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a b s t r a c t

Here we discuss the lot sizing problem of product returns and remanufacturing. Let us consider a forecast
of demands and product returns over a finite planning horizon — the problem is to determine an optimal
production plan. This consists of either manufacturing new products or remanufacturing returned units,
and in this way meets both demands at minimum costs. The costs of course are the fixed set-up expenses
associated with manufacturing and/or remanufacturing lots and also the inventory holding costs of
stocks kept on hand.

In addition to showing that a general instance of this problem is NP-Hard, we develop an alternative
mixed-integer model formulation for this problem and contrast it to the formulation commonly used in
the literature. We show that when integrality constraints are relaxed, our formulation obtains better
bounds. Our formulation incorporates the fact that every optimal solution can be decomposed into a
series of well-structured blocks with distinct patterns in the way in which set-ups for manufacturing and
remanufacturing occur. We then construct a dynamic programming based heuristic that exploits the
block structure of the optimal solution. We also propose some improvement schemes as well. Finally, our
numerical testing shows that the heuristic performs very well as intended.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Today, the terms “reuse” and “remanufacture” are no longer
considered alien terms by many manufacturers and retailers alike [12].
In fact, a growing number of companies are beginning to see the
business value of having a green reputation, actively demonstrat-
ing to their customers that they care about the environment [26].
For instance, “Cradle-to-cradle” manufacturing has been embraced as
the new style of manufacturing that provides recycling and remanu-
facturing of all components. What this means is, from the first use of
one product to the reuse of parts in other products [12–15].

The literature on remanufacturing and product recovery has
rapidly grown in the past 15 years and now encompasses a large
number of contributions [12,14,15,26]. This healthy growth in
research contributions has been spurred by two major trends.
First, recent environmental laws and take-back regulations have
forced both manufacturers and retailers to become more envir-
onmentally conscious. Second, the growing concern of the general
public in the rapid deterioration of the environment (dwindling
natural resources, escalating pollution levels and so on) has also

forced companies to improve their corporate image by managing
their businesses for the good of the environment [26].

As a result, companies are now seeking better ways to manage and
optimize their reverse logistics systems. This trend has led to the
development of a number of quantitative models dealing with various
aspects of these systems from designing an efficient reverse logistics
network [9] to better managing stocks of returned products [13] and
lastly in choosing optimal lot sizes in production planning and
control for remanufacturing [28, 29]. Useful survey papers that
discuss both the strategic and tactical issues of managing product
returns for remanufacturing can be found in Fleischmann et al. [8],
Guide et al. [12], Guide and Van Wassenhove [14, 15], Blackburn
et al. [5] and Srivastava [26].

In this paper, we focus on one important tactical aspect of
manufacturing for reuse. Namely, we consider production-
scheduling applications to an environment with fluctuating demand
requirements for an item that can be met either by manufacturing
new items or by remanufacturing returned products. Returns are often
referred to as cores or virgin items in the literature. The number
of core units available for remanufacture also varies with time.
A recently acquired core can be remanufactured immediately into
a like-new item or carried in inventory for future reuse. A production
schedule will specify how many new units of product to make and
how many cores to remanufacture during each period over the
planning horizon. After all, there are costs of holding the resultant
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inventories of cores as well as the finished items. Not to mention,
there are also fixed set-up costs associated with batch production.
The objective is to find a schedule that minimizes the total set-up
and holding costs while satisfying all demand requirements in a
timely way.

Having thus stated our purpose, we have organized the paper
as follows: in Section 2, we discuss a commonly used mixed-
integer linear programming (MILP) formulation (since a number of
authors alluded to the fact that the problem is NP-hard, we give
proof to show that a general instance of this problem is indeed NP-
hard); in Section 3, we review the literature related to the MILP
model; in Section 4, we develop an alternative MILP formulation of
this problem and discuss its advantages over the original formula-
tion; in Section 5, we propose a computationally efficient heuristic
method that can be used to solve the problem; in Section 6, we
provide ample numerical testing to illustrate the performance of
the alternative model and heuristic; and to end off, in Section 7,
we conclude with some remarks.

2. Model statement

As stated above, a number of operations researchers have
examined the impact of remanufacturing and product recovery
on the lot-sizing problem with deterministic time-varying
demands (see [21,22,11,4,32,29,23,1617]). To better relate our
contribution to this literature, we begin by stating a typical
mixed-integer model formulation of the problem. Table 1 sum-
marizes the notation that will be used throughout the paper.

Let us consider a forecast of demands Di and returns Ri over the
planning horizon N. The basic problem is to choose QS

i and QR
i ,

namely, the quantities to be manufactured and remanufactured in
period i, so as to satisfy all demands at minimal costs. Demand is
met either from newly manufactured products or from the
remanufacturing of some returns or both. The total costs include
the fixed set-up costs of manufacturing and remanufacturing and
the inventory holding costs for serviceables and returns. Without
loss of generality, let the initial inventories IS0 ¼ 0 and IR0 ¼ 0 and
define

ySi ¼
1 if new products are manufactured in period i

0 Otherwise

�

yRi ¼
1 if returns are remanufactured in period i

0 Otherwise

�

The complete model ðPÞ is then

Min ∑
N

i ¼ 1
fhSISi þhRIRi þKSySi þKRyRi g ð1Þ

s.t.

ISi ¼ ISi�1þQS
i þQR

i �Di 8 i¼ 1;2;…;N ð2Þ

IRi ¼ IRi�1þRi�QR
i 8 i ¼ 1;2;…;N ð3Þ

QS
i r ∑

N

j ¼ i
Dj

 !
ySi 8 i ¼ 1;2;…;N ð4Þ

QR
i r ∑

N

j ¼ i
Dj

 !
yRi 8 i ¼ 1;2;…;N ð5Þ

ySi ; y
R
i Af0;1g;QS

i ;Q
R
i ; I

S
i ; I

R
i Z0 8 i ¼ 1;2;…;N

Constraints (2) and (3) in ðPÞ are inventory balance equations for
serviceables and returns, respectively. Constraints (4) and (5) in ðPÞ
insure that if a set-up is not performed in a period, then the
quantity made in that period is zero, but if a set-up is undertaken

in period i, the bound ∑N
j ¼ iDj on the quantity produced is

appropriately chosen so that the two constraints are redundant.
The objective function (1) is to minimize the total set-up and
carrying costs over the planning horizon N.

The formulation shown in ðPÞ presumes the following sequence
of events. In each period we first observe returns and then we
decide how much to manufacture or remanufacture. Then the
demand is observed and satisfied and holding costs are assessed
based on the remaining stocks of serviceables and returns at the
end of the period.

3. Review of the literature related to model ðPÞ

Richter and Sombrutzki [21] study model (P) (presented in
Section 2) with the additional restriction that enough product
returns are available at the start of the planning period to cover
demands over the entire horizon. This assumption makes it
possible to transform model (P) to a problem instance that
preserves the all-important “zero-inventory property.” This prop-
erty states that replenishments are to take place in a given period
only if the starting inventory in that period is zero. As a result of
this, the authors show that optimal solutions can be calculated

Table 1
Notation.

General

N Planning horizon
i Index for periods in the planning horizon, i¼ 1;…;N
Di Number of products demanded in period i
Ri Number of products returned at the beginning of period i

KS Set-up cost to manufacture new units (or serviceables)

KR Set-up cost to remanufacture a returned unit

hS Holding cost to carry a unit of serviceable inventory from period i to
period iþ1

hR Holding cost to carry a returned unit in inventory from period ito
period iþ1

Mixed integer linear programming (MILP) formulations
dij Cumulative demand from period ito period j
rij Cumulative returns from period ito period j

QS
i

The quantity of products manufactured in period i

QR
i

The quantity of products remanufactured in period i

ISi Inventory in units of serviceables left over at the end of period i

IRi Inventory in units of returns left over at the end of period i

ySi Binary variable¼1 if new products are manufactured in periodi;
0 otherwise

yRi Binary variable¼1 if returns are remanufactured in periodi;
0 otherwise

xSij Binary variable¼1 if manufacturing occurs in periodiand next
in periodðjþ1Þ; 0 otherwise

xRij Binary variable¼1 if remanufacturing occurs in periodiand next
in period ðjþ1Þ; 0 otherwise

Constructive heuristic

DS
i

The part of demand Diin period isatisfied by manufacturing new
products

DR
i

The part of demand Diin period isatisfied by remanufacturing returned
products

γi The target end-of-period inventory of returned products for period i
e′ijðs; tÞ Total manufacturing cost in period i to meet demands DS

k for
k¼ i; iþ1;…; j

f jðs; tÞ The minimum total set-up and holding costs of meeting the demands

DS
i by manufacturing only from period s throughj

e″ijðs; tÞ Total remanufacturing cost in period i to meet demands DR
k for

k¼ i; iþ1;…; j
gjðs; tÞ The minimum total set-up and holding costs of meeting the demands

DR
i by remanufacturing only from period s through j

cðs; tÞ Optimal total set-up and holding costs of satisfying the demands Di

from period s through t
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using a Wagner–Whitin algorithm. Richter and Weber [22] extend
the analysis given in Richter and Sombrutzki [20] by adding
variable manufacturing and remanufacturing costs to the objective
function (1).

Golany et al. [11] consider a more general formulation of model
ðPÞ that allows for concave cost functions and disposal of surplus
inventory in each period. They show that the problem can be
reformulated and stated as a concave flow network and demon-
strate that it is NP-hard. For linear-cost case, they show that the
model can be viewed as a transportation problem, which can be
solved using an algorithm with OðN3Þ time. Interestingly, Yang
et al. [32] continue the work done in Golany et al. [11], but in their
model the costs involved in the objective function are represented
by concave functions. They observe that optimal solutions of a
problem are the extreme points of the feasible region. These
extreme points possess a special spanning-tree property with
distinct flow patterns. Therefore, utilizing this property, they
develop a polynomial-time heuristic for solving the problem.
As well, Teunter et al. [29] examine model (P) in greater detail. First,
they consider the situation in which there is a joint set-up cost for
manufacturing and remanufacturing. This is a special case of
model (P). The authors construct a dynamic programming algo-
rithm that runs in OðN4Þ time for solving this particular problem.
Next, they consider the more general case where the set-up costs
for the two manufacturing activities are different, that is, model
(P) given in (1)–(5). Since the zero-inventory property does not
hold for this model instance, the authors are led to the conjecture
that the problem is NP-hard. As a result, they propose heuristic
methods by adapting some popular lot-sizing techniques, such as
the Silver–Meal (SM) heuristic [24] to cope with the problem.
Schulz [23] offers a different solution; he modifies the SM heuristic
discussed in Teunter et al. [24], by proposing additional improve-
ments that reduce the error gap noticeably.

It is also important that we now turn our attention on the
dynamic lot sizing problems that incorporate both product returns
and disposal of excess inventory which is what Beltran and Krass
[4] do in one instance. Their model, though, does not include the
possibility of remanufacturing returns as in model (P). In other
words, each return is considered to arrive as good as new and is
immediately added to serviceable inventory. They show that a
generalized version of the zero-inventory property still holds for
this problem. Keeping this in mind, the authors construct a
dynamic programming algorithm with OðN3Þ complexity to solve
the problem. In a companion paper, Li et al. [17] devise a Tabu
search algorithm based on the alternative MILP model formulation
discussed in Section 4. The algorithm solves the problem of several
small linear programs, each one corresponding to a sub-problem
of the original model. It is sophisticated in its construction, and the
method produces excellent results. Other researchers present
different formulations on this same issue. Helmrich et al. [16]
analyze the complexity of the problem under a more general cost
structure.

There are many other quantitative models besides model (P)
that examine various product recovery options including remanu-
facturing, repairing, refurbishing, and recycling (see [15,19,20] for
recent surveys). Some of these works make use of EOQ models
(see [28, 27, 2], for example), while others are in the context of
stochastic models (see [30, 256] for example). Before we present
an alternative formulation for model (P) and contrast it, we must
then next show that model (P) is indeed NP-hard as was con-
jectured in Teunter et al. [29].

Theorem 1. The optimization problem stated in (P) is NP-hard.

Proof. See Appendix.■

4. An alternative MILP model formulation

We propose an alternative MILP model for model (P) defined by
Eqs. (1)–(5). In the same spirit as in the classical economic lot sizing
problem, the quantity manufactured (or remanufactured) in a given
period is set to meet part or all the requirements of an integer
number of periods into the future. With the option of remanufactur-
ing now available, the manufacturing quantity in period i;QS

i , may
only be used to satisfy part of the total requirements of period i to
some future period j. Similarly, if we also remanufacture QR

i units in
period i, this quantity may also be used to meet part of the total
demand of period i to some future period j0:

For 1r ir jrN, we let dij ¼∑j
k ¼ iDk and rij ¼∑j

k ¼ iRk. For
notational convenience, we also add two fictitious periods 0 and
ðNþ1Þ, in which demands are zero and so no manufacturing
activity whatsoever happens. We further define the following:

xSij ¼
1 if manufacturing occurs in period i and next in period ðjþ1Þ
0 Otherwise 0r ir jrN

(

and

xRij ¼
1 if remanufacturing occurs in period i and next in period ðjþ1Þ
0 Otherwise 0r ir jrN

(

To be more clear, xSii ðxRiiÞ¼1 implies that new (core) products are
successively manufactured (remanufactured) in periods i and iþ1.
To explain further, xS0jðxR0jÞ¼1 means that no manufacturing (rema-

nufacturing) occurs in the first j periods and the first manufactur-
ing (remanufacturing) occurs in period ðjþ1Þ. Not to mention,
xS00ðxR00Þ¼ 1 implies that a manufacturing (remanufacturing)
occurs in period 1. Finally, xS0NðxR0NÞ¼1 means that no manufactur-
ing (remanufacturing) occurs from beginning to end.

The MILP problem ðP0Þ can be given by

Min hs ∑
N

i ¼ 1
Isi þhR ∑

N

i ¼ 1
IRi þKs ∑

N

i ¼ 1
∑
N

j ¼ i
xSijþKR ∑

N

i ¼ 1
∑
N

j ¼ i
xRij ð6Þ

ISi ¼ ISi�1þQS
i þQR

i �Di 8 i¼ 1;2;…;N ð7Þ

IRi ¼ IRi�1þRi�QR
i 8 i¼ 1;2;…;N ð8Þ

QS
i r ∑

N

j ¼ i
dijx

S
ij 8 i¼ 1;2;…;N ð9Þ

QR
i r ∑

N

j ¼ i
dijx

R
ij 8 i¼ 1;2;…;N ð10Þ

∑
N

j ¼ 0
xS0j ¼ 1 ð11Þ

∑
j

i ¼ 0
xSij ¼ ∑

N

k ¼ jþ1
xSjþ1ð Þk 8 j¼ 1;2;…;N�1 ð12Þ

∑
N

i ¼ 0
xSiN ¼ 1 ð13Þ

∑
N

j ¼ 0
xR0j ¼ 1 ð14Þ

∑
j

i ¼ 0
xRij ¼ ∑

N

k ¼ jþ1
xRjþ1ð Þk 8 j¼ 1;2;…;N�1 ð15Þ

∑
N

j ¼ 0
xRjN ¼ 1 ð16Þ
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xSij; x
R
ijA 0;1f g;QS

i ;Q
R
i ; I

S
i ; I

R
i Z0; 8 i¼ 0;1;2;…;N

and j¼ 0;1;2;…;N

Eqs. (7) and (8) are inventory balance equations. Eq. (9) states that
if new products are manufactured in period i and no manufactur-
ing is done in periods ðiþ1Þ; ðiþ2Þ;…; j, then the quantity of new
products manufactured must be less than or equal to the demand
in periods i; ðiþ1Þ;…; j. Similarly, Eq. (10) states that if returned
products are remanufactured in period i and no remanufacturing is
done in periods ðiþ1Þ; ðiþ2Þ;…; j, then the quantity remanufac-
tured must be less than or equal to the total demand in periods
i; ðiþ1Þ;…; j.

Eqs. (11)–(13) determine when to manufacture. Eq. (11) states
that either the first manufacturing occurs in period j; 1r jrN, so
that xS0ðj�1Þ ¼ 1 or there is no manufacturing at all and xS0N ¼ 1.
Eq. (12) states that if (and only if) a manufacturing lot covers
demands for a set of periods ending at period j, the next lot covers
the demand for period ðjþ1Þ. Eq. (13) states that either there is no
manufacturing, so that xS0N ¼ 1 or a manufacturing lot covers some
periods ending in period N.

Conversely, Eqs. (14)–(16) determine when to remanufacture.
Eq. (14) states that either the first remanufacturing occurs in
period j; 1r jrN, so that xR0 j�1ð Þ ¼ 1 or there is no remanufactur-
ing at all and xR0N ¼ 1. Eq. (15) states that if (and only if) a
remanufacturing lot covers some periods ending in period j, the
next lot covers period ðjþ1Þ. Eq. (16) states that either there is no
remanufacturing, so that xR0N ¼ 1 or a remanufacturing lot covers
some periods ending in period N.

In Theorem 2, we show that this alternative model ðP0Þ has one
important advantage over the earlier model (P) discussed in
Section 2. The lower bounds obtained when the integrality
constraints are relaxed are, in general, much better.

Theorem 2. Let P and P′ be the LP relaxation of P and P′,
respectively. Every feasible solution to P′ gives a feasible solution to P.
Accordingly, the objective function value (OFV), associated with P′ yields
a lower bound that is, at least, as large as that for the corresponding OFV
of P.

Proof. See Appendix.■

5. A constructive heuristic solution procedure for solving
model (P

0
)

This section discusses a heuristic solution procedure that can
be used to solve model (P0). The idea behind our heuristic stems
from the following realization. Each feasible solution to model (P0)
can be decomposed into a series of well-structured blocks with
distinct patterns in the set-ups for manufacturing and remanu-
facturing. Each block consists of a set of consecutive periods.
A block may contain a string of manufacturing set-ups, a string of
remanufacturing set-ups or both: manufacturing set-ups followed
by remanufacturing set-ups. More precisely, a block ðs; tÞ is defined
as a set of consecutive periods s; sþ1;…; t such that it contains at
least one period in which a manufacturing or remanufacturing set-
up occurs and if there exists a manufacturing set-up in period
i; sr irt and a remanufacturing set-up in period j, sr jrt, then
ir j. Table 2 illustrates examples of block patterns.

In example A, two manufacturing set-ups in periods 1 and 3 are
followed by a remanufacturing set-up in period 4. Therefore,
periods 1–6 constitute a block. The second example B shows a
block with periods 1–4 where both manufacturing and remanu-
facturing are done in period 3. In example C, periods 1–5 do not
constitute a block because the remanufacturing set-up in period
4 comes before the manufacturing set-up in period 5. However,
periods 1–4 constitute a block, while period 5 is a block by itself.

Alternatively, for this example, we may also consider three
separate blocks, periods 1–3 as one block, period 4 as another,
and period 5 as the third block. This block structure forms the
backbone of our heuristic. Since every feasible solution comprises
a chain of blocks, our problem boils down to the construction of an
optimal chain of blocks. Further details are given next.

5.1. Heuristic construction

For each period i demand Di can be viewed from 2 separate
sources, one that manufactures new products only, and another
one that remanufactures returned units only. The demand in
period i, Di can then be partitioned into 2 demand components
DS
i and DR

i , where Di ¼DS
i þ DR

i ; i¼ 1; 2;…;N. Thus, for 1r irN,
we let DS

i be the portion of demand in period i allocated to the
manufacturing of new products and DR

i be the portion of demand
in period i allocated to the remanufacturing of returned products.

With this interpretation, for any given DS
i values 8 i, the

manufacturing quantities QS
i 8 i can be optimally computed in

polynomial time using a shortest-path type dynamic program.
Similarly, given DR

i values such that DR
i ¼ Di�DS

i 8 i, the optimal
remanufacturing quantities QR

i 8 i can also be calculated using a
polynomial-time algorithm of a similar nature.

Consider a network with ðNþ1Þ nodes numbered i¼ 0; 1;
2;…;N: Each node i40 represents the end of period i and node
0 represents the beginning of period 1. For 1r ir jrN, an arc
from node i to node j represents that production of new units
occurs in period ðiþ1Þ, does not occur in any of the following
periods ðiþ2Þ to j, and then occurs again in period ðjþ1Þ. Hence,
the lot size in period ðiþ1Þ is given by QS

iþ1¼ DS
iþ1þDS

iþ2þ⋯þDS
j .

Every path from node 0 to node N in this network corresponds to a
production schedule and vice versa. However, a minimum cost
path from node 0 to node N gives an optimal production schedule.
In the same fashion, we can represent the remanufacturing
problem of meeting the DR

i demands at minimum cost with a
similar network.

Let us focus on the problem of satisfying all the demands from
periods S to t, where 1rsrtrN. In solving this problem, we
restrict our attention to solutions that will exhibit the block format
described above. We say that this problem is associated with block
ðs; tÞ that begins and ends with the following inventories:
ISs�1 ¼ 0; ISt ¼ 0; IRs�1 ¼ γs�1; and IRt ¼ γt . The symbol γi repre-
sents an appropriately chosen target inventory of returned pro-
ducts for period i whenever a block ends in period i: In our
implementation, we set γ0 ¼ IR0 and then recursively compute
γi; 8 i¼ 1;2;…;N; as γi ¼ maxð0; γi�1þRi�DiÞ:

Notice that for the important special case in which DiZRi8 i;
the γi values will be equal to zero for each i. In other words, if
demand is greater than returns in each period, then each block
begins and ends with zero inventories of new and returned
products. However, if DioRi for some i, then it may not be feasible
to end a block with zero inventory of returned products. In such a
case, we set positive target inventories of ISi ¼ 0; and IRi ¼ γi
whenever a block ends in period i. This choice of target inventories
for each block is rationalized by the following theorem.

Table 2
Examples of block patterns.

A B C

i 1 2 3 4 5 6 i 1 2 3 4 i 1 2 3 4 5
ySi 1 0 1 0 0 0 ySi 1 0 1 0 ySi 1 0 0 0 1

yRi 0 0 0 1 0 0 yRi 0 0 1 1 yRi 0 0 0 1 0

M. Fazle Baki et al. / Computers & Operations Research 43 (2014) 225–236228



Theorem 3. (1) For every feasible solution to ðPÞ, ISi þ IRi Zγi 8 i. (2)
There exists a solution to ðPÞ for which ISi ¼ IS0 and IRi ¼ γi 8 i.

Proof. See the appendix.■

It is always feasible to construct a block ending in period i with
target inventories equal to ISi ¼ 0; and IRi ¼ γi. Such target inven-
tories may not be optimal for the block in question. However, this
approach assures simplicity in that it side-steps the need to
introduce an additional state variable to keep track of ending
inventories in the dynamic programming recursion explained
below. Clearly, the addition of another variable will render the
computations and the proposed heuristic much more complicated.

Let cðs; tÞ be the optimal total set-up and holding costs asso-
ciated with block ðs; tÞ. Unlike the approach taken in Li et al. [17],
which solves the problem associated with block ðs; tÞ as a linear
program in parts of the heuristic, we shall use a different approach
here and show how to compute cðs; tÞ by using two separate
Wagner–Whitin dynamic programs.

Towards this end, let f uðs; tÞ be the minimum total set-up plus
carrying costs of satisfying the demand DS

i through manufacturing
only from period S to some period u, srurt. In the same way, let
gvðs; tÞ be the corresponding costs of meeting the demands DR

i
through remanufacturing only from some period v to period t,
srurvrt. To compute f uðs; tÞ and gvðs; tÞ, we need to show how
the DS

i ðs; tÞ and DR
i ðs; tÞ values for block ðs; tÞ are constructed and at

the same time explain how periods u and v are determined.
First, if Di ¼ 0 8sr irt, we set QS

i ¼QR
i ¼ 0 8sr irt. The cost

of block ðs; tÞ will be hRðγs�1ðt�sþ1Þþ∑t
i ¼ sRiðt� iþ1ÞÞ. Other-

wise, if Dia0 for some i; sr irt,DS
i ðs; tÞ and DR

i ðs; tÞ 8sr irt are
calculated as shown below in steps (a)–(c). We then apply
dynamic programming recursions to compute the QS

i and QR
i

quantities, and the resulting cost of block s; tð Þ.
If γs�1þ∑t

i ¼ sRi ¼ 0, then block ðs; tÞ is a manufacture-only
block. In this case, we set DS

i ðs; tÞ ¼Di8 i; DR
i ðs; tÞ ¼ 08 i and u¼ t.

If γs�1þ∑t
i ¼ sRi40, let δi be the shortage of returns corre-

sponding to period i. We initialize δs�1 ¼ �γs�1 and recursively
compute δi ¼ δi�1þDi�Ri8sr irt: If max

i
ðδiÞr0, there is no

shortage of returns and block ðs; tÞ is a remanufacture-only block.
As a result, we set DS

i ðs; tÞ ¼ 0 8 i;DR
i ðs; tÞ ¼Di8 i and v¼ s.

If max
i

ðδiÞ40, block ðs; tÞ is a mixed block and the total
manufacturing and remanufacturing quantities are set equal
tomax

i
ðδiÞ and ∑t

i ¼ sDi�max
i

ðδiÞ, respectively. We let v be the
largest integer such that

Δðs; tÞ ¼ ∑
t

i ¼ v
Di� ∑

t

i ¼ s
Diþmax

i
ðδiÞZ0:

If Δðs; tÞ ¼ 0, we let u¼ v�1; otherwise we let u¼ v. In this case,
DS
i ðs; tÞ and DR

i ðs; tÞ are given by

DS
i ðs; tÞ ¼

Di; sr iov

Δðs; tÞ; i¼ v

0; vo irt

8><
>:

DR
i ðs; tÞ ¼Di�DS

i ðs; tÞ ; sr irt;

with the understanding that if v¼ s or v¼ t then fsr iovg and
fvo irtg are empty sets.

We observe that both f uðs; tÞ and gvðs; tÞ can be computed by
means of Wagner–Whitin dynamic programming (DP) recursions.
The procedures for calculating f uðs; tÞ and gvðs; tÞare shown as
Recursions 1 and 2. Moreover, the total cost corresponding to
block(s, t) is given by cðs; tÞ ¼ f uðs; tÞþgvðs; tÞ:

Recursion 1. Let e′i;jðs; tÞ ¼ KSþhS∑j
k ¼ iþ1ðk� i�1ÞDS

kðs�1Þr io j
ru and f s�1ðs; tÞ ¼ 0: Then f jðs; tÞ ¼min

i
ðf iðs; tÞþe′i;jðs; tÞ = i¼ s

�1; s;…; j�1Þ for j¼ s; sþ1;…;u:

To explain further, in Recursion 1, e
0
i;jðs; tÞ is the total cost of

manufacturing in period i to meet the demands DS
k for periods

k¼ i; iþ1;…; j, whereas f jðs; tÞ is the minimum total cost for
periods s; sþ1;…; j. In Recursion 2, e″i;jðs; tÞ and gjðs; tÞ are analo-
gously defined except that remanufacturing is used to meet the
demands DR

k : Note that e″i;jðs; tÞ assumes a finite value only if enough
returns are available to satisfy the DR

k values for periods k¼ v;
vþ1;…; j. In addition, in recursion 2, gv�1ðs; tÞ represents the total
holding costs of keeping in storage all the returns for periods
s; sþ1;…; v�1 for possible use in periods v to t.

Recursion 2. For i and j such that ðv�1Þr io jrt, let

e″i;jðs; tÞ ¼

0 if γs�1þ ∑
iþ1

k ¼ s
Rk ¼ 0

KRþðhS�hRÞ ∑
j

k ¼ iþ1
ðk� i�1ÞDR

k if γs�1þ ∑
iþ1

k ¼ s
RkZ ∑

j

k ¼ v
DR
k 40

1 Otherwise

8>>>>>><
>>>>>>:

and

gv�1ðs; tÞ ¼ hR ∑
t

l ¼ s
γs�1þ ∑

l

k ¼ s
Rk� ∑

l

k ¼ s
DR
k

 !
:

Then

gjðs; tÞ ¼min
i
ðgiðs; tÞþe″i;jðs; tÞ =i¼ v�1; v;…; j�1Þ for

j¼ v; vþ1;…; t

Finally we find the optimal blocks by using the following
shortest-path algorithm.

Recursion 3. Set hð0Þ ¼ 0 and recursively compute hðjÞ ¼min
i

ðhðiÞ
þcðiþ1; jÞ j i¼ 0; 1;…; j�1Þ for j¼ 1; 2; 3;…;N: The optimal
blocks can be found by backtracking.

5.2. Heuristic improvement

In what follows, we propose some improvement steps that can
be used individually or in combination to further reduce the cost
difference between the heuristic solution and the optimal solution.

Inter-block trapezoid improvement: If 2 remanufacturing set-ups
occur between 2 manufacturing set-ups, then there can be an
improvement opportunity. More specifically, if remanufactur-
ing occurs in periods j and k and manufacturing occurs in
periods i and l with ir joko l and w¼ QR

j o minðQS
i ;Q

R
k ;Q

S
l Þ,

then an improved schedule is obtained by moving the manu-
facturing of w units from period l to i and by further moving the
remanufacturing of w units from period j to k if

KRþwðhS�hRÞðk� jÞ�whSðl� iÞ40

Elimination of remanufacturing set-up: For each period j with a
remanufacturing set-up, an improved schedule can be obtained
by eliminating a remanufacturing set-up from period j and
manufacturing QR

j units in period ir j if savings

KR�KSð1�ySi Þ�QR
j fhRðN� jþ1ÞþhSðj� iÞg40

We search for j backwards and choose period i which gives a
maximum positive savings.
Mutual optimal solution: For a given remanufacturing plan, the
manufacturing schedule can be optimized. We allocate demand
to manufacturing as follows: let IS0 ¼ 0 and do the following for
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i¼ 1; 2;…;N

ISi ¼ maxð0; ISi�1þQR
i �DiÞ

DS
i ¼ maxð0;Di� ISi�1�QR

i Þ
Given these DS

i values 8 i, the Q S
i values 8 i can be computed

using Recursion 1 with s¼ 1;u¼ t ¼N:

Similarly, for a given manufacturing plan, the remanufacturing
schedule can be optimized. Let IS0 ¼ 0 and do the following for
i¼ 1; 2;…;N,

ISi ¼ maxð0; ISi�1þQS
i �DiÞ

DR
i ¼ maxð0;Di� ISi�1�QS

i Þ
Given these DR

i values 8 i, the QR
i values 8 i can be computed using

Recursion 2 with s¼ v¼ 1; t ¼N, γ0 ¼ 0; γN ¼∑N
i ¼ 1Q

S
i

þ∑N
i ¼ 1Ri �∑N

i ¼ 1Di.

5.3. Illustrative numerical example

We illustrate our constructive heuristic by applying it to a
5-period problem with the following parameter values. We let
N¼ 5; D1 ¼ 23; R1 ¼ 40; D2 ¼ 14; R2 ¼ 11; D3 ¼ 25; R3 ¼ 7,
D4 ¼ 0; R4 ¼ 5, D5 ¼ 72; R5 ¼ 17, KS ¼ $40, KR ¼ $20; hS ¼ $1:00;
and hR ¼ $0:60.

The results of the procedure are presented in a table format and
are summarized in Table 3.

A shortest path in Fig 3 is 0–2–4–5 with a cost of $167.2. Hence,
the corresponding blocks are [1,2], [3,4] and [5,5].

The corresponding production quantities are given by
QS

1 ¼ 0; QS
2 ¼ 0; QS

3 ¼ 4; QS
4 ¼ 0; QS

5 ¼ 50; QR
1 ¼ 37; QR

2 ¼ 0; QR
3

¼ 21; QR
4 ¼ 0; and QR

5 ¼ 22:
Furthermore, after applying improvement step 2, the optimal

solution to the problem is given by QS
1 ¼ 0; QS

2 ¼ 0; QS
3 ¼ 4;

QS
4 ¼ 0; QS

5 ¼ 72; QR
1 ¼ 37; QR

2 ¼ 0; QR
3 ¼ 21; QR

4 ¼ 0; and QR
5 ¼ 0

yielding a minimum cost of $160.40.

6. Numerical experience

We test our heuristic solution procedure described in Section 5
for 23,760 test problems with 12-period planning horizon. These
tests have been conducted on a HP Z400 64-bit computer
equipped with an Intel Xeon CPU with speed of 2.67 GHz and
6 GiB DDR3 memory. The computing environment includes

Gentoo Linux operating system and compiler GCC version 4.7.1.
Lastly, the heuristic was coded in Cþþ programming language.

Moreover, to allow the reader to make meaningful comparison
of the results reported here to those discussed in Teunter et al. [29]
and Schulz [23], we use the same numerical experiment given in
Teunter et al. [29] to test the proposed heuristic. As in Teunter
et al. [29], we generate demand and return flows over the 12
periods of the planning horizon as follows: Di ¼ μþτði�1Þ
þa sin ð2πi=cÞþdðπ=2Þ� �þεi for i¼ 1;…;N, where m is the start-
ing level of pattern, τ is the trend level, a is the amplitude of the
cycle, c is the cycle length, d represents the peak of the cycle and
εiði¼ 1;…;NÞ are independent normally distributed random vari-
ables with standard deviation s. This model allows one to generate
a wide range of demand and return patterns (stationary, linearly
increasing and/or decreasing, and seasonal) that are likely to be
encountered in practice.

The set-up costs for manufacturing and remanufacturing are
given the values 200, 500, and 2000. The holding cost for service-
able is normalized to 1 and the holding cost for cores is varied as
0.2, 0.5, and 0.8. In addition, as in the Teunter et al. [29] study, we
generate and test 4 separate realizations for each demand and
return patterns. Altogether, our experiment includes a total of
23,760 test problems – 10 types of demand patterns, 22 types of
return patterns, 3 levels for each of the cost parameters KS, KR and
hR, and 4 replicates for each treatment combination. The data set
and cost parameters used in our experiment are reproduced here
in Table 4 for reader's convenience.

To provide insight, we conduct our numerical experiment in
3 phases. In the first phase, we consider the special, but important,
case in which the demand is greater than the amount returned in
each period of the planning horizon, i.e. DiZRi8 i. This situation is
likely to be the case for products experiencing rapid growth, or
that are in the mature stage of the life cycle. Furthermore, for this
situation, we restrict our attention to policies that will reuse all the
acquired cores by the end of the planning horizon, i.e. IRN ¼ 0. Such
a policy is likely to have practical appeal to firms for which the
acquired cores have no value beyond the planning horizon and
also since disposing of them is considered environmentally
unfriendly. The Breeze-Eastern company can be cited as an
example for this situation [18]. Breeze-Eastern makes, among
other products, cargo hooks, as well as rescue hoist systems for
helicopters. As part of its sustainability strategy, Breeze-Eastern
collects and remanufactures used cargo hooks. Once remanufac-
tured, these hooks are as good as new. Since the demand rate is
much higher than the return rate of used cargo hooks, Breeze-
Eastern remanufactures the entire inventory of collected hooks
over the planning period.

For this special case, we have γi ¼ 0 8 i. To find the different
components defining block s; tð Þ, we let δi ¼∑i

j ¼ sðDj�RjÞ, and
let v be the largest integer such that: Δðs; tÞ ¼∑t

i ¼ vDi�∑t
i ¼ sRi.

Since max
i

ðδiÞ ¼∑t
j ¼ sðDj�RjÞZ0, the case with remanufacture-only

blocks never arises. The blocks are either empty (Di ¼ 0Þ or
manufacture-only (Ri ¼ 0Þ or mixed. In addition, improvement
steps 1 and 3 can be helpful in this situation. We note that this
special case of model Pð Þ with the additional constraints that
DiZRi 8 i and ISN ¼ IRN ¼ 0 is also an NP-hard optimization problem [3].

In the second phase of our numerical study, we put our
attention on the general case, i.e. problem Pð Þ. Table 5 summarizes
the results of applying our heuristic algorithm and improvement
scheme for the 23,760 test problems. The results corresponding to
the special case DiZRi8 i and ISN ¼ IRN ¼ 0 are shown in parentheses
in the tables and the comments we make below.

Table 5 shows the average percentage cost errors (increase in
total costs when compared to the cost of optimal solutions) and
the standard deviation of errors for the different treatment combina-
tions. As can be seen from this table, our heuristic generates solutions

Table 3
Results of the heuristic procedure applied to the numerical example given in
Section 5.3.

Period, i 1 2 3 4 5 Cost of block
γi 17 14 0 5 0

Block DS
i ;D

R
i ;Q

S
i ;Q

R
i

1,1 0,23,0,23 30.2
1,2 0,23,0,37 0,14,0,0 44.2
1,3 4,19,4,33 0,14,0,0 0,25,0,25 109
1,4 4,19,4,33 0,14,0,0 0,25,0,25 0,0,0,0 112
1,5 23,0,54,0 14,0,0,0 17,8,0,8 0,0,0,0 0,72,0,72 245.6
2,2 0,14,0,14 28.6
2,3 4,10,4,10 0,25,0,25 90.8
2,4 4,10,4,10 0,25,0,25 0,0,0,0 93.8
2,5 14,0,39,0 25,0,0,0 0,0,0,0 15,57,15,57 186.8
3,3 4,21,4,21 60
3,4 4,21,4,21 0,0,0,0 63
3,5 25,0,25,0 0,0,0,0 29,43,29,43 128.2
4,4 0,0,0,0 3
4,5 0,0,0,0 50,22,50,22 63
5,5 50,22,50,22 60
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within 4.28% (2.24%) of optimality over all instances. That is, the
difference in total costs by applying this solution technique to these
sample problems averaged only 4.28% (2.24%) above the cost for
optimal solutions found by solving models (P) or (P

0
) using CPLEX.

As is clearly shown, these results compare quite favorably
against those of the Silver–Meal (SM) heuristic, which was used
and tested in Teunter et al. [29] and Schulz [23]. The heuristic in
Teunter et al. resulted in solutions within 8.3% of optimal solution
on average. Teunter et al. tested other lot-sizing heuristics as well
such as Least Unit Cost (LUC) and Part Period Balancing (PPB).
Amazingly, they found that SM was the best performing heuristic
in the group in terms of cost error. By incorporating additional
improvement options to the Silver–Meal heuristic, Schulz [23] was
able to reduce the average error gap to less than 3%. This is quite the
feat. However, contrary to the more extensive experiment conducted
in Teunter et al. [29] and also in our study, Schulz' results were limited
only to the case with stationary demand and return patterns.

On top of all this, we compare the lower bounds obtained by
solving the LP relaxations P and P′ to problems P and P′,
respectively, for a total of 23,760 problem settings. We found that
the minimum objective function value (OFV) associated with P
was on the average about 55.9% (76%) below the minimum OFV to
the integer program produced by CPLEX. On the other hand, the
minimum OFV associated with P′ was on the average 48.9% (53%)
below the corresponding benchmark value. In other words, the
MILP formulation P′ shown in (6)–(16), in general, yields much
better bounds when the 0–1 restrictions on the variables are
relaxed. The improved bounds can be used when selecting a

bounding strategy in searching for an optimal solution to the
original problem (see [17]).

In the third phase of our numerical testing, we want to analyze
the variability of the percentage cost error (PCE) through DOE
(design of experiments) to see how some of the key parameters of
the model affect this quantity. In our case, lower numbers of PCE
are more desirable than higher numbers. In order to keep the
number of factors that need to be investigated to a reasonable size,
and to make the interpretation of the results somewhat easier, we
consider the following smaller experimental design. Each cost
factor is given 2 levels: low and high, except for hS which is fixed to
1. In particular, KS is given the values 200 and 2000; KR is set to
200 and 500; hR is varied as 0.2 and 0.8. In regards to the demand
factor, we also consider 2 levels, D1 and D2. Levels D1 and D2

describe the situation in which the demand in each period of the
12-period planning horizon is drawn from a normal distribution
with mean equal to 100 and standard deviations equal to 10 and
20, respectively. Likewise, the return factor is allowed to take on
4 levels, R1, R2, R3 and R4. Levels R1 and R2 (R3 and R4) represent the
scenario in which the amount returned in each period of the 12-
period planning horizon comes from a normal distribution with
mean equal to 30 (70), and standard deviations equal to 3 and 6 (7
and 14), respectively. The purpose of this selection is to find out
whether both the variance in returns and the return ratio (the average
return rate relative to the mean demand rate) are key influencers of
PCE. The return ratio changes from a low of 30% to a high of 70%.

Furthermore, the experiment is designed and conducted by
replicating each of the 64 treatment combinations 5 times for a

Table 4
Data set used in the computational study.

Demand pattern Return pattern

m s τ a c d m s τ a c d

Stationary Stationary
100 10 0 0 n.a. n.a. (1) 30 3 0 0 n.a. n.a.
100 20 0 0 n.a. n.a. (2) 30 6 0 0 n.a. n.a.

(3) 50 5 0 0 n.a. n.a.
(4) 50 10 0 0 n.a. n.a.
(5) 70 7 0 0 n.a. n.a.
(6) 70 14 0 0 n.a. n.a.

Positive trend Positive trend
100 10 10 0 n.a. n.a. (1) 30 3 3 0 n.a. n.a.
100 10 20 0 n.a. n.a. (2) 30 3 6 0 n.a. n.a.

(3) 70 7 7 0 n.a. n.a.
(4) 70 7 14 0 n.a. n.a.

Negative trend Negative trend
210 10 �10 0 n.a. n.a. (1) 63 3 �3 0 n.a. n.a.
320 10 �20 0 n.a. n.a. (2) 96 3 �6 0 n.a. n.a.

(3) 147 7 �7 0 n.a. n.a.
(4) 224 7 �14 0 n.a. n.a.

Seasonal 1 (peak in middle) Seasonal 1 (peak in the middle)
100 10 0 20 12 1 (1) 30 3 0 6 12 1
100 10 0 40 12 1 (2) 30 3 0 12 12 1

(3) 70 7 0 14 12 1
(4) 70 7 0 28 12 1

Seasonal 2 (valley in middle) Seasonal 2 (valley in middle)
100 10 0 20 12 3 (1) 30 3 0 6 12 3
100 10 0 40 12 3 (2) 30 3 0 12 12 3

(3) 70 7 0 14 12 3
(4) 70 7 0 28 12 3

Cost parameters
Parameter Values
KS, KR 200, 500, 2000
hR 0.2, 0.5, 0.8
hS 1
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total of 320 experimental runs. To reduce the experimental error,
the 320 runs are performed in completely random order. We conduct
the analysis of variance (ANOVA) of PCE for this full factorial
design using the statistical software package Minitab 15. Table 6

shows the ANOVA output from Minitab, while Figs. 4 and 5 display
the main effect and interaction plots for PCE.

As can be seen from Table 6, there is a strong evidence, as
judged by the p-valueso0.0005 and the main effects plots, to
suggest that KS, KR, hR, and the return-ratio level have a significant
influence on PCE. For example, PCE increases as KS and KR are
separately increased. This can be the case because our heuristic
procedure, as it is designed, may at times include undue set-ups
that can be avoided. On the contrary, PCE shows a moderate
decrease when hR increases. This can happen when solving the
remanufacturing problem associated with each block as our
heuristic may sometimes add extraneous remanufacturing set-
ups that can also be eliminated when hR is low.

To continue then, we observe that an increase in the return
ratio from 30% to 70% has a clear influence on PCE, which increases
from about 2% to roughly 8%. This is in agreement with the results
of Table 5. Notice that the R1 and R2 levels (low number of returns
in relation to the demand rate) correspond to the case in which
DiZRi for i¼ 1; 2;…;N in most test examples. As demonstrated in
Table 5, our heuristic performs very well in this setting. When the
return ratio is high (as in R3 and R4), our heuristic may occasionally
add some unnecessary manufacturing set-ups that can lead to
higher costs especially when KS is high (see Fig. 5). Interestingly,
the results of Table 6 and Figs. 4 and 5 suggest that an increase in
the variability of demand per period, or amount returned per
period has no significant effect on PCE.

There is strong evidence to suggest the presence of important
interaction effects on PCE between some key parameters. As
shown in Table 6 and Fig. 5, the most influential parameters on
PCE are KS, KR, hR, and the return ratio judging by their significant
2-way interactions ( KS and hR, KR and hR, and KS and return ratio)
and 3-way interactions between KS(or KR), hR and return ratio. For
example, Fig. 5 shows that when KS is low, PCE increases slightly
when hR changes from low to high. However, the reverse effect
occurs when KS is high. Comparatively, when KS is high, Fig. 5
reveals that PCE experiences a steep increase as the return ratio
goes from low to high. These results are not only insightful, but also
useful in that they may be used to devise other improvement
schemes that will reduce the error gap even further.

In terms of solution speed and PCE, our heuristic finds a near-
optimal solution very efficiently compared to the time taken by
CPLEX to solve the MILP model for large planning horizon. Table 7
shows the run times (in milliseconds) and PCE side by side as the
number of periods N is increased. The results of Table 7 are based
on the following problem setting: demand is assumed to be
normally distributed with mean equal to 100 and standard
deviation equal to 10; the amount returned is assumed to be
normally distributed with mean equal to 30 and standard devia-
tion equal to 3; the cost parameters are given the values
KS¼KR¼200, hS¼1, and hR¼0.2. For each size of the planning
horizon N, we generate 10 random problem instances, and
measure the PCE and the times taken by CPLEX, our heuristic,
and CPLEX when started with the heuristic solution. Afterwards,
we average the PCE and the resulting times of these 10 replications.

As can be seen from Table 7, our heuristic handles even larger
problems very efficiently and effectively. While the run times of
the heuristic and CPLEX started at the heuristic solution are much
smaller than the run times of CPLEX, the PCE ranges from 1.05% to
4.20%. It is important to comment here that our heuristic solution
procedure presented in Section 5 makes use of 3 separate
Wagner–Whitin dynamic programs to find a solution to model
(P) or (P

0
). The run times reported in Table 7 are based on a

straightforward programming and implementation of the WW
algorithm which requires OðN2Þ time, where N is the number of
periods of the problem instance. Recursions 1 and 2 in our
heuristic algorithm draw upon the WW algorithm to evaluate at

Table 5
Performance of the heuristic method based on the data shown in Table 4.

Percentage cost error

Average Standard deviation
All instances 4.28 (2.24) 8.46 ( 2.94)
Demand pattern

Stationary
Small variance 4.10 (1.76) 6.93 (2.39)
Large variance 4.09 (1.95) 6.80 (2.41)

Positive trend
Small trend 4.00 (3.00) 8.27 (3.40)
Large trend 3.42 (3.61) 5.79 (4.18)

Negative trend
Small trend 5.19 (2.48) 11.86 (3.33)
Large trend 4.74 (1.29) 13.22 (2.49)

Peak in the middle
Small amplitude 4.49 ( 2.14) 7.54 (2.49)
Large amplitude 4.79 (2.60) 8.43 (2.83)

Valley in the middle
Small amplitude 4.05 (1.80) 6.12 (2.30)
Large amplitude 3.86 (1.79) 5.84 (2.15)
Return pattern

Stationary
(1) 3.09 (1.73) 4.96 (2.74)
(2) 3.43 (1.82) 5.26 (2.96)
(3) 5.27 (2.45) 11.49 (2.74)
(4) 4.87 (2.61) 12.94 (2.85)
(5) 4.65 (2.46) 8.52 (2.99)
(6) 4.81 (2.59) 8.70 (3.03)

Positive trend
(1) 3.09 (2.70) 4.96 (2.93)
(2) 3.43 (2.34) 5.26 (2.34)
(3) 5.27 (1.53) 11.49 (2.68)
(4) 4.87 (2.01) 12.94 (2.63)

Negative trend
(1) 4.94 (2.69) 7.39 (3.09)
(2) 7.22 (2.63) 13.74 (3.43)
(3) 10.50 (1.29) 17.50 (2.10)
(4) 1.26 (2.48) 2.40 (2.84)

Peak in middle
(1) 2.47 (1.62) 4.42 (2.59)
(2) 2.46 (1.62) 4.22 (2.47)
(3) 4.86 (2.55) 8.46 (3.03)
(4) 4.80 (2.36) 8.66 (2.91)

Valley in middle
(1) 2.93 (2.17) 5.06 (3.34)
(2) 3.03 (2.31) 5.26 (3.39)
(3) 4.98 (2.61) 9.09 (3.13)
(4) 5.76 (2.74) 9.46 (3.29)

Manufacturing set-up cost KS

200 3.33 (3.65) 5.93 (3.50)
500 4.11 (2.30) 8.67 (2.63)
2000 5.47 (0.78) 10.21 (1.59)

Remanufacturing set-up cost KR

200 1.91 (1.10) 4.32 (1.83)
500 6.53 (2.66) 10.29 (2.89)
2000 4.36 (2.97) 8.85 (3.49)

Returns holding cost hR

0.2 4.74 (2.13) 8.19 (2.54)
0.5 5.07 (2.32) 7.94 (2.96)
0.8 3.05 (2.28) 9.06 (3.26)

The values in parentheses correspond to the special case with DiZRi 8 i and ISN ¼
IRN ¼ 0.
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most N Nþ1ð Þ=2 blocks to find the optimal manufacturing and
remanufacturing quantities. The capability of our algorithm can be
said to require no more than OðN4Þ time in general. We note,
however, that researchers have developed much faster solution
procedures for the WW algorithm requiring only O Nð Þ time for
solving problem instances for a cost structure similar to ours
[7, 31,1]). Consequently, our heuristic algorithm can be imple-
mented to require at most OðN2Þ time. This will lead to substan-
tially lower solution times than the ones displayed in Table 7.

7. Conclusion

In today's production environments, remanufacturing is an
established practice. This paper studies the dynamic lot size
problem of product returns and remanufacturing. This problem
is difficult to solve in the sense that there is no known algorithm
that can find the optimal solution in polynomial time. To remedy
this, a need for a heuristic method to solve this problem effectively
is of paramount importance. In this paper, we propose such a
heuristic that exploits and mimics the structure of optimal solu-
tions. The heuristic is based on the observation that a feasible

Table 6
Analysis of variance output from Minitab for percentage cost error.

Factor Type levels Values

KS Fixed 2 Low, high

KR Fixed 2 Low, high

hR Fixed 2 Low, high

D Fixed 2 D1 ; D2

R Fixed 4 R1; R2; R3 ; R4

Analysis of variance for error gap, using adjusted SS for tests
Source DF Seq SS Adj SS Adj MS F P

KS 1 477.73 477.73 477.73 44.99 0.000

KR 1 790.12 790.12 790.12 74.41 0.000

hR 1 216.24 216.24 216.24 20.36 0.000

D 1 0.74 0.74 0.74 0.07 0.792
R 33,599.00 3599.00 1199.67 112.98 0.000

KS � KR 1 1.88 1.88 1.88 0.18 0.674

KS � hR 1 435.97 435.97 435.97 41.06 0.000

KS � D 1 1.26 1.26 1.26 0.12 0.731

KS � R 3 733.34 733.34 244.45 23.02 0.000

KR � hR 1 68.87 68.87 68.87 6.49 0.011

KR � D 1 0.55 0.55 0.55 0.05 0.820

KR � R 3 71.46 71.46 23.82 2.24 0.084

hR � D 1 0.03 0.03 0.03 0.00 0.961

hR � R 3 34.91 34.91 11.64 1.10 0.351

D� R 3 50.61 50.61 16.87 1.59 0.192

KS � KR � hR 1 10.34 10.34 10.34 0.97 0.325

KS � KR � D 1 3.04 3.04 3.04 0.29 0.593

KS � KR � R 3 50.29 50.29 16.76 1.58 0.195

KS � hR � D 1 0.05 0.05 0.05 0.00 0.946

KS � hR � R 3 761.28 761.28 253.76 23.90 0.000

KS � D� R 3 28.69 28.69 9.56 0.90 0.441

KR � hR � D 1 6.42 6.42 6.42 0.60 0.437

KR � hR � R 3 107.43 107.43 35.81 3.37 0.019

Error 278 2952.00 2952.00 10.62
Total 319 10,402.24
S¼3.25863 R2 ¼ 71.62% R2(adj) ¼ 67.44%

Fig. 1. Reduction scheme.

Fig. 2. Construction of a lot sizing solution given a partition.

0 1 2 3 4 5
30.2 28.6 60 3 60

44.2 90.8 63 63

109 93.8 128.2

112 186.8

245.6

30.2 44.2 104.20 107.2 167.2

Fig. 3. Network representation of the illustrative numerical example.
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solution to this problem can be split into a sequence of blocks that
shows a distinct structure in the way in which both manufacturing
and remanufacturing set-ups occur. This has led us to construct an
efficient heuristic that makes use of dynamic programming and
the Wagner–Whithin algorithm to solve the problem.

Our extensive numerical testing shows that the procedure
performs extremely well in terms of percentage cost error, which

averages 4.85% in general, and 2.24% in the special case of
DiZRi 8 i and ISN ¼ IRN ¼ 0 in a total of 23,760 sample problems.
The heuristic's performance compares favorably vis-à-vis with
other competing heuristics such as the Silver–Meal that have been
proposed in the literature as a solution procedure for this problem.
Furthermore, since our heuristic is fast and produces high-quality
solutions, it can be embedded within CPLEX to speed up the
optimization process as shown in Table 7.

We also propose a totally different MILP formulation for the
problem that has not been studied before. The main advantage of
this formulation over the model formulation suggested in the
literature is that the LP relaxation of the model produces much
tighter bounds on solutions to the integer program. These bounds
can be used when selecting a bounding strategy.
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Table 7
Run times in milliseconds and percentage cost error as the number of periods, N, increases.

N CPLEX Heuristic CPLEX started at heuristic solution Percentage cost error

10 1957.9 0.0 34.4 4.1958
15 2926.4 0.0 75.7 1.0498
20 20,187.5 1.0 196.3 1.5608
25 25,690.3 2.0 710.8 2.3327
30 274,227.5 5.0 1281.3 1.1181
35 352,138.9 8.5 2250.8 1.5113
40 766,845.4 14.0 7210.9 1.9312
45 3,299,862.9 21.3 17,706.2 1.3706
50 5,036,067.1 31.6 36,575.3 1.2307
55 25,435,167.1 44.8 144,465.0 1.5356
60 109,118,058.4 62.2 441,652.9 1.3450
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Appendix: Proofs

Proof of Theorem 1
We use a reduction from the following variation of the Partition

problem, which is NP-hard: Given integers b1; b2;b3;…; bN with
∑N

i ¼ 1bi ¼ 2b; is there a subset ADf1;2;3;…;Ng with A
�� ��¼ k such

that ∑iAAbi ¼ b? The proof strategy is as follows: we give a
polynomial reduction scheme that builds an instance of problem
ðPÞ and a target cost. We clearly show that problem Pð Þ has a
solution with the target cost or better, if and only if, the Partition
problem has a solution with A

�� ��¼ k such that ∑iAAbi ¼ b. This
implies that if there exists a polynomial algorithm for problem Pð Þ,
then it can be used to solve the Partition problem. For further
details of this strategy, see Garey and Johnson [10].

Reduction scheme: Now we shall define an instance of
problem Pð Þ with 2Nþ1ð Þ periods as follows. Let KS ¼ 2kb,
hS ¼ 1=ðbþkÞ, KR ¼ hR ¼ 0, α¼ 2Nkbþ1ð Þ and β¼ αþ2bþð
1Þ bþkð Þ

Di ¼
β for i¼ 1;3;5;…; ð2N�1Þ
bi=2þ1 for i¼ 2;4;6;…;2N
βþbþk for i¼ 2Nþ1

8><
>:

Ri ¼
b iþ1ð Þ=2 þ1 for i¼ 1;3;5;…; 2N�1ð Þ
0 for i¼ 2;4;6;…;2N
β for i¼ 2Nþ1

8><
>:

Fig. 1 is used to show that there exists a solution to problem
Pð Þ with total cost rα, if and only if, a subset A satisfies the
Partition condition.
The if part: Suppose there exists a subset AD 1;2;f 3;…;Ng
with A

�� ��¼ k such that ∑iAAbi ¼ b. Define.

A1 ¼ f2j�1 j1r jrN; jAAg
A2 ¼ f2j j1r jrN; jAAg
A3 ¼ f2j�1 j1r jrN; j=2Ag
A4 ¼ f2j j1r jrN; j=2Ag
and let the manufacturing and remanufacturing quantities
be, respectively, given by

QS
i ¼

βþbðiþ1Þ=2þ1 for iAA1

β for iAA3

0 Otherwise

8><
>:

QR
i ¼

bi=2þ1 for iAA4

βþbþk for i¼ 2Nþ1
0 Otherwise

8><
>:

In addition, let IR0 ¼ 0. The lot-sizing policy stated above
yields the following ending inventories for serviceables and
cores, respectively,

ISi ¼
bðiþ1Þ=2þ1 for iAA1

0 for iAA3

0 Otherwise

8><
>:

IRi ¼

IRi�1þbðiþ1Þ=2 þ1 for iAA1[A3

IRi�1�bi=2 �1 for iAA4

IRi�1

0

for iAA2

for i¼ 2Nþ1

8>>>>><
>>>>>:

This policy requires N manufacturing set-ups yielding a
total set-up cost of NKS ¼ 2Nkb. Furthermore, the asso-
ciated total cost of holding serviceable inventory is equal to
hS∑2Nþ1

i ¼ 1 ISi ¼ hS∑iAA1
ðbðiþ1Þ=2þ1Þ ¼ hSðbþkÞ ¼ 1 by our sup-

position. Therefore, the total cost is then equal to 2Nkbþ1¼ α.

(i) The only if part: Now suppose that there exists a solution to
problem Pð Þ with total cost less than or equal to α. Consider for a
moment, then, from all good feasible solutions, what is an optimal
solution. Then, in this case, the following statements can be made.

(i) This highly favorable solution must include a manufac-
turing or remanufacturing set-up in each odd-numbered
period i, i¼ 1;3;5;…; 2Nþ1ð Þ. Otherwise, the demand
of period i, i¼ 1;3;5;…; 2Nþ1ð Þ; must be met by carry-
ing at least β units of serviceable inventory from an
earlier period at a cost of at least βhSZαþ1.

(ii) It follows after (i) that the first N set-ups in periods
i¼ 1;3;5;…; 2N�1ð Þ must involve a manufacturing set-
up, because the cumulated returns up to each one of
these periods are not sufficient to meet the demand
requirement by remanufacturing only (Fig. 2).

(iii) Hence, the total set-up cost is at least NKS ¼ 2Nkb.
(iv) It then follows from (iii) and our supposition that the

total cost of holding serviceable inventory is less than
α�NKS ¼ 1.

(v) Another consequence of (iii) is that a set-up in period
2Nþ1ð Þ must involve a remanufacturing set-up only, or
else the total cost would exceed α:

(vi) Now we claim that IS2N ¼ 0. Otherwise, if it is not so, but
rather IS2N40, we can find a cheaper solution by
decreasing the quantity of production by at least 1 unit
from QR

2N if QR
2N40 or QS

2N�1 if QR
2N ¼ 0: The resulting

solution requires less holding cost with no increase in
the set-up costs. This cheaper solution would contradict
the optimality assumption. Hence, IS2N ¼ 0.

(vii) From (v) and (vi), it follows that IR2NZD 2Nþ1ð Þ �R 2Nþ1ð Þ
¼ bþk.

(viii) Now, we shall show that the inequality shown in (vii)
actually holds as an equality. If (vii) does not hold as an
equality, i.e. IR2N4bþk; then IR2N ¼∑2N

i ¼ 1Ri�∑2N
i ¼ 1

QR
i 4bþk ) 2bþN�∑2N

i ¼ 1Q
R
i 4bþk ) ∑2N

i ¼ 1Q
R
i ob

þN�k: Since ∑i ¼ 1;3;5;…; 2N�1ð ÞI
S
i Z∑i ¼ 2;4;6;…;2NDi

�∑i ¼ 2;4;6;…;2NQ
R
i , we also have ∑i ¼ 1;3;5;…;ð2N�1Þ

ISi Z2bþN�∑2N
i ¼ 1Q

R
i 4bþk. Thus, the total cost of

holding serviceables is hS∑2Nþ1
i ¼ 1 ISi 4hSðbþkÞ ¼ 1; which

contradicts the statement made in (iv).
(ix) Hence, IR2N ¼ bþk and there must exist a subset

ADf1;2;3;…;Ng with jAj ¼ k such that ∑iAAbi ¼ b.

This completes the proof. ■

Proof of Theorem 2. ■
Let xSij and xRij , for i¼ 0;1;…;N and j¼ 0;1;…;N, be a feasible

solution to P′. We define ySi and yRi for i¼ 0;1;…;N as follows:
ySi ¼∑N

j ¼ ix
S
ij and yRi ¼∑N

j ¼ ix
R
ij . First, we note that ySN ¼ xSNNr1 and

that yS0 ¼∑N
j ¼ 0x

S
0j ¼ 1 given constraint (11) in P′. If we add the

corresponding sides of constraint (12) in P0 for j¼ 1;2;…; ði�1Þ
and then cancel out the common terms, we get that ySi r∑i�1

j ¼ 1x
S
1j

and so 0rySi r1 for i¼ 2;…;N�1:
Note that constraints (2) and (3) in Pare similar to constraints

(7) and (8) in P′. To see if constraint (4) holds, consider 2 cases.
In the first case, let ∑N

j ¼ ix
S
ij ¼ 0. Clearly, xSij¼ 0 for j¼ i; …; N and

ySi ¼ 0. Constraint (9) in P′ implies QS
i r∑N

j ¼ idijx
S
ij ¼ 0 and thus,

QS
i ¼ 0. In the second case, let 0o∑N

j ¼ ix
S
ijr1. Since QS

i r
∑N

j ¼ idijx
S
ij, dij ¼∑j

k ¼ iDk, and ∑N
j ¼ kx

S
ijrySi for kZ i, we have

QS
i r∑N

j ¼ i ∑j
k ¼ iDk

� �
xSij ¼∑N

k ¼ iDk ∑N
j ¼ kx

S
ij

� �
r ∑N

j ¼ iDj

� �
ySi .

Thus, constraint (4) holds in both cases. Using a similar argu-
ment it can be shown that constraint (5) holds too. Thus, every
constraint of P is satisfied. It follows, then, that P′ gives better
lower bounds on solutions to the original integer program. ■
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Proof of Theorem 3. If γi ¼ 0, statement (1) of the theorem holds
due to non-negativity. Suppose γi40. In this case, γi ¼ IRi�1þ
Ri �Di. By adding Eqs. (1) and (2) and canceling out the common
terms, ISi þ IRi ¼ ISi�1þ IRi�1þRi�DiþQS

i ¼ ISi�1þγiþQS
i Zγi. Hence

statement (1) holds. The solution mentioned in statement (2) fol-
lows from the lot for lot policy with priority given to remanufac-
turing, i.e. QR

i ¼ minðIRi�1þRi;DiÞ and QS
i ¼Di�QR

i . From Eq. (1),

ISi ¼ ISi�18 i. Hence, ISi ¼ IS0 8 i. From Eq. (2), IRi ¼ IRi�1þRi�
min IRi�1þRi;Di

� �
¼ γi. ■
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