
European Journal of Operational Research 230 (2013) 487–494
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization
A linear programming approach for linear programs with probabilistic
constraints
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.04.049

⇑ Address: Ford Research & Advanced Engineering, Dearborn, MI 48124, USA.
E-mail address: dreich8@ford.com
Daniel Reich ⇑
Ford Research & Advanced Engineering, Dearborn, MI 48124, USA
School of Business, Universidad Adolfo Ibáñez, Santiago, Chile

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 June 2012
Accepted 22 April 2013
Available online 2 May 2013

Keywords:
Linear programming
Integer programming
Stochastic programming
Chance constrained programming
Heuristics
We study a class of mixed-integer programs for solving linear programs with joint probabilistic con-
straints from random right-hand side vectors with finite distributions. We present greedy and dual heu-
ristic algorithms that construct and solve a sequence of linear programs. We provide optimality gaps for
our heuristic solutions via the linear programming relaxation of the extended mixed-integer formulation
of Luedtke et al. (2010) [13] as well as via lower bounds produced by their cutting plane method. While
we demonstrate through an extensive computational study the effectiveness and scalability of our heu-
ristics, we also prove that the theoretical worst-case solution quality for these algorithms is arbitrarily far
from optimal. Our computational study compares our heuristics against both the extended mixed-integer
programming formulation and the cutting plane method of Luedtke et al. (2010) [13]. Our heuristics effi-
ciently and consistently produce solutions with small optimality gaps, while for larger instances the
extended formulation becomes intractable and the optimality gaps from the cutting plane method
increase to over 5%.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction Case 1 problems can at least in theory be solved to optimality,
Consider a linear program with a joint probabilistic or chance
constraint

min
x2X

cx

s:t: PðAx � ~bÞ � 1� e
ð1Þ

where X # Rd is a polyhedron, c 2 Rd;A 2 Rm�d; ~b is a random vector
taking values in Rm and e 2 (0,1) is the reliability level.

Chance constrained models have been utilized in several appli-
cations. In the context of finance (see [19]), the joint probabilistic
constraint is commonly referred to as a Value-at-Risk constraint.
In supply chain management [10], these models are used to con-
sider random supply and demand. In distillation processes [7],
chance constraints are used to analyze random water inflows.
Optimal vaccination strategies for preventing epidemics [20] is
yet another area where chance constrained models have been ap-
plied. For additional references, we refer the reader to [17].

Problems with joint probabilistic constraints (1) can be grouped
into one of the following two categories:

1. The distribution of ~b is discrete and finite.
2. The distribution of ~b is continuous or infinite.
by using binary variables to cast the problems as mixed-integer
programs with ‘‘big-M constraints’’ [18,15]. However, in practice,
this approach may have limited computational tractability in some
settings.

For case 2, aside from a few select distributions, no closed-form
exists for evaluating PðAx P ~bÞ for a given candidate solution x,
which prevents us from solving these problems to optimality. In
lieu of exact solution methods, recent attention has focused on gra-
dient methods [6] and on approximation methods that utilize
Monte Carlo sampling [2,15,8]. The latter yields case 1 problems
[12,16], which can then be solved either through mixed-integer
programming [11] or through heuristic algorithms.

In this paper, we build upon the work in Pagnoncelli et al. [16]
to develop specialized heuristics for case 1 problems.

Luedtke et al. [13] proved that the case 1 problems are NP-hard
and to solve them they developed both a cutting plane algorithm
and an extended mixed-integer programming formulation, which
is a specialization of work by Miller and Wolsey [14], where all
integer variables are binary. Luedtke et al. [13] leverage a natural
ordering in the right-hand side to overcome the weakness of the
big-M formulation. This inherent ordering has been utilized before
in case 2 problems to develop a branch-and-bound algorithm [3]
and we will also leverage this ordering in developing our linear
programming based heuristic algorithms.

Although we focus on case 1 problems, the algorithms we de-
velop in this paper will have direct applicability to case 2 problems

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.04.049&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.04.049
mailto:dreich8@ford.com
http://dx.doi.org/10.1016/j.ejor.2013.04.049
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

488 D. Reich / European Journal of Operational Research 230 (2013) 487–494
when used in conjunction with sampling approaches. We compare
our algorithms with the cutting plane method and extended
mixed-integer programming formulation of Luedtke et al. [13].
We show that while their extended formulation becomes intracta-
ble for larger problems and their cutting plane method produces
increasing optimality gaps, our heuristics remain efficient and pro-
vide near-optimal solutions.

The remainder of this paper is organized as follows. Section 2
introduces the mixed-integer programming problem that we aim
to solve and presents the extended formulation of Luedtke et al.
[13]. (We refer the reader to Luedtke et al. [13] and Atamtürk
et al. [1] for detail on the cutting plane method.) In Section 3, we
present our greedy and dual heuristic. In Section 4, we prove that
the worst-case solution quality for our heuristic algorithms is arbi-
trarily far from optimal. In Section 5, we present a computational
study that compares our algorithms with the extended formulation
and the cutting plane method. Section 6 summarizes our contribu-
tions and discusses future research directions.
2. Background

Consider case 1 of chance constrained problem (1), where the
distribution of the right-hand side ~b is discrete and has scenarios
bx with corresponding probabilities px for all x 2X. For simplic-
ity, without loss of generality, we assume that bx P 0 for all
x 2X. By introducing jXj binary variables, we can restate this
problem as a mixed-integer program with the following big-M
formulation:

ðbig-MÞ min
x2X

cx ð2Þ

s:t: Axþ zxbx P bx x 2 X ð3ÞX
x2X

pxzx 6 e ð4Þ

z 2 f0;1gjXj; ð5Þ

where the big-M constant is bx, for each x. If binary variable zx = 0,
then Ax P bx (P 0 by assumption). If zx = 1, then we have Ax P 0,
which is satisfied because e < 1 implies that there will be at least
one x 2X such that zx = 0. The knapsack inequality (4) is equiva-
lent to the probabilistic constraint

X
x2X

pxð1� zxÞP 1� e:
2.1. Ordering the scenarios

Consider a single row in the big-M formulation (3):

Aixþ zxbx
i P bx

i x 2 X; ð6Þ

where Ai is the ith row of the constraint matrix A and bx
i is the ith

row of the right-hand side scenario bx. Let x(i,k) be the scenario
with kth largest right-hand side bxði;kÞ

i for row i. Then for every
row, there exists an index li such that

Xli�1

k¼1

pxði;kÞ 6 e <
Xli

k¼1

pxði;kÞ:

In other words, it would not be possible to remove all scenarios
{x(i,1), . . . , x(i, li)} without exceeding e; however, it would be pos-
sible to remove all scenarios {x(i,1), . . . , x(i, li � 1)}. Therefore, any
feasible solution x to case 1 of problem (1) must satisfy

Aix P bxði;liÞ
i for all i 2 I:
2.2. The tight-M formulation

Using li and w(i,k), we can replace the big-M formulation (2)–(5)
with the following tight-M mixed-integer program:

ðtight-MÞ min
x2X

cx ð7Þ

s:t: Aixþ zxði;kÞ bxði;kÞ
i � bxði;li Þ

i

� �
P bxði;kÞ

i i 2 I; 1 6 k 6 li � 1 ð8ÞX
x2X

pxzx 6 e ð9Þ

z 2 f0;1gjXj; ð10Þ

where bxði;kÞ
i � bxði;liÞ

i strengthens the formulation and 1 6 k 6 li � 1
avoids the redundant constraints that were identified in ordering
the scenarios according to row. For more detail on the tight-M for-
mulation (7)–(10) and on additional valid inequalities that can be
used to strengthen it, we refer the reader to Luedtke et al. [13]
and to work on mixing sets by Atamtürk et al. [1], Günlük and Pochet
[5], Guan et al. [4], Miller and Wolsey [14] and Küçükyavuz [9].
2.3. The extended formulation

Luedtke et al. [13] make further use of the ordered scenarios by
defining additional binary variables ux

i , for all
x 2 {x(1, i), . . . , x(i, li)}, to arrive at the following extended
mixed-integer programming formulation:

ðextendedÞ min
x2X

cx ð11Þ

s:t: Aixþ
Xli�1

k¼1

uxði;kÞ
i bxði;kÞ

i � bxði;kþ1Þ
i

� �
P bxði;1Þ

i i 2 I ð12Þ

uxði;kÞ
i � uxði;kþ1Þ

i P 0 i 2 I;1 6 k 6 li � 1 ð13Þ
zxði;kÞ � uxði;kÞ

i P 0 i 2 I;1 6 k 6 li � 1 ð14ÞX
x2X

pxzx 6 e ð15Þ

uxði;liÞ
i ¼ 0 i 2 I ð16Þ

uxði;kÞ
i 2 f0;1g i 2 I;1 6 k 6 li ð17Þ

z 2 f0;1gjXj; ð18Þ

which they prove is a valid formulation for the tight-M problem
(7)–(10). Constraint (13) orders the binary variables u and con-
straint (14) connects those binary variables to their corresponding
scenarios. This allows us to require only a single constraint (12)
for each row of A, which accounts for all scenarios corresponding
to those individual rows. For further detail on the extended formu-
lation, we refer the reader to Luedtke et al. [13].
3. The greedy and dual algorithms

In this section, we present greedy and dual heuristic algorithms
for solving case 1 of chance constrained problem (1). As we dem-
onstrate in Section 5, the mixed-integer programming formula-
tions – even the extended one – have limited computational
tractability. By leveraging the ordering detailed in Section 2, we de-
velop effective and scalable algorithms for heuristically solving
case 1 problems.
3.1. The greedy and dual algorithms

Consider the tight-M formulation (7)–(10). Our heuristic algo-
rithms solve a sequence of linear programming problems similar
to (7)–(10), while leveraging order to reduce the linear program
problem size. For each row i of constraint matrix A, we need only
include constraint (8) for the non-removed scenario x(i,k) for

D. Reich / European Journal of Operational Research 230 (2013) 487–494 489
which bxði;kÞ
i is largest. The linear program we solve iteratively can

be written as follows:

ðtight-LPjzÞ min
x2X

cx ð19Þ

s:t: Aix P max
x2X
ð1� zxÞbx

i ; i 2 I: ð20Þ
3.1.1. The greedy method for removing scenarios with equal or
unequal probabilities

Initially z ¼ ~0. At each iteration, we solve ‘‘tight-LPjz’’ to obtain
the optimal decision vector x⁄. We then solve an additional ‘‘ tight-
LPjmax{z,ex}’’ linear program, where ex is the unit vector with 1 in
position x and zeros elsewhere, for each active constraint
Aix� ¼ maxx2Xð1� zxÞbx

i . The scenario x that yields the greatest
ratio of objective value improvement to scenario probability is re-
moved by setting zx = 1. We continue to iterate until the constraintP

x2Xpxzx 6 e in (9) does not have sufficient slack to set another
zx = 1. Pseudocode for the greedy method is given in Algorithm 1.

Algorithm 1. Greedy algorithm for solving mincx s.t.
PðAx P ~bÞP 1� e.

Initialize r = e
Initialize zx = 0 for every x 2X

if no feasible solution exists for ‘‘tight� LPjz ¼~0’’ then
Run Algorithm 3 to remove infeasibility and update r and z

end if
while true do

Solve ‘‘tight-LPjz’’ to obtain optimal solution x⁄ with
objective v⁄

for all x 2X do
vx = v⁄

end for
for all i 2 I such that Aix� ¼maxx2Xð1� zxÞbx

i do
for all x 2 argmaxs2Xð1� zsÞbs

i do
if (px < r and zx = = 0 and vx = = v⁄) then

Let vx = ‘‘tight-LPj max{z,ex}’’
end if

end for
end for
if v⁄ > minx2Xvx then

Let x 2 argmaxs2X(v⁄ � vs)/ps

Let r = r � px

Let zx = 1
else

Return v⁄

end if
end while
3.1.2. The dual method for removing scenarios with equal or unequal
probabilities

Initially z ¼ ~0. At each iteration, we solve ‘‘tight-LPjz’’ to obtain
the dual price vector p. We then compute, for all x 2X such that
zx = 0,

dx ¼
X
i2I

pi max
s2X
ð1� zsÞbs

i �max
s2Xnx

ð1� zsÞbs
i

� �
; ð21Þ

which is the sum of the dual prices weighted by the magnitude of
the change in the right-hand side that would be induced by remov-
ing scenario x. Note that for any x 2X, only those constraints i for
which x 2 argmaxs2X:zs¼0bs

i contribute to dx. The scenario x that
yields the greatest ratio of dx to scenario probability px is removed
by setting zx = 1. We continue to iterate until the constraint
P
x2Xpxzx 6 e in (9) does not have sufficient slack to set another

zx = 1. Pseudocode for the dual method is given in Algorithm 2.

Algorithm 2. Dual algorithm for solving mincx s.t.
PðAx P ~bÞP 1� e.
Initialize r = e
Initialize zx = 0 for every x 2X

if no feasible solution exists for ‘‘tight� LPjz ¼ ~0’’ then
Run Algorithm 3 to remove infeasibility and update r and z

end if
while true do

Solve ‘‘tight-LPjz’’ to obtain optimal objective v⁄ and dual
prices p
for all x 2X do

if zx = = 0 and px 6 r then
dx ¼

P
i2Ipi maxs2Xð1� zsÞbs

i �maxs2Xnxð1� zsÞbs
i

� �
else

dx = 0
end if

end for
if maxx2Xdx > 0 then

Let x 2 argmaxs2Xds/ps

Let r = r � px

Let zx = 1
else

Return v⁄

end if
end while
Remark 1. If a feasible solution exists to ‘‘tight� LPjz ¼~0’’ (19),
(20), then Algorithms 1 and 2 provide feasible solutions to case 1
of chance constrained problem (1).

Remark 1 assumes that a feasible solution exists to
‘‘tight� LPjz ¼ ~0’’, which cannot be expected in general. When no
feasible solution exists, the dual and greedy algorithms require
the following additional routine.

3.1.3. The Lagrange multiplier method for removing infeasibility from
‘‘tight� LPjz ¼~0’’ (19) and (20)

We select a k 2 Rm
þ and d 2 (0,1) and solve the Lagrange multi-

plier linear program

ðLagrange-LPjk; dÞ min
x2X

X
i2I

kiðmax
x2X

bx
i � AixÞ ð22Þ

s:t: Aix P max
x2XnXi

bx
i i 2 I ð23Þ

where

bx
i P bs

i for all x 2 Xi; s 2 X nXi ð24Þ

andX
x2Xi

px 6 d < ps þ
X
x2Xi

px for all s 2 X nXi: ð25Þ

In other words, Xi is the largest possible subset of highest right-
hand side values with total probability less than d. We start with
a small d� e. k can be selected based on problem characteristics
or set to a vector of ones. If the Lagrange-LPjk,d (22), (23) is infea-
sible, slowly increase d by step size h up to a limit of e. If e is
reached, the original chance constrained problem is infeasible.
Alternatively, if an optimal solution x is achieved, we identify the

490 D. Reich / European Journal of Operational Research 230 (2013) 487–494
scenarios that must be removed for that solution to be feasible for
tight-LPjz (19), (20). If those scenarios can be removed while satis-
fying the knapsack constraint (9), we remove them and proceed
with the greedy or dual methods. Otherwise, we rerun this method
for removing infeasibility with a smaller step size h and/or another
k. While this method is not guaranteed to find a feasible solution,
we show through our computational study its effectiveness in
practice. Pseudocode for the Lagrange multiplier removal method
is provided in Algorithm 3.

Algorithm 3. Remove infeasibility and update r and z.

User inputs a step size h
User inputs Lagrange multipliers ki > 0 for violating

constraints Aix P maxx2X bx
i for all i 2 I

Let d = 0
while true do

if d P e then
Return the chance constrained problem is infeasible

end if
Let d = d + h
for all i in 1, . . . ,m do

Let Xi = ; and r = d
while r > 0 do

for all x 2 argmaxs2XnXi
bs

i do
r = r � ps

if r > 0 then
Xi = Xi \ s

end if
end for

end while
end for
Solve Lagrange-LPjk, d (22) and (23) to obtain the optimal
solution x⁄

if a feasible solution exists to Lagrange-LPjk,d then
X0 = {x 2X:Ax⁄ < bx}
r ¼ e�

P
x2X0px

Let zx = 1 for every x 2X0 and zx = 0 for every x 2XnX0
if r P 0 then

Return r and z
else

Request a smaller h and/or another k from user and
rerun Algorithm 3

end if
end if

end while
3.1.4. Optimality gaps for the greedy and dual algorithms

We obtain optimality gaps, which are useful in assessing the
quality of solutions obtained through our heuristic algorithms,
via a linear programming relaxation of the extended formulation
(11)–(18) and via lower bounds from the cutting plane method
presented in Luedtke et al. [13]. As we will see in Section 5, while
the linear programming relaxation of the extended formulation
provides tight optimality gaps, it has limited scalability. Using low-
er bounds from the cutting plane method remains a practical alter-
native for establishing optimality gaps for our heuristic methods.
4. Worst-case solution quality for the greedy and dual methods

In the next section, we provide computational evidence for the
effectiveness and efficiency of our greedy and dual heuristic algo-
rithms. However, these heuristics can in fact produce solutions
that are arbitrarily far from optimal.

Theorem 1. Let v⁄ be the optimal solution to a case 1 chance
constrained problem (1). Let v1 and v2 be feasible solutions obtained
by Algorithms 1 and 2, respectively. Then 9=M <1 such that

minfv1;v2g � v�
v� < M

for all case 1 chance constrained problems (1).
Proof. Assume $M <1 such that (min {v1,v2} � v⁄)/v⁄ < M for all
case 1 chance constrained problems (1). We construct a counterex-
ample where (min{v1,v2} � v⁄)/v⁄ > M as follows.

Consider the chance constrained problem

min
x2R2

c1x1 þ c2x2

s:t: Pðx1 P ~b1; x2 P ~b2ÞP
1
2
:

ð26Þ

Assume c1 > 0 and c2 > 0. Let b1 = (2,�1), b2 = (2,0),b3 = (0,1), and
b4 = (0,2) be 4 scenarios, each with probability 1/4. e = 1/2 allows
us to remove at most two of the four scenarios and – because they
all have probability 1/4 – removing any two provides a feasible
solution to chance constrained problem (26). The key to this coun-
terexample is that Algorithms 1 and 2 remove the same two scenar-
ios, neither of which is removed in the optimal solution to chance
constrained problem (26).

The first tight-LPjz ¼~0 problem solved by Algorithms 1 and 2 is

min
x2R2

c1x1 þ c2x2

s:t: x1 P 2
x2 P 2:

ð27Þ

The optimal solution to (27) is x1 = 2 and x2 = 2 with objective value
2c1 + 2c2.

Removing scenario b4 is the only one out of the four scenarios
that relaxes the constraint system in (27). Therefore, both
Algorithms 1 and 2 remove b4 and the resulting tight-
LPjz = (0,0,0,1) linear program is

min
x2R2

c1x1 þ c2x2

s:t: x1 P 2
x2 P 1:

ð28Þ

The optimal solution to (28) is x1 = 2 and x2 = 1 with objective value
2c1 + c2.

Removing scenario b3 is the only one out of the three remaining
scenarios that relaxes the constraint system in (28). Therefore,
both Algorithms 1 and 2 remove b3 and the resulting tight-
LPjz = (0,0,1,1) linear program is

min
x2R2

c1x1 þ c2x2

s:t: x1 P 2
x2 P 0:

ð29Þ

The optimal solution to (29) is x1 = 2 and x2 = 0 with objective value
v1 = v2 = 2c1. Both Algorithms 1 and 2 terminate because no further
removals are possible while satisfying the knapsack constraint (9).

Removing b1 and b2 from chance constrained problem (26)
yields the linear program

min
x2R2

c1x1 þ c2x2

s:t: x1 P 0
x2 P 2:

ð30Þ

D. Reich / European Journal of Operational Research 230 (2013) 487–494 491
The optimal solution to (30) is x1 = 0 and x2 = 2 with objective value
2c2.

By assumption, c1 > 0 and c2 > 0. Regardless of their specific
values, Algorithms 1 and 2 provide a feasible solution to the chance
constrained problem (26) with an objective value of 2c1. However,
we have just shown in (30) that another feasible solution for (26)
exists with cost 2c2. Therefore, if we choose c2 = 1 and c1 > 1, we
have that v⁄ = 2 and

minfv1;v2g � v�
v� ¼ 2c1 � 2

2
¼ c1 � 1:

Therefore, by choosing c1 > M + 1 we contradict our assumption.

The counterexample in the preceding proof demonstrates the
worst-case solution for these algorithms. Note though that we ob-
tain optimality gaps equal to c1, which is arbitrarily large, for the
heuristic solutions via the extended linear programming relaxa-
tion. Therefore, we do have a warning against the heuristic solu-
tions achieved in this worst-case counterexample. In the next
section, we provide computational evidence that these heuristics
are effective, efficient and scalable in practice by testing them on
the complete set of instances from Luedtke et al. [13].

5. Computational results

We focused our computational study on a probabilistic version
of the classical transportation problem. The deterministic trans-
portation problem is to find the least costly transportation strategy
x for which demand bj is satisfied at each location j 2 J from the
Table 1
Average running times in seconds over 5 instances for each solution method.

Solution method Dual Greedy Cutting

e m n Equal probability scenarios

0.05 100 1000 0.2 1.7 0.7
100 2000 0.3 3.5 3.1
200 2000 0.7 12.9 3.1
200 3000 1.1 24.2 6.2

0.10 100 1000 0.3 3.6 10.4
100 2000 0.6 7.7 37.2
200 2000 1.4 29.7 693.5
200 3000 2.1 51.7 1719.7

0.15 100 1000 0.4 5.2 755.8
100 2000 1.0 10.5 3602.4
200 2000 2.0 42.3 3600.6
200 3000 3.4 71.6 3604.9

0.20 100 1000 0.6 7.3 3600.1
100 2000 1.2 14.9 3602.0
200 2000 2.7 61.6 3605.2
200 3000 4.2 108.7 3606.1

Unequal probability scenarios

0.05 100 1000 0.3 4.1 4.9
100 2000 0.5 7.3 19.8
200 2000 1.2 33.4 69.9
200 3000 2.0 52.6 133.3

0.10 100 1000 0.4 6.8 46.4
100 2000 0.9 12.8 1907.3
200 2000 2.1 61.1 2812.6
200 3000 3.4 92.2 3601.5

0.15 100 1000 0.6 6.9 832.7
100 2000 1.2 13.5 3600.6
200 2000 2.9 59.4 3600.7
200 3000 4.7 97.1 3605.5

0.20 100 1000 0.7 12.0 3600.1
100 2000 1.6 22.9 3601.1
200 2000 3.7 103.7 3600.4
200 3000 5.8 172.7 3601.0
available supplies Mi from suppliers i 2 I, where the cost of sending
xij units from supplier i to customer j is cij. We consider random de-
mand ~b and formulate the problem as

min
x

X
i2I;j2J

cijxij

s:t:
X
j2J

xij 6 Mi

8i 2 I

P
X
i2I

xij P ~bj; j 2 J

()
P 1� e

xij P 0
8i 2 I; j 2 J:

ð31Þ
5.1. Instances

We tested our algorithms on the complete set of instances
introduced in Luedtke et al. [13]. These instances are divided into
two categories: one where the scenarios have equal probabilities
and the other where the probabilities are unequal. All instances
have 40 suppliers with either 100 or 200 customers, and between
1000 and 3000 scenarios. For each problem size, there are 5 in-
stances, which we tested for e = 0.05, 0.10, 0.15 and 0.20. The ran-
dom demands were generated via independent normal
distributions with randomly generated means and variances. For
more information about the generation of these instances, we refer
the reader to Luedtke et al. [13].
plane Extended formulation Root LP extended formulation

0.5 0.2
3.3 0.8
4.2 5.4
18.5 13.2

2.4 1.4
7.9 4.5
130.4 136.1
564.6 488.7

508.9 12.3
1101.3 84.2
3600.1 200.8
3600.1 461.6

3600.2 42.8
3600.1 133.2
3620.6 535.0
3602.4 1897.7

1.9 0.8
6.5 3.7
30.5 19.7
119.4 56.1

11.5 5.5
36.4 26.2
472.7 183.9
1511.6 566.5

66.9 19.5
586.3 88.7
3396.9 194.6
3600.1 501.4

808.9 36.0
3358.5 199.6
3600.7 1247.2
3602.5 2031.6

492 D. Reich / European Journal of Operational Research 230 (2013) 487–494
5.2. Instances requiring Algorithm 3

In 10% of the instances, no feasible solution exists to
‘‘tight-LPjz ¼~0’’ (19) and (20). For those instances, the greedy
and dual methods require Algorithm 3 to remove infeasibility.
We use a vector of ones for the Lagrange multipliers k and a step
size h = 1/1000, which removes infeasibility in all instances requir-
ing Algorithm 3. The running times and optimality gaps for these
instances were similar to all other instances, so we present all re-
sults together, whether they require Algorithm 3 or not.

5.3. Implementation

We implemented Algorithms 1 (greedy), 2 (dual) and 3 (remove
infeasibility), as well as the extended formulation and cutting plane
method, in C. We did not implement Algorithm 1 (greedy) in paral-
lel. All computations were performed on identical machines each
having x86_64 architecture, an Intel Xeon @2.5 GHz processor,
16 GB RAM and running CentOS 4 Linux. The callable library for
CPLEX 12.1 was used to solve all linear and integer programs. We re-
quired the same time limit of 1 h and memory limit of 2 GB that was
required in Luedtke et al. [13]. However, our implementation of the
cutting plane method most likely differs, as specific implementation
details were not provided in Luedtke et al. [13].

5.4. Problem sizes

For simplicity in comparing problem sizes, let us consider the
case of equi-probable scenarios with m = 200 customers, n = 3000
Table 2
Maximum relative optimality gaps over 5 instances. Gaps for greedy and dual algorithms

Solution method
(gap obtained using)

Extended formulation
(CPLEX) (%)

Cut
(CP

e m n Equal probability scenarios

0.05 100 1000 0.0 0.0
100 2000 0.0 0.0
200 2000 0.0 0.0
200 3000 0.0 0.0

0.10 100 1000 0.0 0.0
100 2000 0.0 0.0
200 2000 0.0 0.0
200 3000 0.0 0.2

0.15 100 1000 0.0 0.0
100 2000 0.0 0.9
200 2000 2.1 1.0
200 3000 2.3 2.3

0.20 100 1000 0.7 1.1
100 2000 0.8 3.4
200 2000 4.8 4.4
200 3000 1 4.7

Unequal probability scenarios

0.05 100 1000 0.0 0.0
100 2000 0.0 0.0
200 2000 0.0 0.0
200 3000 0.0 0.0

0.10 100 1000 0.0 0.0
100 2000 0.0 0.2
200 2000 0.0 0.3
200 3000 0.0 1.0

0.15 100 1000 0.0 0.0
100 2000 0.0 2.1
200 2000 0.4 2.4
200 3000 2.0 3.0

0.20 100 1000 0.0 1.1
100 2000 0.7 4.2
200 2000 4.6 4.5
200 3000 1 5.2
scenarios and e = 0.20. The dual algorithm requires solving
ne = 600 linear programs each with m = 200 demand constraints.
The greedy algorithm requires solving up to (less if not all demand
constraints are active) mne = 120,000 linear programs each with
200 demand constraints, but these can be solved in ne = 600 itera-
tions where at each iteration up to (less if not all demand con-
straints are active) m = 200 linear programs are solved in parallel.
The tight-M formulation requires m n e = 120,000 demand con-
straints (8) and up to n = 3000 binary variables. The extended for-
mulation requires mne + n = 123,000 binary variables,
2mne = 240,000 ordering constraints (13) and (14) and m = 200 de-
mand constraints (12).

5.5. Running time and scalability

Table 1 provides the average running times over 5 instances for
the dual and greedy algorithms, the cutting plane method, the ex-
tended formulation, and the linear programming relaxations of
the extended formulation. The latter linear programming relaxation
is used to obtain optimality gaps for our heuristic algorithms, and
also provides further insight into the scalability of the extended for-
mulation. The findings for Table 1 can be summarized as follows:

� The average running time of the dual method is under 6 s for
all problem sizes.

� The average running time of the greedy method increases by
a factor of around 4 when the number of customers m is
doubled, and scales roughly linearly in both the number of
scenarios n and in e.
are equal for all scenarios.

ting plane
LEX) (%)

Greedy and dual
(root LP ext. form.) (%)

Greedy and dual
(cutting plane bound) (%)

0.1 0.1
0.4 0.4
0.4 0.4
0.2 0.2

0.3 0.3
0.7 0.7
0.3 0.3
0.4 0.4

0.6 0.5
0.9 0.9
0.8 0.8
0.9 0.9

1.6 1.4
1.6 1.7
2.0 2.0
2.1 2.3

0.2 0.2
0.6 0.6
0.4 0.4
0.5 0.5

0.6 0.7
1.0 1.0
0.5 0.5
0.6 0.8

0.7 0.7
1.3 1.6
0.8 1.0
1.2 1.7

1.4 1.3
1.8 2.3
1.8 2.0
2.2 2.9

D. Reich / European Journal of Operational Research 230 (2013) 487–494 493
� The average running time of the cutting plane method
requires the 1 h time limit for larger instances, but it can
produce feasible solutions in all cases.

� The average running time of the extended formulation is
increasing at an exponential rate with e, and does not have
a consistent scaling factor when doubling either the number
of customers m or the number of scenarios n. The extended
formulation cannot solve to optimality within the 1 h time
limit, as e, m and n increase. Moreover, it cannot produce
even a single feasible solution within 1 h for the largest case.

� The average running time of the linear programming relax-
ation for the extended formulation increases to over 30 min
for the largest instances.

5.6. Optimality gaps

Table 2 provides the maximum optimality gaps over 5 instances
for the dual and greedy algorithms, using lower bounds produced
by the cutting plane method and using the linear programming
relaxation of the extended formulation. For the dual and greedy
algorithms, we compute the gaps as the differences between the
heuristic solutions and the bounds divided by the heuristic solu-
tions, which is consistent with the measure used by CPLEX to com-
pute the relative gaps we report for both the extended formulation
and the cutting plane method. The findings for Table 2 can be sum-
marized as follows:

� The extended formulation, while superior for smaller
instances, cannot provide even a single feasible solution
for 200 customers, 3000 scenarios and e = 0.20 within the
1 h time limit.

� The optimality gaps for the cutting plane method increase to
over 5% for the largest instances.

� The greedy and dual algorithms provide the exact same
solutions for all instances.

� The greedy and dual algorithms provide a solution within
2.2% of optimal for all instances.

� The extended linear programming relaxation and the lower
bounds from the cutting plane method provide similar opti-
mality gaps for most instances.

� The bounds from the cutting plane method can be used in
cases where the extended linear programming relaxation
cannot be solved due to its limited scalability.

For the instances with e 6 10%, for which the extended formu-
lation solved to optimality, we were able to verify that the solu-
tions obtained through the greedy and dual algorithms were
indeed suboptimal, by the amount reflected in the optimality gaps.
6. Summary and conclusions

We have developed two linear programming based heuristic
methods for solving linear programs with joint probabilistic con-
straints, where the constraint matrix is deterministic and the
right-hand side vector is random. Our greedy and dual heuristics
(Algorithms 1 and 2) account for infeasibility and for scenarios
with non-equal probabilities.

We compare our greedy and dual algorithms against the cutting
plane method and extended mixed-integer programming formula-
tion proposed by [13] for all their transportation instances, both
for the reliability levels e = 0.05, 0.10 that they considered and for
slightly higher ones of e = 0.15, 0.20. Our computational study
shows that while both the extended mixed-integer programming
formulation and cutting plane method perform well for e = 0.05,
0.10, even for e = 0.15, the larger instances of Luedtke et al. [13]
cannot be solved to optimality by their exact solution methods.
Moreover, for e = 0.20, their extended formulation is unable to iden-
tify even a single feasible solution within the 1 h time limit and the
optimality gap from their cutting plane method exceeds 5%.

Our greedy and dual heuristics achieve optimality gaps of at
most 2.2% for all instances for all reliability levels. These optimality
gaps are obtained through lower bounds produced by the cutting
plane method and linear programming relaxations of the extended
mixed-integer programming formulation. While the greedy and
dual algorithms provide the exact same solutions for all instances
in our computational study, the dual heuristic provides remarkable
speed – less than 6 s for any single instance.

In future work, the greedy and dual algorithms presented in this
paper can be applied in conjunction with sampling approaches to
chance constrained problems where the underlying distribution
of the right-hand side vector is continuous. These algorithms can
also be used to warmstart exact integer programming approaches
in order to reduce their running time.

Acknowledgments

Special thanks to the reviewer whose insight and thorough
feedback led to a significant improvement in the dual algorithm
presented. We thank James Luedtke, Shabbir Ahmed and George
Nemhauser for providing their transportation problem instances
from An Integer Programming Approach for Linear Programs with
Probabilistic Constraints. We thank Bernardo Pagnoncelli for sug-
gesting that these instances would be ideal for our computational
study. This research was funded by ANILLO Grant ACT-88 and Basal
Project CMM, Universidad de Chile.

References

[1] A. Atamtürk, G.L. Nemhauser, M.W. Savelsbergh, The mixed vertex packing
problem, Mathematical Programming 89 (2000) 35–53.

[2] M. Campi, S. Garatti, A sampling-and-discarding approach to chance-
constrained optimization: feasibility and optimality, Journal of Optimization
Theory and Applications (2010) 1–24.

[3] M.S. Cheon, S. Ahmed, F. Al-Khayyal, A branch-reduce-cut algorithm for the
global optimization of probabilistically constrained linear programs,
Mathematical Programming 108 (2006) 617–634.

[4] Y. Guan, S. Ahmed, G. Nemhauser, Sequential pairing of mixed integer
inequalities, Discrete Optimization 4 (1) (2007) 21–39.

[5] O. Günlük, Y. Pochet, Mixing mixed-integer inequalities, Mathematical
Programming 90 (2001) 429–457.

[6] R. Henrion, Gradient estimates for Gaussian distribution functions: application
to probabilistically constrained optimization problems, Control and
Optimization 4 (4) (2012) 655–668.

[7] R. Henrion, A. Möller, Optimization of a continuous distillation process under
random inflow rate, Computers & Mathematics with Applications 45 (2003)
247–262.

[8] R. Henrion, W. Römisch, Metric regularity and quantitative stability in
stochastic programs with probabilistic constraints, Mathematical
Programming 84 (1999) 55–88.

[9] S. Küçükyavuz, On mixing sets arising in chance-constrained programming,
Mathematical Programming 132 (2010) 31–56.

[10] M. Lejeune, A. Ruszczynski, An efficient trajectory method for probabilistic
inventory production–distribution problems, Operations Research 55 (2007)
378–394.

[11] J. Luedtke, An integer programming and decomposition approach to general
chance-constrained mathematical programs, Lecture Notes in Computer
Science 6080 (2010) 271–284.

[12] J. Luedtke, S. Ahmed, A sample approximation approach for optimization with
probabilistic constraints, SIAM Journal on Optimization 19 (2008) 674–699.

[13] J. Luedtke, S. Ahmed, G. Nemhauser, An integer programming approach for
linear programs with probabilistic constraints, Mathematical Programming
122 (2010) 247–272.

[14] A.J. Miller, L.A. Wolsey, Tight formulations for some simple mixed integer
programs and convex objective integer programs, Mathematical Programming
98 (2003) 73–88.

[15] B.K. Pagnoncelli, S. Ahmed, A. Shapiro, Sample average approximation method
for chance constrained programming: theory and applications, Journal of
Optimization Theory and Applications 142 (2) (2009) 399–416..

[16] B.K. Pagnoncelli, D. Reich, M.C. Campi, Risk-return trade-off with the scenario
approach in practice: a case study in portfolio selection, Journal of
Optimization Theory and Applications 155 (2) (2012) 707–722.

http://refhub.elsevier.com/S0377-2217(13)00363-9/h0005
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0005
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0010
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0010
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0010
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0015
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0015
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0015
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0020
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0020
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0025
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0025
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0030
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0030
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0030
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0035
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0035
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0035
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0040
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0040
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0040
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0045
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0045
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0050
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0050
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0050
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0055
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0055
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0055
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0060
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0060
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0065
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0065
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0065
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0070
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0070
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0070
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0075
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0075
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0075
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0080
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0080
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0080

494 D. Reich / European Journal of Operational Research 230 (2013) 487–494
[17] A. Prékopa, Probabilistic programming, Handbooks in Operations Research and
Management Science 10 (2003) 267–351.

[18] A. Ruszczyński, Probabilistic programming with discrete distributions and
precedence constrained knapsack polyhedra, Mathematical Programming 93
(2) (2002) 195–215.
[19] A. Shapiro, A. Philpott, A Tutorial on Stochastic Programming, 2007.
<www2.isye.gatech.edu/�ashapiro/publications.html>.

[20] M.W. Tanner, L. Ntaimo, IIS branch-and-cut for joint chance-constrained
stochastic programs and application to optimal vaccine allocation, European
Journal of Operational Research 207 (1) (2010) 290–296.

http://refhub.elsevier.com/S0377-2217(13)00363-9/h0085
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0085
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0090
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0090
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0090
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0095
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0095
http://refhub.elsevier.com/S0377-2217(13)00363-9/h0095

	A linear programming approach for linear programs with probabilistic constraints
	1 Introduction
	2 Background
	2.1 Ordering the scenarios
	2.2 The tight-M formulation
	2.3 The extended formulation

	3 The greedy and dual algorithms
	3.1 The greedy and dual algorithms
	3.1.1 The greedy method for removing scenarios with equal or unequal probabilities
	3.1.2 The dual method for removing scenarios with equal or unequal probabilities
	3.1.3 The Lagrange multiplier method for removing infeasibility from “ ? ” (19) and (20)
	3.1.4 Optimality gaps for the greedy and dual algorithms

	4 Worst-case solution quality for the greedy and dual methods
	5 Computational results
	5.1 Instances
	5.2 Instances requiring Algorithm 3
	5.3 Implementation
	5.4 Problem sizes
	5.5 Running time and scalability
	5.6 Optimality gaps

	6 Summary and conclusions
	Acknowledgments
	References

