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a b s t r a c t

We consider the customary formulation of non-cyclic train timetabling, calling for a maximum-profit
collection of compatible paths in a suitable graph. The associated ILP models look for a maximum-weight
clique in a (n exponentially-large) compatibility graph. By taking a close look at the structure of this graph,
we analyze the existing ILPmodels, propose somenewstronger ones, all having the essential property that
both the separation and the columngeneration canbe carried out efficiently, and report the computational
results on highly-congested instances.
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1. Introduction

The train timetabling problem has been widely studied in the
literature: we refer to [1] (Deliverable D3.1) and [7] for surveys
on the problem, in the cyclic and non-cyclic versions. In cyclic
timetabling the timetable is repeated with a cycle time (typically
one hour), and all the time instants (expressing train departures
and arrivals) are expressedmodulo this cycle time,whereas in non-
cyclic timetabling the time instants can be ordered linearly. In other
words, only in the non-cyclic case is the notion ‘‘time instant i1
is before time instant i2’’ defined. Non-cyclicity does not prevent
the timetables from being repeated with a cycle time (typically
one day), but in this case one needs to have a sufficiently ‘‘wide’’
time interval within the cycle time (typically in the night) during
which no train is running, so that the time instants can be ordered
from the end of this interval to its beginning. For instance, in the
case study of [6], non-cyclicity is guaranteed if, within a day, for
each track there is an interval of 4 min with no train arriving and
an interval of 2 min with no train departing (moreover, these two
intervals may be distinct from track to track).
From an application viewpoint cyclicity is an advantage for the

passengers, as the timetable can easily be remembered. However,
cyclicity is also more expensive since the same timetable is run
in the off-peak hours, keeping the railway network congested
and the number of trains running high although this would not
be necessary to match the demand. In addition, in a competitive
market, wheremore train operators utilize the same infrastructure
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and the infrastructure manager modifies (and possibly cancels)
their requests, the non-cyclic version of timetabling seems to be
more appropriate and efficient.

1.1. The problem considered

We consider a general version of the Non-cyclic Train
Timetabling Problem (NTTP), which calls for a maximum-profit
set of timetables for a set of trains traveling on a railway
network, composed by stations connected together by one or more
tracks. The timetables must satisfy the following track capacity
constraints:
• aminimum time intervalmust elapse between two consecutive
departures on the same track on the same direction;
• aminimum time intervalmust elapse between two consecutive
arrivals on the same track on the same direction;
• overtaking along a track is not allowed.
Moreover, for possible two-way tracks along which trains may
travel in opposite directions, aminimum time interval must elapse
between an arrival of a train on the track in one direction and a
departure of a train on the track in the opposite direction, and
crossing along a track is not allowed. In thiswork, for simplicity,we
focus our attention on the case inwhich all trains travel in the same
direction along the tracks, which is almost always the case at the
planning stage and simplifies the presentation a lot. On the other
hand, all the results in this paper apply (or can easily be extended)
to the case in which there are two-way tracks.
There are a few real-world special cases of this general problem,

with different objective functions, and the results of this paper
apply to all of these. In order to give a concrete example here,
we briefly illustrate the case in [7]. In this case, for each train,
we are given on input an ideal timetable, specifying the desired
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departure and arrival time at each station that must be visited by
the train. Altogether, the ideal timetables do not satisfy the track
capacity constraints, and they must be changed by either shifting
the departure of a train from its first station (and consequently
shifting the entire timetable) or by stretching the running time of a
train, i.e., increasing the time elapsing from the departure from its
first station to the arrival at its last station. These changes produce
the so-called actual timetables. (In general, the path followed by
the train may not be unique, even if it has to visit all the stations
specified in the ideal timetable, see, e.g., [4].)
If a train is scheduled according to its ideal timetable, it gains

an ideal profit. Otherwise, the profit is decreased depending on its
shift and stretch. If a train gets a null or negative profit, due to these
changes, it is canceled. The goal is to change the ideal timetables
as little as possible, in order to produce on output the maximum-
profit timetables satisfying the track capacity constraints.

1.2. Graph representation

Let T := {1, . . . , |T |} denote the set of trains. A customary
formulation of the problem (see, e.g., [7]) considers a discretization
of the time horizonwith an interval discretization δ. For simplicity,
we assume δ = 1, i.e., all times are integers expressed in units of
the discretization interval. We let H := {1, . . . , |H|} denote the
set of time instants in the (non-cyclic) time horizon, numbered
according to their linear order. For instance, wemight have δ equal
to one minute and |H| = 1440, the number of minutes in a day.
Moreover, let L be the set of tracks in the railway network, each
joining two stations without intermediate stations in between.
Discretization allows one to define a directed acyclic graph G =

(V , A) in which nodes correspond to events, namely to arrivals
or departures of trains in stations along the specified tracks at
given time instants. Formally, each node v ∈ V can either be a
departure node or an arrival node, and is associated with a time
instant h(v) ∈ H , a track `(v) ∈ L, and a station s(v) that is
one of the endpoints of `(v). The arcs represent the travel of a
train between two stations along the specified tracks, or the stop
of a train at a station. Formally, each arc (u, v) ∈ A is such that
h(u) ≤ h(v) and can either be a travel arc or a stop arc. For a
travel arc, u is a departure node, v an arrival node, `(u) = `(v)
(i.e., the two nodes are associated with the same track), s(u), s(v)
are the two endpoints of `(u), and h(v) − h(u) is the associated
travel time. For a stop arc, u is an arrival node, v a departure node,
s(u) = s(v) (i.e., the two nodes are associated with the same
station), and h(v)− h(u) is the associated stop time.
If the path for a train t ∈ T must visit stations s1, s2, . . . , sm

in this order, a timetable for t is obtained by defining, for i =
1, . . . ,m − 1, a time instant for the departure of t from si, a
time instant for the arrival of t at si+1, and a track ` ∈ L having
si, si+1 as endpoints along which t travels. Adding to G an artificial
source σ with an outgoing arc to all departure nodes and an
artificial sink τ with an ingoing arc from all arrival nodes, there is
a correspondence between the feasible timetables for a train t ∈ T
and the collection P t of the paths from σ to τ in a suitable arc-
induced subgraph Gt of G (see [6,7] for further details).
We consider the (typical) case in which the profit/cost

associatedwith a timetable can be expressed as a linear function of
the arcs in the corresponding path. In this case, the best timetable
for a single train t ∈ T is given by a maximum-profit path on the
acyclic graph Gt , and can be computed in linear time (in the size of
Gt ) by dynamic programming. The difficulty of the problem comes
from the fact that paths for distinct trains can conflict, due to the
track capacity constraints illustrated next.
Each track ` ∈ L is associatedwith a subset A` ⊆ A of the arcs in

G, representing some train traveling along ` with given departure
and arrival times. Moreover, for each train t ∈ T and track ` ∈ L,
every path in P t can contain at most one arc in A` (meaning that
the train path can traverse each track at most once). For a given
track ` ∈ L, consider two trains t1, t2 along with two paths P1 ∈
P t1 , P2 ∈ P t2 containing two arcs a1 ∈ P1 ∩ A`, a2 ∈ P2 ∩ A`.
Arc a1 represents the departure of t1 from the initial station of `
at time, say, d1 and its arrival at the final station of ` at time, say,
r1. Similarly, arc a2 represents the departure of t2 from the initial
station of ` at time, say, d2 and its arrival at the final station of `
at time, say, r2. Assuming without loss of generality that d1 ≤ d2,
we have that paths P1, P2 respect the track capacity constraints on
track ` if
d2 ≥ d1 + α` and r2 ≥ r1 + β`, (1)
where α` and β` are given parameters, possibly depending on the
track `. In other words, there is a minimum time distance between
departures (α`) and arrivals (β`) along each track `, and trains
cannot overtake each other along this track.

1.3. Contents and notation

In this paper, we will take a close look at some existing
ILP formulations for NTTP, involving (exponentially-many) binary
variables associated with paths in G corresponding to the
timetables. We observe that all these ILPs call for a maximum-
weight clique in the same (exponentially-large) compatibility
graph, contain only stable-set constraints, and differ only in the
type of stable set actually considered. This allows us to unify all
these ILPs under a common framework, which is our first main
contribution. Moreover, this unification process naturally suggests
new, stronger, ILP formulations of the same type, sharing with
the existing ones the property that both separation and column
generation can be carried out efficiently. This is our second main
contribution. A third main contribution would have been achieved
if these new ILPs had allowed us to find much better upper bounds
for the real-world instances thatwe considered in previous papers.
Unfortunately, this is not the case, for reasons thatwill be discussed
in the experimental results section. However, for suitable ‘‘highly-
congested’’ variants of these instances, we indeed report notably
better upper bounds.
In order to have a general view of the ILP formulations and to

be able to compare them, it will be fundamental to point out the
underlying graphs; for this reason we conclude the introduction
with somebasic graph-theoretic notions andnotations thatwewill
use extensively.
Given an undirected graph F , a (maximal) stable set is a

(maximal) node subset such that no node pair in the subset is an
edge of F . Let S(F) denote the collection of all maximal stable sets
of F . A (maximal) clique is a (maximal) node subset of F such that
all node pairs in the subset are edges of F . The complement of F is
the graph on the same node set whose edges are exactly the node
pairs that are not edges of F . Given two undirected graphs F1, F2 on
the same node set, their edge intersection F1∩F2 is the graph on the
same node set with the edges that are present in both F1 and F2.
A comparability graph on node set N is an undirected graph

whose edges can be oriented so as to get an acyclic directed graph
D = (N, A) which is transitive, i.e., such that (i, j), (j, k) ∈ A
implies (i, k) ∈ A. Note that, given a comparability graph and the
associated orientation, the relation≺ on node set N given by i ≺ j
if and only if (i, j) ∈ A is a partial order on N . Vice versa, given a
partial order ≺ on a set N , we get a comparability graph by first
considering the directed graph D = (N, A) where (i, j) ∈ A if and
only if i ≺ j and then neglecting the orientation of the arcs in A. An
interval graph is a graph whose nodes correspond to intervals on
the real line and whose edges correspond to pairs of intervals that
have a nonempty intersection.

2. ILP formulations, graphs, and separation

A natural class of ILP formulations for NTTP considered, e.g.,
in [2,4,6] contains binary variables associated with the arcs of G.
These ILPs are well suited for some dual-heuristic approaches such
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as Lagrangian relaxation with subgradient optimization. On the
other hand, as far as canonical LP-based approaches are considered,
the LP relaxations of these ILPs are extremely expensive to solve
exactly, as noted in [3], where the solution times are not even
reported as they are orders of magnitude larger than those of the
equivalent (in terms of optimal value) LP relaxations of the ILP
formulations obtained by associating a binary variable xP with
each path P ∈ P . In this section, we present several such ILP
formulations and discuss the underlying graphs and the associated
separation problems.
For each t ∈ T , recalling that P t denotes the collection of

possible paths for train t , let πP be the profit of path P ∈ P t .
Moreover, letP := P 1 ∪ · · · ∪P t be the overall (multi-)collection
of paths. Two paths P1, P2 ∈ P are compatible, i.e., they can be both
selected in the solution, if the following conditions hold:
• the two paths are associated with distinct trains;
• for each track ` ∈ L traversed by both P1, P2, the two paths
respect the track capacity constraints on `.

The objective is the maximization of the profits of the paths
selected with the constraint that all paths selected are compatible.
The compatibility relation is naturally represented by an auxiliary
graph F = (P , E)with one node for each path and an edge joining
each pair of compatible paths. Then, NTTP calls for a maximum-
weight clique in F . Note that F is the edge intersection of the
following |L| + 1 graphs on node set P :
• FT , in which two nodes are joined by an edge if and only if the
corresponding paths are associated with distinct trains;
• F`, ` ∈ L, in which two nodes are joined by an edge if and only if
the corresponding paths either do not both traverse track `, or
they traverse it by respecting the track capacity constraints.

2.1. The structure of FT and F`

The structure of FT is elementary, namely it is a collection of the
|T | stable sets P t , t ∈ T , with edges joining each pair of nodes
belonging to distinct stable sets. In other words:

Observation 1. FT is a complete |T |-partite graph;
The structure of F` is more interesting:

Observation 2. For ` ∈ L, F` is a comparability graph.
Proof. We define the partial order associated with F`. First con-
sider the paths inP with one arc associated with track `. Two such
paths P1, P2 are joined by an edge in F` if (1) holds for the associated
departure and arrival times d1, d2, r1, r2, in which case we say that
P1 ≺ P2. This is clearly a transitive relation. This partial order can
easily be extended to all paths with no arc associated with track `,
since these are nodes incident to all other nodes in F`. �

2.2. A general, impractical ILP formulation

Themost natural ILP formulation of NTTP would be to associate
a constraint with each stable set of F . The formulation reads:

max
∑
P∈P

πPxP , (2)∑
P∈S

xP ≤ 1, S ∈ S(F), (3)

xP ∈ {0, 1}, P ∈ P . (4)
Although the corresponding LP relaxation is fairly weak for
maximum-weight clique in general, in the cases in which the
objects represented by the nodes have a special structure (e.g.,
knapsack solutions, paths or cycles in a graph) the resulting upper
bound may turn out to be strong, see, e.g., [8,10]. On the other
hand, even putting aside the fact that |P |may be exponential, the
solution of this LP relaxation turns out to be hard, recalling the
well-known equivalence between separation and optimization [9].

Proposition 1. The separation of constraints (3) is strongly NP-
complete even when |P | = |T | (one feasible path per train), namely
the problem of finding a maximum-weight stable set on a generic
graph with n nodes can be reduced to it, setting |T | := |P | := n.
Proof. Proposition 1 in [6] shows how to transform a generic
undirected graph H with n nodes into an NTTP instance with n
trains, one path per train, and paths that are compatible if and only
if the corresponding nodes in F are joined by an edge. (In other
words, the auxiliary graph F associated with this NTTP instance
coincideswithH .) At this point, the problemof testing ifH contains
a stable set of weight larger than a threshold B is equivalent to
testing if there exists a constraint (3) that is violated by a solution
x∗, by setting the value x∗P of each path equal to the weight of the
corresponding node in H divided by B. �

Jointly with the fact that |P | is in general exponentially large,
there appears to be no chance in practice to solve effectively the
LP relaxation of the above ILP formulation for NTTP instances of
interest, since the separation of (3) leads to a much harder column
generation problemwith respect to the other (weaker) constraints
discussed next, as the dual variables associated with (3) do not
correspond to arcs of G.

2.3. Practical ILP formulations

Forgetting about the whole set of constraints (3), a natural
approach is to concentrate on alternative constraints with the
following structure.

Definition 1. A set of constraints of the form∑
P∈S

xP ≤ 1, S ∈ S′, (5)

is said to be practical for NTTP if:
(i) together with the binary condition (4), it defines a valid ILP
formulation for NTTP;

(ii) it can be separated in polynomial time in the size of G and in
the number of nonzero components of the LP solution to be
separated;

(iii) the column generation problem for the variables associated
with each train t ∈ T can be carried out by computing an
optimal path on the graph Gt with appropriate arc costs.
In other words, (iii) is the natural requirement that the column

generation problem has the same structure as the problem of
finding the best path for a given train for the original profits.
Requirement (i) is easy to deal with, namely:

Observation 3. Consider a collection of graphs F1, . . . , Fm whose
edge intersection yields F . The set of constraints∑
P∈S

xP ≤ 1, S ∈ S(F1) ∪ · · · ∪ S(Fm),

satisfies (i).
Requirement (ii) needs to be addressed separately case by case

(as it is generally the case with complexity issues). As to (iii), it is
satisfied if the following technical condition holds.

Observation 4. Consider a set of constraints of the form (5) such that,
for each t ∈ T and S ∈ S′, either S ∩ P t = P t , or there exist ` ∈ L
and Ā ⊆ A` for which S ∩ P t is the subset of paths in P t containing
one arc in Ā. This set of constraints satisfies (iii).
Proof. Assume the constraints are as in the statement. The column
generation problem associated with a train t ∈ T calls for a path
P ∈ P t with positive reduced profit, the latter being given by the
difference between the profit πP and the sum of the dual values for
the constraints inwhich xP has coefficient 1. As alreadymentioned,
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profit πP is a linear function of the arcs in P , say πa is the profit
of each arc a in Gt . Let σ be the sum of the dual values of the
constraints S such that S ∩ P t = P t . Moreover, for a in Gt , let
ρa be the sum of the dual values of the constraints S associated
with arc sets Ā with a ∈ Ā. The reduced profit of P is given by∑
a∈P(πa − ρa) − σ , i.e., it is a linear function of the arcs in P , as

required. �

2.4. The ILP formulation in [3]

In [3], building on the previous work in [6], we somehow
(implicitly) applied Observations 3 and 4 as follows. For a train
pair {t1, t2} ⊆ T , let FT (P t1 ∪ P t2) and F`(P t1 ∪ P t2) be the
subgraphs of FT and F` induced by the node set P t1 ∪ P t2 ⊆ P .
We considered the constraints associated with the stable sets of
the edge intersection FT (P t1 ∪ P t2) ∩ F`(P t1 ∪ P t2), called the
overtaking constraints in [3]:∑
P∈S

xP ≤ 1, ` ∈ L, {t1, t2} ⊆ T ,

S ∈ S(FT (P t1 ∪ P t2) ∩ F`(P t1 ∪ P t2)). (6)

Proposition 2. Constraints (6) satisfy the requirements (i)–(iii) in
Definition 1.
Proof. Extend graph FT (P t1∪P t2)∩F`(P t1∪P t2) by also including
nodes in P \ (P t1 ∪P t2), connected to all the nodes in P t1 ∪P t2 .
The edge intersection of these extended graphs for {t1, t2} ⊆ T
and ` ∈ L yields F , showing that these constraints satisfy (i).
As to (ii), note that FT (P t1 ∪ P t2) is a complete bipartite graph,
and therefore FT (P t1 ∪ P t2) ∩ F`(P t1 ∪ P t2) is a bipartite graph.
Therefore, the separation of constraints (6), in the optimization
form, calls for amaximum-weight stable set of this bipartite graph,
considering only the paths corresponding to nonzero components
of the LP solution, and can be carried out in polynomial time by
flow techniques (see, e.g., [9]). Finally, these constraints satisfy (iii)
since, by themaximality of the stable sets, for each path P ∈ P t1∩S
that contains an arc in A`, all other paths inP t1 containing that arc
are also in S (and the same holds for the paths in P t2 ). �

Although constraints (6) are sufficient to define an ILP
formulation, they tend to be fairly weak in practice and, in any
case, they are rather slow to separate. For this reason, the following
stronger constraints are used in [3]. First of all, we use the obvious
constraints associated with the maximal stable sets of FT :∑
P∈S

xP ≤ 1, S ∈ S(FT ),

which, due to Observation 1, read:∑
P∈P t

xP ≤ 1, t ∈ T , (7)

(i.e., for each train we select at most one path in the solution) and
do not need to be separated as they are only |T |. Moreover, we
considered the edge-induced subgraph F d` of F` associatedwith the
relaxation of (1):
d2 ≥ d1 + α`,
and the edge-induced subgraph F r` of F` associated with the
relaxation of (1):
r2 ≥ r1 + β`.
It is easy to check that both F d` and F

r
` are not only comparability

graphs, but also the complement of an interval graph. The
corresponding constraints, called departure and arrival constraints,
respectively, in [3], read:∑
P∈S

xP ≤ 1, ` ∈ L, S ∈ S(F d` ), (8)∑
P∈S

xP ≤ 1, ` ∈ L, S ∈ S(F r` ), (9)
and can be separated in linear time (in the size ofG and the number
of nonzero variables of the current LP solution).Moreover, it is easy
to see that they satisfy the requirement in Observation 4. Only if all
these constraints are satisfied, we proceed with the separation of
(6).

2.5. A second, natural ILP formulation

A natural formulation which is in fact simpler than the one
in [3] (once the structure of F is clear) is obtained by combining
Observation 3 and the fact that F is the edge intersection of FT
and F` for ` ∈ L, leading to the following constraints. For FT , we
have constraints (7) already mentioned above. As to F`, we have
the constraints:∑
P∈S

xP ≤ 1, ` ∈ L, S ∈ S(F`), (10)

which are clearly stronger than (8) and (9).

Proposition 3. Constraints (7) and (10) satisfy requirements (i)–(iii)
in Definition 1.

Proof. Requirement (i) follows fromObservation 3. As to (ii), there
are |T | constraints (7), while from Observation 2 the separation of
(10) calls for the determination of a maximum-weight stable set in
a comparability graph, considering only the paths corresponding
to the nonzero components of the LP solution, which can be found
efficiently by flow techniques (see, e.g., [9]). Finally, (iii) follows
from Observation 4, noting that if a path P ∈ P is in S for a
constraint (10), all other paths in P containing arc P ∩ A` are also
in S. �

2.6. A third natural, and stronger, ILP formulation

A third alternative to constraints (3) can be obtained bymerging
the main ideas in the previous two ILP formulations: the resulting
formulation is stronger than both. Specifically, we consider, for
` ∈ L the edge intersection of FT ∩ F`, noting that F itself is the
edge intersection of these |L| graphs. The constraints that replace
(3) in this third formulation are:∑
P∈S

xP ≤ 1, ` ∈ L, S ∈ S(FT ∩ F`). (11)

These constraints are clearly stronger than (7) and (10) (and also
stronger than (6)), and are easily checked to satisfy requirements
(i) and (iii) in Definition 1. On the other hand the complexity of
their separation is unclear in general; for instance we do not know
an answer to:

Question 1. What is the complexity of finding a maximum-weight
stable set in the edge intersection of a complete multipartite and a
comparability graph?

Nevertheless, for the instances in our case study, we are able to
devise a polynomial time algorithm, as discussed below.
For each track ` ∈ L, let T` ⊆ T denote the set of trains whose

path may contain an arc associated with the track `. We say that
the travel times are fixed if, for each track ` ∈ L and train t ∈ T`,
there exists a value θt,` such that all arcs inA` in all paths inP t have
an arrival time equal to the departure time plus θt,`. Moreover, let
ρ` := maxt∈T` θt,` − mint∈T` θt,` be the difference between the
maximum and the minimum travel time on track `. Finally, recall
α` and β` from (1), the minimum distances between consecutive
departures and arrivals, and |H|, the number of time instants in
the time horizon. The proof of the following result is in the original
technical report [5].

Proposition 4. If the travel times are fixed, amaximum-weight stable
set in FT ∩ F` can be found by dynamic programming with time
complexity
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Table 1
Upper bound values and solution times for small highly-congested instances.

Instance |T | LP in [3] LP (7), (10) LP (11) LP (11)- Greedy LP (11)- Trans.
Value Time Value Time Value Time Value Time Value Time

Bologna–Milano 12 1210.7 8 1187.9 2266 1110.5 11750 1135.7 202 1113.1 1967
Bologna–Roma 12 1184.0 28 1120.1 948 996.9 41050 1044.9 171 1007.5 1519
Brennero–Bologna 12 1169.7 15 1147.9 1933 1056.5 47691 1067.7 430 1058.5 1388
Milano–Roma 12 1105.1 177 1029.6 694 947.1 31010 972.5 350 951.1 1098
Modane–Milano 12 1136.5 49 1079.1 569 993.9 29479 1015.5 150 999.9 770
O

(∑
t∈T`

|P t | + |T`| · |H| · (ρ` + α` + β`)3 · (ρ` + 1)|β`−α`|
)

and space complexity

O
(
|T`| · |H| · (ρ` + α` + β`) · (ρ` + 1)|β`−α`|

)
.

Proposition 5. If the travel times are fixed and |β` − α`| is bounded
by a constant, constraints (11) satisfy the requirements (i)–(iii) in
Definition 1.

Proof. Requirement (i) follows again from Observation 3, (ii) from
Proposition 4, considering only the paths corresponding to nonzero
components of the LP solution, and (iii) from Observation 4, noting
that if a path P ∈ P t is in S for a constraint (11), all other paths in
P t containing the arc P ∩ A` are also in S. �

The dynamic programming procedure in Proposition 4 has a
fairly high time and space complexity, which make it slow in
practice. This can be compared with the time complexity of the
separation of the previous constraints, for each ` ∈ L, still for the
case in which the travel times are fixed, as discussed in [5]:

• O
(∑

t∈T`
|P t | + |T`|2 · |H| · (ρ` + α` + β`)

)
for constraints (6),

by enumeration;
• O

(∑
t∈T`
|P t | + |H|

)
for constraints (8) and (9), by enumera-

tion;
• O

(∑
t∈T`
|P t | + |T`|3 · |H|3

)
for constraints (10), by a mini-

mum flow computation.

Note that the asymptotic worst-case time complexity of the
minimum flow computation is also fairly high. On the other
hand, in this case, the practical average-case complexity is much
smaller than the worst-case complexity, while the two essentially
coincide for the dynamic programming procedure. Accordingly,we
developed two different methods to separate the constraints (11)
heuristically.
The first heuristic separation procedure is a simple (random-

ized) greedy heuristic for maximum-weight stable set that, start-
ing from the empty solution, at each iteration selects a node with
a probability proportional to the ratio between the weight of the
node and the sumof theweights of its neighbors. The node selected
is added to the stable set and it is removed from the graph together
with all of its neighbors.
The second heuristic procedure uses the fact that, as already

mentioned in Section 2.5, a maximum-weight stable set in a
comparability graph can be found efficiently. Specifically, we
consider the graph FT ∩ F`, along with the comparability graph F`
and the associated transitive directed graph D. We orient all the
edges in FT ∩ F` as the corresponding arcs in D: the resulting graph
D′ is not necessarily transitive, as it has only a subset of the arcs of
D. Then, we compute the transitive closureD′′ ofD′, and finally find
amaximum-weight stable set in the comparability graph obtained
by ignoring the edge orientations in D′′. What we obtain is a stable
set in FT∩F`, though not necessarily the onewithmaximumweight
as we have added some edges. On the other hand, given that D′′
tends to contain notably fewer arcs than D, the constraints that
we separate in this way tend to be stronger than (10). Moreover,
before adding one of these constraints to the current LP, we verify
if the associated stable set is maximal for FT ∩F` and, if not, we add
nodes so as to make it maximal. In the sequel we will refer to this
heuristic separation method as the transitivization procedure.

3. Computational results

Our code was implemented in C and run on a PC Intel Core Duo,
2.3 GHz, 2 GB RAM, using CPLEX 10.0 as an LP solver. We used
(our own implementation of) the column generation procedure
in [3] and implemented all separation procedures discussed in
the previous section, including the (minimum) flow computation
required to find a maximum-weight stable set in a comparability
graph. Indeed, by taking into account the structure of our instances,
our simple implementation widely outperforms the state-of-the-
art general-purpose flow codes available.
All the instances considered have a cycle time of one day and,

as discussed in the introduction, a sufficiently wide (2–4 min)
time interval in which nothing is happening to treat them as
non-cyclic. For the real-world instances in [6], the number of
stations in which overtaking is possible is very large and the
travel times along tracks in L are very small. This makes it
unlikely to have serious interferences between three or more
trains along a track, making the formulation in [3] essentially
as strong as the new ones proposed in this paper. On the other
hand, considering the variation in which overtaking is possible
only within the main stations, as it would be highly desirable
in practice, the likelihood that interferences involve more than
two trains increases significantly, and we can show that the new
models provide better bounds. Accordingly, for the computational
results reported here, we considered 5main corridors of the Italian
railway network, limiting the set of stations to those in which a
crew change is allowed.
We first considered a set of highly-congested small instances.

In Table 1, besides the corridor name and the number of trains
|T |, we report the upper bounds associated with the LP relaxations
of the ILP formulations in the previous section and the associated
solution times in seconds. VersionsGreedy and Trans. of constraints
(11) refer to the heuristic separation of these constraints by the
greedy heuristic and the transitivization procedure of Section 2.6,
respectively. Not counting these two versions, the left part of
the table shows that the quality of the upper bound improves
slightly from the LP in [3] to the LP with constraints (7), (10), and
significantly from the latter to the LP with constraints (11). On the
other hand, the solution time increases by more than one order
of magnitude going from one formulation to the other. Still, if we
resort to a heuristic separation of constraints (11), with the greedy
heuristic we get a lower bound which is still much better than
those of the first two formulationswithin a relatively small running
time, whereas with the transitivization procedure we get a lower
bound which is basically the same as the one obtained by exact
separation by dynamic programming, within a running time that
is one order of magnitude smaller.
Larger highly-congested instances are considered in Table 2. For

these instances, the use of the dynamic programming procedure
for the separation of (11) is out of reach. We report the value and
the number of canceled trains of the best feasible solution found
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Table 2
Upper bound values, solution times, and optimality gaps for larger highly-congested instances.

Instance |T | Best LP in [3] LP (11)- Greedy LP (11)- Trans.
Value #Canc. Value Time Gap (%) Value Time Gap (%) Value Time Gap (%)

Bologna–Milano 30 2441 14 2734.4 99 10.7 2657.6 9484 8.1 2618.4 TL 6.8
Bologna–Roma 45 4444 19 4499.9 4681 1.2 4446.9 16881 0.1 4444.0 17963 0.0
Brennero–Bologna 45 3260 17 3737.5 405 12.8 3652.7 12625 10.7 3616.9 TL 9.9
Milano–Roma 65 5290 30 5483.5 2558 3.5 5350.9 15967 1.1 5302.1 TL 0.2
Modane–Milano 40 3135 18 3448.9 626 9.1 3350.4 7039 6.4 3271.3 TL 4.2
Table 3
Upper bound values, solution times, and optimality gaps for real-world instances related to those in [6].

Instance |T | Best LP in [3] LP (11)- Greedy LP (11)- Trans.
Value #Canc. Value Time Gap (%) Value Time Gap (%) Value Time Gap (%)

Bolzano–Verona 101 12455 5 12685.8 8 1.8 12685.8 8 1.8 12661.2 210 1.6
Modane–Milano 59 4876 6 5382.4 9 9.4 5 329.1 41 8.5 5216.6 7365 6.5
Munich–Verona 54 4044 6 4191.5 14 3.5 4191.5 14 3.5 4190.0 15 3.5
Piacenza–Bologna-a 39 3666 6 3882.3 57 5.6 3871.6 83 5.3 3843.2 886 4.6
Piacenza–Bologna-b 91 9507 7 9820.6 80 3.2 9819.9 82 3.2 9800.3 5806 2.9
Piacenza–Bologna-c 57 5550 10 5905.6 183 6.0 5886.9 427 5.7 5855.2 TL 5.2
Piacenza–Bologna-d 210 16216 17 19270.8 27225 15.8 19243.3 TL 15.7 19243.3 TL 15.7
by the heuristic method of [6] (Best), along with the upper bound,
the computing times and the final percentage gap over the best
solution value for the LP in [3], and for versions Greedy and Trans.
of the LP with constraints (11), with a time limit of 10 h. The
table shows that, although the Trans. version reaches the time limit
(indicated by TL) in all cases except one, the final gap between
the heuristic solution value and the upper bound value is much
smaller, and the optimality of the best solution is proven for the
case in which the time limit is not reached.
The same information as in Table 2 is reported in Table 3

for the instances in [6], involving longer corridors, reducing as
above the number of stations and removing the trains that visit
only the removed stations. These instances are less congested (a
smaller percentage of trains is canceled) and the upper bound
improvement is smaller.
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