Each job Jj, 1 ≤ j ≤ n−1, is
executed during its whole active interval, while Jn is executed during the remaining n unit length intervals. The total energy
consumption of this schedule is E(Spr) = (n − 1) · 1α

+ n · 1α
= 2n − 1.

An optimal non-preemptive schedule Snpr for this instance assigns a speed n+2
3 to jobs J1, Jn and J2 and schedules

them non-preemptively in this order between time 1 and 4. Moreover, in Snpr each job Jj, 3 ≤ j ≤ n − 1, is assigned
a speed equal to one and it is executed during its whole active interval. The total energy consumption of this schedule is
E(Snpr) = 3 · ( n+2

3 )α + (n − 3) · 1α .

Therefore, we have E(Snpr )
E(Spr )

=
3·( n+2

3 )α+(n−3)·1α

2n−1 = Ω(nα−1). �

In what follows we show that for some particular instances, this approach leads to interesting results. More specifically,
in Section 3 we consider the single-processor case and we present an algorithm whose approximation ratio depends on
the ratio of the maximum to the minimum work in the input instance. For equal-work jobs, our algorithm achieves an
approximation ratio of 2α . It has to be noticed here that after the conference version of this paper the complexity status of this
special case has been settled. Angel et al. [4] and Huang and Ott [16] independently proposed an optimal polynomial-time
algorithm based on dynamic programming. However, the time complexity of these algorithms compared to the complexity
of our approximation algorithm is much higher.

In Section 4 we consider the multiprocessor case. First, in Section 4.1, we deal with agreeable instances for which we
present a (2−

1
m )α−1-approximation algorithm. This ratio improves the best known approximation ratio of B⌈α⌉ given in [14]

for any α > 1. For α = 3 our algorithm achieves a ratio of 4 while B3 = 5, for α = 4 our algorithm achieves a ratio of 8
while B4 = 15, etc. Note that in general B⌈α⌉ = O(αα). Finally, in Section 4.2 we present an approximation algorithm of ratio
mα( m

√
n)α−1 for general instances.

Before beginning, in the following section we present our notation and some preliminary known results that we use in
our proofs.
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Fig. 1. An instance of 1|rj, dj|E for which the ratio of the energy consumption in an optimal non-preemptive schedule to the energy consumption in an
optimal preemptive schedule is Ω(nα−1).

2. Notation and preliminaries

For the problems that we study in this paper, it is easy to see that in any optimal schedule, any job Jj ∈ J runs at a
constant speed sj due to the convexity of the speed-to-power function. Given a schedule S and a job Jj ∈ J, we denote by
E(S, Jj) = wjsα−1

j the energy consumed by the execution of Jj in S and by E(S) =
n

j=1 E(S, Jj) the total energy consumed
by S. We denote by S∗ an optimal non-preemptive schedule for the input instance I.

The following proposition has been proved in [6] for 1|rj, dj|E but holds also for the corresponding problem on parallel
processors.

Proposition 2 ([6]). Suppose that the schedules S and S′ process job Jj with speed s and s′ respectively. Assume that s ≤ γ s′ for
some γ ≥ 1. Then E(S, Jj) ≤ γ α−1E(S′, Jj).

The following proposition has been proved in [3] and gives the relation between the energy consumption of an optimal
single-processor preemptive schedule and an optimal multiprocessor preemptive schedule without migrations.

Proposition 3 ([3]). For a given set of jobs J, let S be an optimal single-processor preemptive schedule and S′ be an optimal
multiprocessor preemptive schedule without migrations. Then E(S) ≤ mα−1

· E(S′).

3. Single-processor

In this section we consider the single-processor non-preemptive speed-scaling problem. We first prove some structural
properties of the optimal preemptive schedule created by the algorithm in [20]. Then, we present an approximation
algorithm for the non-preemptive case, using as lower bound the energy consumed by the optimal preemptive schedule.
Our algorithm achieves a constant factor approximation ratio for equal-work jobs.

3.1. Properties of the optimal preemptive schedule

Let {t0, t1, . . . , tk} be the set of all different release dates and deadlines in increasing order, i.e., t0 ≤ t1 ≤ · · · ≤ tk. Then,
we define the intervals Ip,q = [tp, tq], for 0 ≤ p < q ≤ k, and we denote by |Ip,q| = tq − tp the length of Ip,q. We say that
a job Jj is alive in a given interval Ip,q, if [rj, dj] ⊆ Ip,q. The set of alive jobs in interval Ip,q is denoted by A(Ip,q). The density

d(Ip,q) of an interval Ip,q is the total work of its alive jobs over its length, i.e., d(Ip,q) =


Jj∈A(Ip,q) wj

|Ip,q|
.

In [20], Yao et al. proposed a polynomial-time algorithm for finding an optimal schedule for 1|rj, dj, pmtn|E. This
algorithm schedules the jobs in distinct phases. More specifically, in each phase, the algorithm searches for the interval
of the highest density, denoted as Ip,q. All jobs in A(Ip,q) are assigned the same speed, which is equal to the density d(Ip,q),
and they are scheduled in Ip,q using the Earliest Deadline First (EDF) policy. We can assume, w.l.o.g., that in the case where
two jobs have the same deadline, the algorithm schedules first the job of the smallest index. Then, the set of jobs A(Ip,q) and
the interval Ip,q are eliminated from the instance and the algorithm searches for the next interval of the highest density, and
so on.

Given a preemptive schedule S and a job Jj, let bj(S) and cj(S) be the starting and the completion time, respectively, of Jj
in S. For simplicity, we will use bj and cj, if the corresponding schedule is clear from the context. Note that there are no jobs
with the same starting times, and hence all bj’s are distinct. For the same reason, all cj’s are distinct.

The following lemma describes some structural properties of the optimal schedule created by the algorithm in [20].
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Lemma 1. Consider the optimal preemptive schedule Spr created by the algorithm in [20]. For any two jobs Jj and Jj′ in Spr , it
holds that:
(i) if bj < bj′ then either cj > cj′ or cj ≤ bj′ , and
(ii) if bj < bj′ and cj > cj′ then sj ≤ sj′ .

Proof. (i) Assume for contradiction that there are two jobs Jj and Jj′ in Spr with bj < bj′ , cj < cj′ and cj > bj′ .
We prove, first, that Jj and Jj′ cannot be scheduled in a different phase of the algorithm.W.l.o.g., assume for contradiction

that Jj is scheduled in a phase before Jj′ and that Ip,q is the interval of the highest density in this phase. As bj < bj′ < cj, there
is a subinterval I ⊆ [bj′ , cj] ⊂ [bj, cj] ⊆ Ip,q during which Jj′ is executed in Spr . By construction, each job is scheduled in a
single phase and since I ⊂ Ip,q, it holds that [bj′ , cj′ ] ⊂ Ip,q. Hence, Jj and Jj′ are scheduled in the same phase.

The algorithm schedules Jj and Jj′ using the EDF policy. Since the EDF policy schedules Jj′ at time bj′ and bj′ < cj, it holds
that dj′ ≤ dj. In a similar way, since the EDF policy schedules Jj at time cj and cj < cj′ , it holds that dj ≤ dj′ . Hence, dj = dj′ .
However, since there is a tie, in both times bj′ and cj the algorithm should have selected the same job, i.e., the job of the
smallest index. Therefore, there is a contradiction on the way that the algorithm works.
(ii) Assume for contradiction that there are two jobs Jj and Jj′ inSpr with bj < bj′ , cj > cj′ and sj > sj′ . As sj > sj′ , Jj is scheduled
in a phase before Jj′ ; let Ip,q be the interval of the highest density in this phase. However, it holds that [bj′ , cj′ ] ⊂ [bj, cj] ⊆ Ip,q,
and hence Jj′ should have been scheduled in the same phase as Jj, which is a contradiction. �

The above lemma implies that given an optimal preemptive schedule Spr obtained by the algorithm in [20], the interval
graph, in which for each job Jj there is an interval [bj, cj], has a laminar structure. Therefore, we can create a tree-
representation of Spr as follows. For each job Jj we create a vertex. For each pair of jobs Jj and Jj′ with [bj′ , cj′ ] ⊂ [bj, cj],
we create an arc (Jj, Jj′) if and only if there is not a job Jj′′ with [bj′ , cj′ ] ⊂ [bj′′ , cj′′ ] ⊂ [bj, cj]. Note that, the created graph
T = (V , E) is, in general, a forest. Moreover, using Lemma 1 we have that for each arc (Jj, Jj′) it holds that sj ≤ sj′ in Spr . In
other words, the speed of a job is at most equal to the speed of its children in T .

In what follows, we denote by T (Jj) the subtree of T rooted at vertex Jj ∈ V . Moreover, let nj be the number of children
of Jj in T .

Lemma 2. Consider an optimal preemptive schedule Spr created by the algorithm in [20] and its corresponding graph T = (V , E).
Each job Jj is preempted at most nj times in Spr .

Proof. We will prove the lemma by induction on the tree.
Assume for contradiction that the root job Jr is preempted more than nr times in Spr , that is the execution of Jr is

partitioned into more than nr + 1 different maximal intervals. Thus, there is a child Jj of Jr and an interval I ⊂ [bj, cj]
such that Jr is executed during I . Observe first that Jr and Jj should be scheduled in the same phase by the algorithm in [20].
Hence, the EDF policy is used and using similar arguments as in the proof of Lemma 1(i) we have a contradiction.

For the induction step, assume for contradiction that the job Jj is preempted more than nj times in Spr . Hence, either
there is a child Jj′ of Jj and an interval I ⊂ [bj′ , cj′ ] such that Jj is executed during I , or there are two consecutive children Jj′
and Jj′′ of Jj and two disjoint maximal intervals I and I ′, with I, I ′ ⊂ [cj′ , bj′′ ], such that Jj is executed during both I and I ′. In
the first case, we have a contradiction using similar arguments as for the base of the induction. In the second case, we get a
contradiction using the inductive hypothesis. �

3.2. An approximation algorithm

In this section we present an approximation algorithm, whose ratio depends onwmax andwmin. In the case where all jobs
have equal work to execute, this algorithm achieves a 2α-approximation ratio. The main idea in Algorithm 1 is to transform
the optimal preemptive schedule Spr created by the algorithm in [20] into a non-preemptive schedule Snpr , based on the
corresponding graph T = (V , E) of Spr . More specifically, the jobs are scheduled in three phases depending on the number
(one, at least two or zero) of their children in T .

Algorithm 1
1: Create an optimal preemptive schedule Spr using the algorithm in [20];
2: Create the corresponding graph T = (V , E) of Spr ;
3: Create the non-preemptive schedule Snpr as follows:
4: for each job Jj with nj = 1 do
5: Schedule non-preemptively the whole work of Jj in the biggest interval where a part of Jj is executed in Spr ;
6: for each remaining non-leaf job Jj do
7: Find an unlabeled leaf job Jj′ ∈ T (Jj); Label Jj′ ;
8: Schedule non-preemptively Jj and Jj′ with the same speed in the interval where Jj′ is executed in Spr ;
9: Schedule the remaining leaf jobs as in Spr ;

10: return Snpr ;

Theorem 1. Algorithm 1 achieves an approximation ratio of (1 +
wmax
wmin

)α for 1|rj, dj|E.
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Proof. Consider first the jobs with exactly one child in T . By Lemma 2, each such job Jj is preempted at most once in Spr ,
and hence it is executed in at most two intervals in Spr . In Snpr the whole work of Jj is scheduled in the largest of these two
intervals. Thus, the speed of Jj in Snpr is at most twice the speed of Jj in Spr . Therefore, using Proposition 2, for any job Jj with
nj = 1 it holds that E(Snpr , Jj) ≤ 2α−1

· E(Spr , Jj).
Consider now the remaining non-leaf jobs. As for each such job Jj it holds that nj ≥ 2, in the subtree T (Jj) the number

of non-leaf jobs with nj ≥ 2 is smaller than the number of leaf jobs. Hence, we can create an one-to-one assignment of the
non-leaf jobs with nj ≥ 2 to leaf jobs such that each non-leaf job Jj is assigned to an unlabeled leaf job Jj′ ∈ T (Jj).

Consider a non-leaf job Jj with nj ≥ 2 and its assigned leaf job Jj′ ∈ T (Jj). Recall that leaf jobs are executed non-
preemptively in Spr . Let I be the interval in which Jj′ is executed in Spr . The speed of Jj′ in Spr is sj′ =

wj′

|I| and its energy

consumption is E(Spr , Jj′) = wj′sα−1
j′ . In Snpr both Jj and Jj′ are executed during I with speed s =

wj+wj′

|I| . The energy consumed
by Jj and Jj′ in Snpr is

E(Snpr , Jj) + E(Snpr , Jj′) = (wj + wj′)sα−1
= (wj + wj′)


wj + wj′

|I|

α−1

= (wj + wj′)
α


sj′
wj′

α−1

=


wj + wj′

wj′

α

· wj′sα−1
j′

=


wj + wj′

wj′

α

· E(Spr , Jj′)

<


wmax + wmin

wmin

α

· (E(Spr , Jj) + E(Spr , Jj′)).

Moreover, note that Jj is alive during I and hence Snpr is a feasible schedule.
Finally, for each remaining leaf job Jj, it holds that E(Snpr , Jj) = E(Spr , Jj), concluding the proof of the theorem. �

When all jobs have equal work to execute, the following corollary holds.

Corollary 1. Algorithm 1 achieves an approximation ratio of 2α for 1|wj = w, rj, dj|E.

4. Parallel processors

In this section, we show how to use the optimal preemptive schedule to achieve approximation algorithms for the
multiprocessor case. We first present a constant factor approximation algorithm for instances with agreeable deadlines.
Then, we consider general instances. As by Proposition 1 we know that the energy consumption of an optimal preemptive
schedule can be Ω(nα−1) far from the energy consumption of an optimal non-preemptive schedule, we give an algorithm
for the latter case that uses as a lower bound the optimal preemptive schedule and achieves an approximation factor that
depends on n and m.

4.1. Agreeable instances

The problem P|agreeable|E is known to be N P -hard [3] and B⌈α⌉-approximable [14]. In this section we present an
approximation algorithm of ratio (2 −

1
m )α−1, which is better than B⌈α⌉ for any α > 1.

Our algorithm creates first an optimal preemptive schedule, using one of the algorithms in [2,5,8,10]. The total execution
time ej of each job Jj ∈ J in this preemptive schedule is used to define an appropriate processing time pj for Jj. Then, the
algorithm schedules non-preemptively the jobs using these processing times according to the Earliest Deadline First policy,
i.e., at every time that a processor becomes idle, the non-scheduled job with the minimum deadline is scheduled on it. The
choice of the values of the pj’s has been made in such a way that the algorithm completes all the jobs before their deadlines.

Algorithm 2
1: Create an optimal multiprocessor preemptive schedule Spr ;
2: Let ej be the total execution time of the job Jj ∈ J, in Spr ;
3: Schedule non-preemptively the jobs with the Earliest Deadline First (EDF) policy, using the appropriate speed such that

the processing time of the job Jj ∈ J, is equal to pj = ej/(2 −
1
m ), obtaining the non-preemptive schedule Snpr ;

4: return Snpr ;

Theorem 2. Algorithm 2 achieves an approximation ratio of (2 −
1
m )α−1 for P|agreeable|E.

Proof. The principal difficulty of the current proof is to show that Algorithm 2 produces a feasible schedule, i.e., a schedule
inwhich each job completes before its deadline. Towards this goal, a key ingredient is a technical claimwhose proof involves
a quite stiff case analysis. For ease of presentation, the claim’s proof is provided exactly after the current proof. The key idea
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behind this claim is the fact that, at each time, the remaining processing time of the jobs in the algorithm’s schedule is not
too much compared with the optimal preemptive schedule. For this reason, the algorithm is able to complete all the jobs
before their deadlines. It has to be noticed that the aforementioned claim lies heavily on the fact the instances are agreeable.

We consider the jobs indexed in non-decreasing order of their release dates/deadlines. In what follows, we denote by bj
the starting time of the job Jj ∈ J in Snpr . Hence, the completion time cj of Jj in Snpr is cj = bj + pj. We first show that the
Snpr is a feasible schedule. In other words, we will prove that for the completion time of the job Jj ∈ J, it holds that cj ≤ dj.
Before that we introduce some additional notation.

Note that at each time either all processors execute some job or there is at least one processor which is idle. Based on
this observation, we partition Snpr into maximal intervals: the ‘‘full’’ and the ‘‘non-full’’ intervals. At each time during a
‘‘full’’ interval, every processor executes some job. At each time during a ‘‘non-full’’ interval, there is at least one processor
which is idle. Let ℓ be the number of the ‘‘non-full’’ intervals. Let [τi, ti], 1 ≤ i ≤ ℓ, be the ith ‘‘non-full’’ interval. Hence,
[ti−1, τi], 1 ≤ i ≤ ℓ+1, is a ‘‘full’’ interval. For convenience, t0 = 0 and τℓ+1 = maxJj∈J{cj}. Note that the schedule can start
at a ‘‘non-full’’ interval, i.e., t0 = τ1, or can end with a ‘‘non-full’’ interval, i.e., tℓ = τℓ+1.

Consider first a job Jj ∈ J that is released during a ‘‘non-full’’ interval [τi, ti]. Since the jobs are scheduled according to
the EDF policy, Jj starts its execution at its release date, i.e., bj = rj. Given that Jj has smaller processing time in Snpr than in
Spr and as Spr is a feasible schedule, it holds that cj ≤ dj.

Consider now a job Jj ∈ J that is released during a ‘‘full’’ interval [ti, τi+1]. We denote by Ji = {Jj ∈ J : rj < ti} the set of
jobs which are released before ti. Let Pnpr,i(t) be the amount of time that the jobs in Ji are executed after t for every t ≥ ti
in Snpr and Epr,i(t) be the amount of time that the jobs in Ji are executed after t for every t ≥ ti in Spr . If t = ti we use Pnpr,i
and Epr,i, correspondingly. Given these definitions, we are now ready to state the claim needed for proving that Jj completes
before its deadline, as we discussed in the beginning of the current proof. Recall that the claim’s proof is provided exactly
after the theorem’s proof.

Claim 1. For each i, 0 ≤ i ≤ ℓ, it holds that Pnpr,i(t) ≤
Epr,i(t)

(2− 1
m )

.

Based on the above claim, we show that Jj is feasibly executed in the algorithm’s schedule as follows. Let Jq be the first
job which is released after ti, i.e., rq = ti. For Jj we have

cj ≤ ti +

Pnpr,i +
j−1
k=q

pk

m
+ pj ≤ ti +

Epr,i+
j−1
k=q

ek

m + ej
2 −

1
m

 .

As Spr is a feasible schedule and the instance is agreeable, all jobs Jq, . . . , Jj are executed inside the interval [ti, dj] in Spr
and at least Epr,i amount of time of the jobs in Ji is also executed during the same time interval. Hence, it holds that
Epr,i +

j
k=q ek ≤ m(dj − ti) and ej ≤ dj − ti. Therefore, we obtain that cj ≤ ti + (2 −

1
m )

dj−ti
(2− 1

m )
= dj.

Finally, we have to prove the approximation ratio of our algorithm. When dividing the execution time of all jobs by
(2 −

1
m ), at the same time the speed of each job is multiplied by the same factor. Using Proposition 2 we have that

E(Snpr) ≤


2 −

1
m

α−1

E(Spr) ≤


2 −

1
m

α−1

E(S∗)

since the energy consumed by the optimal preemptive schedule Spr is a lower bound to the energy consumed by an optimal
non-preemptive schedule S∗ for the input instance I. �

Next, we present the proof of Claim 1 which is needed for the proof of Theorem 2.

Proof of Claim 1. We prove the claim by induction to i.
For the induction basis, we have two cases. If t0 ≠ τ1, then Pnpr,0 = Epr,0 = 0. If t0 = τ1, then the schedule begins with

a ‘‘non-full’’ interval. Since the jobs are scheduled according to the EDF policy in Snpr , every job Jj ∈ J1 starts at its release
date, i.e., bj = rj. Given that the processing time of Jj in Snpr is (2 −

1
m ) times smaller than in Spr and as Spr is a feasible

schedule, the claim holds.
Assume that the claim is true for i. We will show that Pnpr,i+1(t) ≤

Epr,i+1(t)

(2− 1
m )

. Recall that Pnpr,i+1(t) and Epr,i+1(t) are the

amounts of time that the jobs in Ji+1 are executed after t for every t ≥ ti+1 in Snpr and Spr , respectively. Recall also that Ji+1
is the set of jobs with rj < ti+1 in Snpr . In order to establish the induction step, we partition the set of jobs Ji+1 with cj > t
into the following 3 subsets:

• the set of jobs A with bj < ti,
• the set of jobs B with ti ≤ bj < τi+1, and
• the set of jobs C with τi+1 ≤ bj < ti+1.

The reason of this partitioning is that we argue quite differently for each of these subsets. Let us, now, proceed with the
proof. We consider two cases depending of the relevant values of ti, τi+1, t .
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Case 1: Let τi+1 ≥
(1− 1

m )t+ti
(2− 1

m )
.

Let PA ≤ Pnpr,i be the total amount of time that the jobs in A are executed after ti. Since the schedule Snpr is non-
preemptive, each job Jj ∈ A accomplishes t − ti amount of its processing time during [ti, t]. Thus, we have that

Pnpr,i+1(t) = (PA − |A|(t − ti)) +


Jj∈B

(bj + pj − t) +


Jj∈C

(bj + pj − t).

Moreover, we have that

Epr,i+1(t) ≥ Epr,i +


Jj∈Ji+1\Ji

ej − m · (t − ti)

=


2 −

1
m

 Pnpr,i +


Jj∈Ji+1\Ji

pj

 − m · (t − ti).

Note that the amount of time Pnpr,i +


Jj∈Ji+1\Ji
pj is the total amount of time during which the jobs in Ji+1 are executed

after ti. By definition, for the jobs in A this amount is PA. Note that these jobs have bj < ti and cj > t and hence |A| processors
are dedicated to them during the interval [ti, t]. Consider the set of jobs not in A which are released before τi+1 and are
completed after ti. These jobs contribute to Pnpr,i +


Jj∈Ji+1\Ji

pj with at least (m− |A| − |B|)(τi+1 − ti)+


Jj∈B(bj + pj − ti)
amount of time, since there is no idle period in the interval [ti, τi+1]. Finally, for the jobs in C this contribution is


Jj∈C pj.

Hence,

Epr,i+1(t) ≥


2 −

1
m

 
PA + (m − |A| − |B|)(τi+1 − ti) +


Jj∈B

(bj + pj − ti) +


Jj∈C

pj


− m · (t − ti).

Thus, we have

Epr,i+1(t)
(2 −

1
m )

− Pnpr,i+1(t) ≥ (m − |A| − |B|)(τi+1 − ti) −


Jj∈B

ti −
m

2 −
1
m

(t − ti) + |A|(t − ti) +


Jj∈B

t −


Jj∈C

(bj − t)

= τi+1(m − |A| − |B|) − m

ti +

t − ti
2 −

1
m


+ (|A| + |B|)t +


Jj∈C

(t − bj)

≥


(1 −

1
m )t + ti

2 −
1
m


(m − |A| − |B|) − m


ti +

t − ti
2 −

1
m


+ (|A| + |B|)t

where the last inequality follows from the fact that t ≥ bj for each job in C and using our assumption. Note that |A|+|B| ≥ 1
as otherwise Pnpr,i+1 = 0 and the claim holds. Therefore,

Epr,i+1(t)
(2 −

1
m )

− Pnpr,i+1(t) ≥ m


(1 −
1
m )t + ti

2 −
1
m

− ti −
t − ti
2 −

1
m


+ (|A| + |B|)


t −

(1 −
1
m )t + ti

2 −
1
m


≥

ti − t
2 −

1
m

+
t − ti
2 −

1
m

≥ 0.

Case 2: Let τi+1 <
(1− 1

m )t+ti
(2− 1

m )
. Consider first a job Jj ∈ A ∪ B. For this job it holds that bj ≤ τi+1 and cj > t in Snpr . Let

δnpr,j(t) = bj + pj − t be the processing time of Jj after time t in Snpr .
We will first show that ej > t − ti. Assume for contradiction that ej ≤ t − ti. Hence, we have

δnpr,j(t) = bj + pj − t = bj +
ej

2 −
1
m

 − t ≤ τi+1 +
ej

2 −
1
m

 − t

<


1 −

1
m


t + ti

2 −
1
m

 +
t − ti
2 −

1
m

 − t = 0

which is a contradiction as by definition it holds that δnpr,j(t) > 0. Thus, we consider that ej > t − ti.
Only jobs of A start before time ti and finish after time t . Hence, by induction, we have

Jj∈A

δnpr,j(t) = Pnpr,i(t) ≤
Epr,i(t)
2 −

1
m

 .
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Consider now a job Jj ∈ B. Let δpr,j(t) ≥ ej + ti − t be the execution time of Jj after time t in Spr . We have that

δpr,j(t)
2 −

1
m

 − δnpr,j(t) ≥
ej + ti − t
2 −

1
m

 − (bj + pj − t)

= pj +
ti − t
2 −

1
m

 − bj − pj + t

≥
ti − t
2 −

1
m

 − τi+1 + t

=


1 −

1
m


t + ti

2 −
1
m

 − τi+1 > 0

as bj ≤ τi+1 and τi+1 <
(1− 1

m )t+ti
(2− 1

m )
.

Consider now a job Jj ∈ C . This job starts its execution at its release date, i.e., bj = rj. Given that Jj has smaller processing
time in Snpr than in Spr and as Spr is a feasible schedule, it holds that δpr,j(t) − δnpr,j(t) > 0.

Summing up for all jobs in A ∪ B ∪ C , we get Pnpr,i+1(t) ≤
Epr,i+1(t)

(2− 1
m )

, and the claim follows. �

4.2. General instances

In this section we present an approximation algorithm for the multiprocessor non-preemptive speed scaling problem
P|rj, dj|E. The main idea of our algorithm is to create an optimal single-processor preemptive schedule for the set of jobs J.
The jobs which are preempted at most n

1
m times in this schedule, are scheduled non-preemptively on processor 1. For the

remaining jobs we create again an optimal single-processor preemptive schedule, we use processor 2 for the jobs which are
preempted at most n

1
m times, and we continue this procedure until all jobs are assigned to a processor.

Algorithm 3
1: i = 1; Ji = J;
2: repeat
3: Run the algorithm in [20] for the problem 1|rj, dj, pmtn|E with input the set of jobs in Ji and get the preemptive

schedule Spr,i;
4: Create the tree-representation Ti of Spr,i;
5: Let Ji+1 be the set of jobs (vertices) with at least n

1
m children in Ti;

6: For each job Jj ∈ Ji \ Ji+1, schedule Jj on the processor i in its largest interval in Spr,i and get the non-preemptive
schedule Snpr,i for the processor i; i = i + 1;

7: until Ji ≠ ∅

8: return Snpr which is the union of Snpr,i’s;

Theorem 3. Algorithm 3 achieves an approximation ratio of mα( m
√
n)α−1 for P|rj, dj|E.

Proof. Let ni = |Ji| be the number of jobs in the ith iteration. We will first show that in iteration i there are at most n
1− 1

m
i

vertices with at least n
1
m children. Assume that there were at least n

1− 1
m

i vertices with at least n
1
m children. Then the number

of children in the tree Ti is at least n
1− 1

m
i · n

1
m ≥ ni, which is a contradiction. Let k be the number of the iterations of the

algorithm. By the previous observation, we have that k ≤ m.
Consider the ith iteration. Each job Jj ∈ Ji\Ji+1 has strictly less than n

1
m children in Ti, and hence by Lemma 2 it is pre-

empted strictly less than n
1
m times in Spr,i. Our algorithm schedules Jj in Snpr,i during its largest interval in Spr,i. Thus the

speed of Jj in Snpr,i is at most n
1
m times the speed of Jj in Spr,i. Therefore, using Proposition 2, for any job Jj ∈ Ji\Ji+1 it holds

that E(Snpr,i, Jj) ≤ ( m
√
n)α−1

· E(Spr,i, Jj). For the energy consumed by Snpr we have

E(Snpr) =

k
i=1


Jj∈Ji\Ji+1

E(Snpr,i, Jj) ≤ ( m√n)α−1
·

k
i=1


Jj∈Ji\Ji+1

E(Spr,i, Jj).

Note that the schedule Spr,i is the optimal preemptive schedule for the jobs in Ji, while the schedule Spr,1 is the optimal
preemptive schedule for the jobs in J1. As Ji ⊂ J1 = J it holds that

Jj∈Ji\Ji+1

E(Spr,i, Jj) ≤


Jj∈Ji

E(Spr,i, Jj) ≤


Jj∈J

E(Spr,1, Jj).
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Therefore, we get that

E(Snpr) ≤ ( m√n)α−1
·

k
i=1


Jj∈J

E(Spr,1, Jj) ≤ m · ( m√n)α−1
·


Jj∈J

E(Spr,1, Jj).

Note that


Jj∈J E(Spr,1, Jj) is the optimal energy consumption if all jobs are executed preemptively on a single processor.
By Proposition 3 and since the energy consumption of an optimal multiprocessor preemptive schedule without migrations
is a lower bound to the energy consumption of an optimal multiprocessor non-preemptive schedule (without migrations)
S∗, we have that

E(Snpr) ≤ mα
· ( m√n)α−1

· E(S∗)

and the theorem follows. �

5. Concluding remarks

We have investigated the idea of transforming an optimal preemptive schedule to a non-preemptive one showing that
for some interesting families of instances it leads to good approximation ratios. However, for the parallel processors case,
we need to go beyond this simple idea in order to obtain an algorithm with constant approximation ratio. The existence of
such an algorithm is a challenging open question for future research.
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