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a b s t r a c t

A bipartite graph G = (L, R; E) with at least one edge is said to be identifiable if for every
vertex v ∈ L, the subgraph induced by its non-neighbors has a matching of cardinality
|L|−1. This definition arises in the context of low-rankmatrix factorization and ismotivated
by signal processing applications. An ℓ-subgraph of a bipartite graph G = (L, R; E) is an
induced subgraph ofG obtained by deleting from it some vertices in L togetherwith all their
neighbors. The Identifiable Subgraph problem is the problem of determining whether a
given bipartite graph G = (L, R; E) contains an identifiable ℓ-subgraph. While the problem
of finding a smallest set J ⊆ L that induces an identifiable ℓ-subgraph of G is NP-hard and
also APX-hard, the complexity of the identifiable subgraph problem is still open.

In this paper, we introduce and study the k-bounded Identifiable Subgraph problem.
This is the variant of the Identifiable Subgraph problem in which the input bipartite
graphs G = (L, R; E) are restricted to have the maximum degree of vertices in R bounded
by k. We show that for k ≥ 3, the k-bounded Identifiable Subgraph problem is as hard as
the general case, while it becomes solvable in linear time for k ≤ 2. Our proof is based on
the notion of strongly cyclic graphs, that is, multigraphs with at least one edge such that for
every vertex v, no connected component of the graph obtained by deleting v is a tree. We
show that a bipartite graph G = (L, R; E) with maximum degree of vertices in R bounded
by 2 is a no instance to the Identifiable Subgraph problem if and only if a multigraph
naturally associated to it does not contain any strongly cyclic subgraph, and characterize
such graphs in terms of finitely many minimal forbidden topological minors.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The identifiability property of bipartite graphs is based on the classical concept of a matching in a graph (a subset of
pairwise disjoint edges). A bipartite graph G = (L, R; E)with at least one edge is said to be identifiable if for every vertex in L,
the subgraph induced by its non-neighborhood has a matching of cardinality |L| − 1. This definition arises in the context of
low-rank matrix factorization and has applications in data mining [17], signal processing [13], and computational biology
[4,14,18]. For further details on applications of notions and problems discussed in this paper, we refer to [9,10].

On the one hand, the recognition problem for identifiable bipartite graphs is clearly polynomial, using bipartite
matching algorithms. On the other hand, several natural algorithmic problems concerning identifiable graphs turn out to be
NP-complete. For example:
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(1) Given an identifiable bipartite graph G, how strongly does G possess the identifiability property with respect to
edge modifications (that is, edge additions and/or deletions)? This question results in the notion of the resilience of G with
respect to identifiability, which measures how much one should change G by means of edge modifications to destroy this
property. While computing the resilience is polynomial for edge additions or edge modifications, it is NP-complete for edge
deletions [10].

(2) Given an identifiable bipartite graph G = (L, R; E), the problem of selecting aminimum-size set R′
⊆ R of vertices in R

such that the subgraph ofG induced by L∪R′ is identifiable, is approximable in polynomial time towithin a factor of ln |L|+1,
using a greedy algorithm based on the notion of submodular set functions [9]. Its decision version is NP-complete [9].

(3) The following definition is a slight modification of [10, Definition 2].

Definition 1. Let G = (L, R; E) be a bipartite graph. For a subset J ⊆ L, the ℓ-subgraph of G induced by J is the subgraph
G(J) = G[J, R \ N(L \ J)], where N(L \ J) denotes the set of all vertices in R with a neighbor in L \ J . We say that a graph G′ is an
ℓ-subgraph of G if there exists a subset J ⊆ L such that G′

= G(J).

In other words, an ℓ-subgraph of G is an induced subgraph of G obtained by deleting from G some (possibly none) vertices
in L together with all their neighbors. In [10], the following problem was introduced.

Min-Identifiable Subgraph (min-ids)
Instance: A bipartite graph G = (L, R; E) and an integeqr k.
Question: Does G have an identifiable ℓ-subgraph induced by a set J with|J| ≤ k?

In [10], this problem was shown to be APX-hard in general but polynomially solvable for trees and for bipartite graphs
in which the maximum degree of vertices in L is at most 2.

In the same paper, the following related problems were also introduced:

Max-Identifiable Subgraph (max-ids)
Instance: A bipartite graph G = (L, R; E) and an integer k.
Question: Does G have an identifiable ℓ-subgraph induced by a set J with |J| ≥ k?

Identifiable Subgraph (ids)
Instance: A bipartite graph G = (L, R; E).
Question: Does G have an identifiable ℓ-subgraph?

While the min-ids problem is APX-hard, the complexity of the max-ids and ids problems in general remains open. Both
problems are solvable in polynomial time for trees, as well as for bipartite graphs G = (L, R; E) such that the maximum
degree of vertices in L is at most 2 [10]. Clearly, if the ids problem is NP-complete then so is the max-ids problem: by
varying the value of k, one could solve the ids problem using an algorithm for the max-ids problem. Similarly, if the ids
problem is NP-complete, this would provide an alternative proof for the NP-completeness of min-ids.

In this paper, we study the ids problem from the point of view of parameterizing it according to the maximum degree
∆(R) of vertices in R. This is formalized by the following problem definition (where k is a positive integer):

k-bounded Identifiable Subgraph (k-ids)
Instance: A bipartite graph G = (L, R; E) with ∆(R) ≤ k.
Question: Does G have an identifiable ℓ-subgraph?

While the k-bounded Identifiable Subgraph problem for k ≥ 3 is as hard as the general case (see Section 3), we show
that the ids problem becomes solvable in linear time if themaximum degree of vertices in R is at most 2. This result is stated
formally in the following theorem.

Theorem 1. The 2-bounded Identifiable Subgraph problem is solvable in linear time.

A proof of Theorem 1 will be given in Section 4. Our approach can be described roughly as follows. We first preprocess
the input graph G so that we have d(x) = 2 for all x ∈ R. Under this assumption, graph G can be obtained from some
multigraph H by subdividing every edge exactly once. We prove that G has an identifiable ℓ-subgraph if and only if H has an
induced strongly cyclic subgraph, where a graph with at least one edge is said to be strongly cyclic if no deletion of a vertex
results in a graph with an acyclic component. We then characterize graphs containing an induced strongly cyclic subgraph
as precisely the graphs that contain as a topological minor one of five particular graphs on at most 6 vertices (see Fig. 2 on
page 6). Finally, we describe how known results and techniques for graphs of bounded treewidth can be used to detect the
presence of one of these five graphs as a topological minor in linear time.

The paper is structured as follows. In Section 2, we give the necessary definitions and recall the results from the literature
we will need in some of our proofs. In Section 3, we discuss the case with ∆(R) = k for k ≥ 3. In Section 4 we prove our
main result (Theorem 1) and argue in Section 4.1 that an identifiable ℓ-subgraph in a graphwith∆(R) ≤ 2 can also be found
in polynomial time if one exists. Section 5 concludes the paper with some open questions.
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2. Preliminaries

All graphs considered in this paper are finite, undirected and loopless but may contain parallel edges. For a graph G, we
denote by V (G) the vertex set of G and by E(G) its edge (multi)set. A bipartite graph is a graph G = (V , E) without parallel
edges such that there exists a partition of V into two sets L and R such that L ∩ R = ∅ and E ⊆ {{ℓ, r} ; ℓ ∈ L and r ∈ R}.
In this paper, we will regard bipartite graphs as already bipartitioned, that is, given together with a fixed bipartition (L, R)
of their vertex set, and hence use the notation G = (L, R; E). For a graph G = (V , E) and a subset of vertices X ⊆ V , NG(X)
denotes the neighborhood of X , i.e., the set of all vertices in V \ X that have a neighbor in X . For a vertex x ∈ V , we write
NG(x) for NG({x}), and denote the degree of x with dG(x) = |NG(x)|. In NG(X), NG(x), dG(x), we shall omit the subscript G if
the graph is clear from the context. For a bipartite graph G = (L, R; E) and vertex sets X ⊆ L, Y ⊆ R, we denote by G[X, Y ]

the subgraph of G induced by X ∪ Y .
A cut vertex of a connected graph G is a vertex whose removal will disconnect the graph. A block of G is a maximal

connected subgraph of Gwithout cut vertices. The block tree of G is a tree B(G) with bipartition (B, S) of its vertex set, where
B is the set of blocks of G and S the set of cut vertices of G, a block B and a cut vertex v being adjacent in B(G) if and only if B
contains v. An end block of G is a block of G that corresponds to a leaf of the block tree of G. A graph G is said to be 2-connected
if it has at least 3 vertices and for every x ∈ V (G), the graph G− x is connected. A cycle in a graph G is a connected subgraph
of G in which every vertex is incident with exactly two edges. A subgraph of G obtained by deleting one edge from a cycle
in G is a path in G. Also, any 1-vertex subgraph is a path. Given a path P in a graph G, we denote by int(P), the subpath of P
containing only the internal vertices of P . For a graph G, a subgraph H of G, and a vertex v ∈ V (G) \ V (H), a (v,H)-path is a
path P in G such that one endpoint of P is v and the other endpoint of P belongs to V (H). A (v, X)-pathwhere v ∉ X ⊆ V (G)
is defined similarly, For X, Y ⊆ V (G), and (X, Y )-path is a path P in G such that one endpoint of P belongs to X and the other
one to Y .

Our proof of Theorem 6 in Section 4 will rely on the following classical results on the structure of 2-connected graphs
(see, e.g., Exercise 5.1.4 and Proposition 9.5 in [3]).

Proposition 1. Let G = (V , E) be a 2-connected graph. Then:
(i) If X and Y are two sets of vertices of G, each of cardinality at least two, then there exist in G two disjoint (X, Y )-paths.
(ii) Let x be a vertex of G, and let Y ⊆ V \ {x} be a set with |Y | ≥ 2. Then there exist two internally disjoint (x, Y )-paths

whose endpoints in Y are distinct.

Subdividing an edge of a graph G means replacing the edge with a path of length two. Given a graph G, the subdivision
graph of G is the graph S(G) obtained from G by subdividing each edge of it. More generally, a graph H is a subdivision of a
graph G if H can be obtained from G by replacing its edges by paths of length at least 1. A graph H is a topological minor of a
graph G if a subdivision of H is isomorphic to a subgraph of G.

The above definitions are typically used for simple graphs, but can be easily generalized to graphs with parallel edges.
For definitions not given in the paper, we refer to the books by Bondy and Murty [3] and Diestel [6] (graph theory), to the
monographs by Ausiello et al. [1] and Garey and Johnson [11] (computational complexity), and to the monograph by Flum
and Grohe [8] (treewidth, MSOL).

3. A reduction of the ids problem to the k-ids problem for k ≥ 3

In this section, we show that the Identifiable Subgraph problem is polynomially equivalent to the 3-bounded
Identifiable Subgraph problem. The reduction can be achieved by a repeated application of an operation that preserves
the property of containing an identifiable ℓ-subgraph and can be used to decrease the degree of vertices in R down to 3 with
only a polynomial blowup of the input graph.

Theorem 2. For every k ≥ 3, the Identifiable Subgraph problem is polynomially equivalent to the k -bounded Identifiable
Subgraph problem.

Proof. Let k ≥ 3. Clearly, if the ids problem is polynomially solvable then so is the k-ids problem. In the rest of the proof,
we will describe a polynomial reduction of the ids problem to the k-ids problem. That is, given an instance G = (L, R; E) to
the ids problem, we will show how to compute in polynomial time an instance G′

= (L′, R′
; E ′) to the k-ids problem such

that G is a yes instance to the ids problem if and only if G′ is a yes instance to the k-ids problem.
The idea is to repeatedly apply a graph transformation that preserves the property of containing an identifiable

ℓ-subgraph but decreases the degrees of vertices in R. This transformation takes as input a bipartite graph G = (L, R; E)
and a vertex v ∈ R of degree greater than k, and outputs a graph ϕ(G, v) = G′, defined as follows. Fix a linear order of
neighbors of v in G, say NG(v) = {v1, . . . , vr}. Then, G′

= (L′, R′
; E ′) where

• L′
= L ∪ {v0} where v0 is a new vertex,

• R′
= (R \ {v}) ∪ {v′, v′′

} where v′ and v′′ are two new vertices,
• E ′

= (E \ {viv | 1 ≤ i ≤ r}) ∪ {v1v
′, v2v

′, v0v
′, v0v

′′
} ∪ {viv

′′
| 3 ≤ i ≤ r}.
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Fig. 1. Transformation ϕ.

See Fig. 1.
Clearly, |V (G′)| = |V (G)|+2 and |E(G′)| = |E(G)|+2, and the reduction can be performed in polynomial time. For every

w ∈ R′, we have

dG′(w) =

dG(w), if w ∉ {v′, v′′
};

dG(v) − 1, if w = v′′;
3, if w = v′.

In particular, if we define f (G, R) =


v∈R max{dG(v) − k, 0}, then f (G′, R′) = f (G, R) − 1.
Given an input graph G = (L, R, E) to the ids problem, we apply transformation ϕ iteratively as long as the value of f is

positive. Since f (G, R) = O(|R||L|) and the value of f (G, R) reduces by 1 with each transformation, transformation ϕ will be
applied at most O(|L||R|) times, resulting in a graph G′ with |V (G′)| = O(|L||R|) and |E(G′)| = O(|L||R|) such that ∆(G′) ≤ k.
Hence, the proof of the theorem will follow from the claim below.

Claim. For every bipartite graph G = (L, R; E) and every vertex v ∈ R with dG(v) > k, graph G contains an identifiable
ℓ-subgraph if and only if ϕ(G, v) does.

Proof of claim. Let ϕ(G, v) = G′ with G′
= (L′, R′

; E ′). Suppose first that the ℓ-subgraph of G induced by some J ⊆ L is
identifiable. Using the notation as in the definition of the mapping ϕ, let us define

J ′ =


J ∪ {v0}, if v ∈ V (G(J));
J, otherwise.

Then J ′ ⊆ L′. We claim that the ℓ-subgraph of G′ induced by J ′ is identifiable. We consider two cases, depending on whether
v ∈ V (G(J)) or not.

Case 1: v ∈ V (G(J)). In this case, the set L \ J contains no neighbor of v, that is, NG(v) ⊆ J . Consequently, the graph G′(J ′)
is equal to ϕ(G(J), v), and we will verify the identifiability of G′(J ′) by definition. We need to show that for every w ∈ J ′, the
subgraph of G′(J ′) = ϕ(G(J), v) induced by the non-neighbors of w has a matching of cardinality |J ′| − 1.

First, let w ∈ J . LetM be a matching in G(J) of cardinality |J| − 1 avoiding the neighborhood of w. We consider two cases
based on whether v is covered byM or not. Suppose first that v is covered byM . By the definition ofM , we have w ∉ NG(v).
Consequently, w ∉ NG′(v′) ∪ NG′(v′′). Let m(v) be the vertex matched to v by M . Let {v′, v′′

} = {z ′, z ′′
} so that z ′

= v′ if
m(v) ∈ {v1, v2}, and z ′

= v′′ otherwise. Then, (M \ {m(v)v}) ∪ {m(v)z ′, v0z ′′
} is a matching of size |J ′| − 1 in the graph

G′(J ′) avoiding the neighborhood of w. Suppose now that v is not covered by M . Since w is in J , it is non-adjacent in G′(J ′)
to at least one vertex, say z, in the set {v′, v′′

}. Furthermore, M is a matching in G′, and thus M ∪ {v0z} is a matching of size
|J ′| − 1 in the graph G′(J ′) avoiding the neighborhood of w.

Second, letw ∉ J . Thenw = v0. For i ∈ {1, 2}, letMi be amatching inG(J) of cardinality |J|−1 avoiding the neighborhood
of vi. Since v1 and v2 are adjacent to v inG(J), neither ofM1,M2 covers v. In particular, this implies that the vertex v′

1 matched
by M2 to v1 satisfies v′

1 ≠ v. Consequently, M1 is a matching in G′(J ′) covering neither v1 nor v′

1, and thus M1 ∪ {v1v
′

1} is a
matching of size |J ′| − 1 in the graph G′(J ′) avoiding the neighborhood of v0.

Case 2: v ∉ V (G(J)). In this case, we have J ′ = J ⊆ L′
\ {v0}. Since v0 belongs to L′

\ J ′, vertices v′ and v′′ (which are
adjacent to v0 in G′) do not belong to G′(J ′), and hence it can be seen that G′(J ′) equals G(J); the identifiability of G′(J ′) thus
follows immediately from that of G(J).

For the converse direction, suppose that the ℓ-subgraph of G′ induced by some J ′ ⊆ L′ is identifiable. Let J = J ′ \ {v0}.
Then J ⊆ L. We claim that the ℓ-subgraph of G induced by J is identifiable.

If v0 ∉ J ′, then neither v′ nor v′′ belongs to V (G′(J ′)), which implies that G(J) = G′(J ′), and identifiability of G(J) trivially
follows. So suppose that v0 ∈ J ′. We claim that in this case we also have v′, v′′

∈ V (G′(J ′)). Indeed, if this were not the case,
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then v0 would be either isolated in G′(J ′) (if v′, v′′
∉ V (G′(J ′))) or of degree one in G′(J ′) (if |V (G′(J ′)) ∩ {v′, v′′

}| = 1). In the
former case, G′(J ′) would clearly not be identifiable. In the latter case, suppose first that V (G′(J ′)) ∩ {v′, v′′

} = {v′
}. Then

{v1, v2} ⊆ J and hence v0 would be isolated in the subgraph of G′(J ′) induced by the non-neighbors of v1, contrary to the
identifiability of G′(J ′). The case when V (G′(J ′)) ∩ {v′, v′′

} = {v′′
} can be handled similarly.

The fact that v′, v′′
∈ V (G′(J ′)) implies that NG(v) ⊆ J ′ and consequently NG(v) ⊆ J . Let us verify the identifiability of

G(J) by definition. Letw ∈ J . LetM ′ be amatching of size |J ′|−1 = |J| in the subgraph ofG′(J ′) induced by the non-neighbors
of w. Then, a matching of size |J| − 1 in the subgraph of G(J) induced by the non-neighbors of w can be obtained from M ′

by deleting from it the edge covering v0 and replacing, if necessary, any edge of the form viv
′ for some i ∈ {1, 2}, or viv

′′

for some i ∈ {3, . . . , r} with the edge viv. This replacement is only done if such an edge exists in M ′; notice that since v0
is matched in M ′ to either v′ or v′′, there can be at most one such edge so the replacement is well defined. Therefore, the
subgraph of G induced by J is identifiable also in this case.

This completes the proof of the claim and with it the proof of Theorem 2. �

4. A linear-time algorithm for the 2-bounded Identifiable Subgraph problem

In this section we prove our main result:

Theorem 1. The 2-bounded Identifiable Subgraph problem is solvable in linear time.

Let G = (L, R; E) be a bipartite graph such that ∆(R) ≤ 2. We will describe a linear-time algorithm that will determine
whether G contains an identifiable ℓ-subgraph.

We first preprocess the input graph G in time O(|R|) so that after the preprocessing step, we have either found an
identifiable ℓ-subgraph, or we have d(x) = 2 for all x ∈ R. This can be achieved by an iterative application of the following
two obvious preprocessing rules:

• If G has an isolated vertex v ∈ R, replace G with G − v.
• If there is a vertex y ∈ R such that d(y) = 1, then the singleton J = N(y) forms a subset of L such that the ℓ-subgraph

induced by J is identifiable.

From now on, we work under the assumption that all vertices in R are of degree 2. Under this assumption, it is clear
that G = S(H) is the subdivision graph of some other graph H . (The graph H , which can have parallel edges, is given by
V (H) = L and E(H) = {NG(y) : y ∈ R}.) In the next lemma, we give a necessary and sufficient condition for the existence
of an identifiable ℓ-subgraph in G in terms of the graph H . The condition will rely on the notion of strongly cyclic graphs,
which we now introduce.

Definition 2. We say that a graph K with at least one edge is strongly cyclic if for all v ∈ V (K), every component of the graph
K − v contains a cycle (equivalently: no component of K − v is a tree).

We start with two auxiliary observations.

Proposition 2. Let K = (A, B; E) be a bipartite graph such that dK (y) ≥ 2 for all y ∈ B. If K contains a matching of size |A| then
every connected component of K has a cycle.

Proof. Let K = (A, B; E) be a bipartite graph such that dK (y) ≥ 2 for all y ∈ B such that K contains a matching of size |A|.
Suppose for a contradiction that there is a connected componentK ′

= (A′, B′
; E ′) ofK that is a tree. Then, |E ′

| = |A′
|+|B′

|−1.
On the other hand, |A′

| ≤ |B′
| since K ′ contains a matching of size |A′

|. We thus obtain the following contradictory chain of
inequalities:

|A′
| + |B′

| ≤ 2|B′
| ≤ |E ′

| = |A′
| + |B′

| − 1.

This contradiction shows that every connected component of K contains a cycle. �

Proposition 3. Let K = (A, B; E) be a bipartite graph such that dK (y) ≤ 2 for all y ∈ B. If every connected component of K has
a cycle then K contains a matching of size |A|.

Proof. Let K = (A, B; E) be a bipartite graph with dK (y) ≤ 2 for all y ∈ B and such that every connected component of K
has a cycle. By induction on the number of connected components, it is enough to consider the case when K is connected.
Consider the multigraph K ′ defined by V (K ′) = A and E(K ′) = {NK (y) : y ∈ B and dK (y) = 2}. Since K is connected
and contains a cycle, the same holds for K ′. Let F denote a spanning subgraph of K ′ that contains precisely one cycle. Fix an
orientation Ẽ of the edges of F such that each vertex has out-degree one in (A, Ẽ): such an orientation can be obtained, for
example, by orienting the edges in the unique cycle C in F in one of the two directions following the cycle, and orienting all
the other edges toward C . By construction, the set {{x,m(x)} : x ∈ A}, where m(x) is the element of B corresponding to the
arc in Ẽ with x as initial endpoint, forms a matching of size |A| in K . �
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Fig. 2. Minimal strongly cyclic graphs.

Lemma 3. Let G = (L, R; E) be a bipartite graph such that dG(y) = 2 for all y ∈ R, and let H denote the graph such that
G = S(H). Then, for every subset J ⊆ L, the following two conditions are equivalent:
1. set J induces an identifiable ℓ-subgraph of G;
2. the subgraph of H induced by J is strongly cyclic.
Proof. First, suppose that J ⊆ L induces an identifiable ℓ-subgraph of G. Let H ′ denote the subgraph of H induced by
J , and let v ∈ J . Then, the subgraph H ′

− v coincides with the graph (J − {v}, E(v)) where E(v) denotes the multiset
{NG(u) : u ∈ R ∧ N(u) ⊆ J \ {v}}. Since J induces an identifiable ℓ-subgraph, the subgraph G′ of G(J) induced by the
non-neighbors of v contains a matching M of size |J| − 1. Every vertex in R ∩ V (G′) is of degree 2 in G′. Thus, Proposition 2
applies andwe conclude that every connected component ofG′ has a cycle. SinceG′ is exactly the subdivision graph ofH ′

−v,
it follows that every connected component of H ′

− v has a cycle. Since the choice of v was arbitrary, H ′ is strongly cyclic.
The converse direction can be proved similarly. Suppose that the subgraph of H induced by J ⊆ V (H) = L (call it H ′)

is strongly cyclic. Since H ′ is strongly cyclic, for every v ∈ J , every component of the subgraph H ′
− v contains a cycle.

This implies that every component of the subdivision graph of H ′
− v contains a cycle. Notice that S(H ′

− v) is exactly the
subgraph G′ of G(J) induced by the non-neighbors of v. By Proposition 3, the graph G′ contains a matching of size |J| − 1.
Therefore, J ⊆ L induces an identifiable ℓ-subgraph of G. �

Lemma 3 shows that in order to solve the ids problem for G in linear time, it suffices to show that one can determine in
linear time whether a given graph H contains an induced strongly cyclic subgraph. In what follows, we prove that this is
indeed the case. This will be a consequence of a characterization of graphs containing an induced strongly cyclic subgraph
in terms of topological minors, and some general results and techniques for graphs of bounded treewidth.

We start with the following simple property of strongly cyclic graphs.

Observation 4. The class of strongly cyclic graphs is closed under edge addition.

It follows thatH contains an induced strongly cyclic subgraph if and only ifH contains a (not necessarily induced) strongly
cyclic subgraph. Fig. 2 shows five minimal strongly cyclic subgraphs.

It is easy to see that for every i ∈ {1, . . . , 5}, the graph Hi is strongly cyclic while no proper subgraph of it is strongly
cyclic.

Next, we observe that the class of strongly cyclic graphs is closed also under edge subdivision.

Lemma 5. If a graph G is strongly cyclic and G′ is the graph obtained from G by subdividing an edge of it, then G′ is also strongly
cyclic.

Proof. Suppose that G′ is obtained from G by replacing edge uv ∈ E(G) by a path uwv. To show that G′ is strongly cyclic, we
need to show that for every vertex x ∈ V (G′), every component of G′

− x has a cycle.
If x ∈ {u, v} then the components of G′

− x are exactly the same as the components of G− x, except that one component
(the one containing the vertex in {u, v} \ {x}) has an additional vertex of degree 1. Thus, since G is strongly cyclic, every
component of G − x has a cycle, and so does every component of G′

− x.
If x = w then the graph G′

− x is the same as G with edge uv removed. Hence, every component of G′
− x contains, as a

subgraph, a component of G − u. Together with the strong cyclicity of G, this implies that every component of G′
− x has a

cycle.
If x ∉ {u, v, w} then every component of G′

− x is isomorphic to a subdivision of a component of G − x. Again, the
conclusion easily follows from the assumption that G is strongly cyclic. �

Lemma 5 implies that all subdivisions of any of the five graphs from Fig. 2 are also strongly cyclic. In the next theorem,
we prove that the presence of a subdivision of one of these graphs is not only a sufficient condition for the presence of a
strongly cyclic subgraph, but also a necessary one. Recall that a graph G1 is a topological minor of a graph G2 if a subdivision
of G1 is isomorphic to a subgraph of G2.

Theorem 6. A graph H contains a strongly cyclic subgraph if and only if it contains one of the graphs H1, . . . ,H5 as a topological
minor.
Proof. Since sufficiency was already established, it is enough to show that every strongly cyclic graph contains a subgraph
isomorphic to a subdivision of one of the graphs depicted in Fig. 2.

Suppose for a contradiction that this is not the case, and let H be a strongly cyclic graph that contains no subdivision of
H1, H2, H3, H4 or H5. Without loss of generality, we may assume that H is connected.

Claim 1: H is 2-connected.
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Suppose not. Then, H contains at least two end blocks. Let B1 and B2 be two distinct end blocks of H , and let v1 and v2
be the unique cut vertices of H belonging to B1 and B2, respectively. Furthermore, for i = 1, 2, let Ci be a cycle in Bi − vi.
(Notice that C1 and C2 exist since H is strongly cyclic.) For i = 1, 2, since Bi is 2-connected, Proposition 1(ii) implies that Bi
contains two internally vertex-disjoint (vi, Ci)-paths, say Pi and Qi, whose endpoints on Ci are distinct. However, the four
paths P1,Q1, P2,Q2 together with the cycles C1 and C2 and a shortest (v1, v2)-path in H form a subdivision of either H4 or
H5, depending on whether v1 = v2 or not; a contradiction. This proves Claim 1.

Claim 2: Every two cycles in H have a vertex in common.
Suppose not, and let C1 and C2 be two vertex-disjoint cycles in H . Since H is 2-connected, Proposition 1(i) implies that

there exist in H two vertex-disjoint (C1, C2)-paths. These two paths, together with C1 and C2 form a subdivision of H3; a
contradiction. This proves Claim 2.

Now, fix an arbitrary vertex v ∈ V (H) and a cycle C in H − v. Since H is 2-connected, Proposition 1(ii) implies there exist
two internally disjoint (v, C)-paths P , Q , whose endpoints on C are distinct. Without loss of generality, P and Q are assumed
to have no internal vertex in common with V (C), which can be ensured simply by choosing them as minimal paths. Let x
and y denote the endpoints of P and Q on C . Moreover, let P1 and P2 denote the two (x, y)-paths in C , and P3 the (x, y)-path
obtained as the union of P and Q . Then:

Claim 3: Every cycle C ′ in H − x contains y.
Suppose not, and let C ′ be a cycle in H − x such that y ∉ V (C ′). Since every two cycles in H have a vertex in common (by

Claim 2), C ′ has a vertex in common with each of the cycles C, P1 ∪ P3, P2 ∪ P3. In particular, since x, y ∉ V (C ′), we infer
that C ′ has a vertex in common with at least two out of the three paths int(P1), int(P2), and int(P3). This implies that the
following is well defined: let i, j ∈ {1, 2, 3} and P̃ be chosen so that |E(P̃)| is minimized where i ≠ j and P̃ is a int(Pi)–int(Pj)
path in H −{x, y}. The minimality of P̃ implies that the graph P1 ∪P2 ∪P3 ∪ P̃ forms a subdivision of H1 in H; a contradiction.
This proves Claim 3.

Let X = P1 ∪ P2 ∪ P3.

Claim 4: Every cycle C ′ in H − x satisfies V (C ′) ∩ V (X) = {y}.
Suppose not, and let C ′ be a cycle inH −x such that (V (C ′)∩V (X))\{y} ≠ ∅. We claim that there exists a (y, V (X)\{y})-

path P ′ in H − x such that no internal vertex of P ′ belongs to X , and E(P ′) ∩ E(X) = ∅. Indeed, since x ∉ V (C ′) and X − x is
acyclic, C ′ contains an edge not in X . Follow C ′ from y in any of the two directions until an edge e = v1v2 ∉ E(X) is reached,
and let P̂ = (v1, . . . , vℓ) be a maximal subpath of C ′ starting with e, not containing any edge of X and such that no internal
vertex of P̂ belongs to X . Notice that by maximality of P̂ , we have vℓ ∈ V (X). Also, vℓ ≠ y by the choice of C ′. If v1 = y
then we can take P ′

= P̂ and we are done. Otherwise, we distinguish two cases. If there exists an i ∈ {1, 2, 3} such that
v1, vℓ ∈ V (Pi), then H would contain two vertex-disjoint cycles, namely the cycle formed by P̂ together with the subpath
of Pi from v1 to vℓ, and the cycle formed by Pj ∪ Pk where {i, j, k} = {1, 2, 3}. This would contradict Claim 2. Suppose now
that v1 ∈ V (Pi) and vℓ ∈ V (Pj) where i, j ∈ {1, 2, 3} are distinct. In this case, the fact that no internal vertex of P̂ belongs to
V (X) implies that the graph P1 ∪ P2 ∪ P3 ∪ P̂ forms a subdivision of H1 in H; a contradiction. This shows that there exists a
(y, V (X) \ {y})-path P ′ in H − x such that no internal vertex of P ′ belongs to X , and E(P ′) ∩ E(X) = ∅.

Let z denote the endpoint of P ′ on X \ {y}, and let i ∈ {1, 2, 3} be such that z ∈ V (Pi). Let P ′′ be the unique (z, y)-path in
X \ {x}, and let Ĉ denote the cycle obtained as the union of P ′ and P ′′. A symmetric argument to the one given in the above
paragraph shows that there exists an (x, V (X) \ {x})-path Q ′ in H − y such that no internal vertex of Q ′ belongs to X , and
E(Q ′) ∩ E(X) = ∅. In particular, this implies that there exists an (x, (V (X) \ {x}) ∪ V (P ′))-path Q ′′ in H − y such that no
internal vertex of Q ′′ belongs to V (X)∪V (P ′), and E(Q ′′)∩E(X) = ∅ (to obtain Q ′′, just follow Q ′ from x, stopping as soon as
a vertex of (V (X) \ {x}) ∪ V (P ′) is reached). Let w be the endpoint of Q ′′ other than x. We analyze several cases according to
wherew is. Since the path Q ′′ is in H − y, we havew ≠ y. Ifw = z, then the graph P1 ∪ P2 ∪ P3 ∪ P ′

∪Q ′′ forms a subdivision
of H2 in H; a contradiction. If w ∈ V (Ĉ) \ {z, y}, then the graph Pi ∪ Pj ∪ P ′

∪ Q ′′ where j ∈ {1, 2, 3} \ {i} forms a subdivision
of H1 in H; a contradiction. If w ∈ V (Pi) \ V (Ĉ), then the graph Pi ∪ Pj ∪ P ′

∪ Q ′′ where j ∈ {1, 2, 3} \ {i} forms a subdivision
of H3 in H; a contradiction. Finally, if w ∈ V (Pj) for some j ∈ {1, 2, 3} \ {i}, then again the graph Pi ∪ Pj ∪ P ′

∪ Q ′′ where
j ∈ {1, 2, 3} \ {i} forms a subdivision of H3 in H; a contradiction. In either case, we have a contradiction. This proves Claim 4.

We are now ready to complete the proof of Theorem 6. Let C ′ be a cycle in H − x, and let C ′′ be a cycle in H − y. By Claim
4 and symmetry, we have V (C ′) ∩ V (X) = {y} and V (C ′′) ∩ V (X) = {x}. By Claim 2, C ′ and C ′′ have a vertex in common.
We claim that C ′ and C ′′ have precisely one vertex in common. Indeed, if this is not the case, then following C ′′ from x in
each of the two directions until C ′ is reached yields two internally disjoint (x, C ′)-paths R1 and R2 whose endpoints in C ′ are
distinct, implying that the graph P1 ∪ R1 ∪ R2 ∪ C ′ forms a subdivision of K4 in H; a contradiction. But now, since the cycles
C , C ′ and C ′′ intersect pairwise in a single vertex, the graph C ∪ C ′

∪ C ′′ forms a subdivision of H2 in H; a contradiction. �

It can be easily verified that the set {H1, . . . ,H5} forms an antichain in the set of finite multigraphs partially orderedwith
respect to the topological minor relation. Thus, Theorem 6 above essentially characterizes the graphs H naturally associated
to the no instances of the 2-ids problem (that is, graphs H such that G = S(H) contains no ℓ-identifiable subgraph) in terms
of minimal forbidden topological minors.

An immediate consequence of Lemmas 3 and 5 and Theorem 6 is the following:
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Corollary 7. A bipartite graph G = (L, R; E) = S(H) with d(x) = 2 for all x ∈ R contains an identifiable ℓ-subgraph if and only
if H contains one of the graphs H1, . . . ,H5 as a topological minor.

It remains to show how to detect one of H1, . . . ,H5 as a topological minor in linear time. Using the linear-time algorithm
of Bodlaender [2], we first test whether H is of treewidth at most 2. Then, we proceed as follows:

(1) If the treewidth of H is at least 3, then H contains H1 = K4 as a topological minor (see, e.g., [6], Propositions 1.7.2(ii) and
12.4.2). Corollary 7 implies that in this case G contains an identifiable ℓ-subgraph.

(2) If the treewidth of H is at most 2, then the algorithm by Bodlaender will have output a tree decomposition of width at
most 2. This decomposition can then be used to test in linear time whether H contains an Hi as a topological minor (for
i = 2, 3, 4, 5), using the following two results:
• The class of graphs that contain a fixed graph Hi as a topological minor is MSOL-definable (see, e.g., [7]).
• By Courcelle’s Theorem [5], every MSOL-definable property can be tested in linear time for graphs given by a tree

decomposition of bounded width.

We can slightly simplify the description of the algorithm by performing the algorithms by Bodlaender [2] and
Courcelle [5] directly on G. This can be achieved using the following two observations:

(1) Subdividing an edge does not change the treewidth of the graph (see, e.g., [15]). Hence H is of treewidth at most 2 if and
only if G is of treewidth at most 2.

(2) For every i = 1, . . . , 5, graph H contains Hi as a topological minor if and only if G = S(H) contains S(Hi) as a topological
minor.

Thus, Algorithm 1 below will correctly solve the ids problem on graphs with ∆(R) ≤ 2. Lines 1–4 can be implemented in
O(|R|) time. Lines 5–7 canbe implemented inO(|L|+|R|+|E|) time [2]. Lines 8–13 can also be implemented inO(|L|+|R|+|E|)
time by applying the algorithm of Courcelle [5] at most 4 times. Hence, altogether Algorithm 1 can be implemented to run
in time O(|L| + |R| + |E|). This completes our proof of Theorem 1.

Algorithm 1: Solving the 2-bounded Identifiable Subgraph problem.
Input: A bipartite graph G = (L, R; E) such that ∆(R) ≤ 2.
Output: yes if G contains an identifiable ℓ-subgraph, no otherwise.

1 if there is a vertex y ∈ R such that d(y) = 1 then
2 return yes;
3 while there is an isolated vertex y ∈ R do
4 delete y from G;
5 run the algorithm of Bodlaender [2] on G to test whether G is of treewidth at most 2;
6 if the treewidth of G is at least 3 then
7 return yes;
8 else
9 for i = 2, . . . , 5 do

10 using a tree-decomposition of width at most 2 (obtained in line 5) verify, using Courcelle’s algorithm [5],
whether G contains S(Hi) as a topological minor;

11 if G contains S(Hi) as a topological minor then
12 return yes;

13 return no;

4.1. Finding an identifiable ℓ-subgraph in polynomial time

An identifiable ℓ-subgraph in a bipartite graph G = (L, R; E) with ∆(R) ≤ 2 can also be found in polynomial time
(if one exists). This is clearly the case if there is a vertex of degree 1 in R. Otherwise, by Lemma 3, a subset J ⊆ L inducing an
identifiable ℓ-subgraph will be given by the vertices belonging to L in a subgraph of G isomorphic to a subdivision of S(Hi)
(for some i ∈ {1, . . . , 5}). We can find S(Hi) (for some i ∈ {1, . . . , 5}) as a topological minor in G by solving O(|L||V (Hi)|)
instances of the disjoint paths problem with k = |E(Hi)|. As shown by Robertson and Seymour, this is a polynomially
solvable task:

Theorem 8 ([16]). For every positive integer k, there is an O(|V (G)|3) time algorithm that solves the following ‘‘Disjoint Paths’’
problem: Given a simple graph G and k vertex pairs (s1, t1), . . . , (sk, tk), do there exist paths P1, . . . , Pk in G, pairwise internally
disjoint, such that Pi joins si and ti (1 ≤ i ≤ k)?

Since graphs H1, . . . ,H5 have up to 6 vertices, the overall complexity of this approach is O(|L|9 + |R| + |E|).
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An alternative solution is to test, for each i ∈ {1, . . . , 5}, for the presence of S(Hi) as a topological minor in G using the
recent cubic algorithm of Grohe et al. [12]. First, we test whether G contains S(Hi) as a topological minor. If so, we iteratively
delete vertices and edges from G and test, at each step, for the presence of S(Hi) as a topological minor in the resulting
graph, restoring the deleted vertex or edge if its deletion resulted in a graph with no S(Hi) as a topological minor. At the
end of the algorithm, we will have a subgraph of G isomorphic to a subdivision of S(Hi). The complexity of this approach is
O(|V (G)|3(|V (G)| + |E(G)|)).

5. Conclusions and further research

We showed in this paper that the identifiable subgraph problem is solvable in linear time if the maximum degree of
vertices in R is at most 2. Our proof was based on a characterization of graphs containing a strongly cyclic subgraph in terms
of topological minors, which may be of independent interest. It can also be derived from this characterization (Theorem 6)
that a graph H contains a strongly cyclic subgraph if and only if it has an Hi minor for some i ∈ {1, 2, 3, 4}. (We omit the
proof. The main idea is to verify that every graph such that contracting one of its edges results in a subdivision of one of
H1,H2,H3,H4, contains one of H1,H2,H3,H4,H5 as a topological minor.) In particular, this implies that the class of graphs
not containing any strongly cyclic subgraphs is closed under minors, and that the class of strongly cyclic graphs is closed
under vertex splitting (an operation inverse to edge contraction and generalizing edge subdivision).

There are several open questions and possibilities for further research in this area. For example:

• Compared to the linear-time algorithm from Theorem 1 for the decision version of the 2-ids problem, the complexities
of the two algorithms described in Section 4.1 to find an identifiable ℓ-subgraph in such a graph (if one exists) are rather
high. Can an identifiable ℓ-subgraph in a bipartite graph G = (L, R; E) with ∆(R) ≤ 2 (if one exists) also be found in
linear time?

• What is the computational complexity of the Identifiable Subgraph problem? Equivalently, what is the computational
complexity of the 3-bounded Identifiable Subgraph problem?

• What is the complexity of the Max-Identifiable Subgraph problem? What is the complexity of the ‘‘2-Bounded’’
Max-Identifiable Subgraph problem?

Finally, as a more general scope for future research, we also think it would be interesting to find further uses of the natural
notion of ℓ-subgraphs of (bipartitioned) bipartite graphs.
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