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The linear models for the approximate solution of the problem of packing the maximum number of equal
circles of the given radius into a given closed bounded domain G are proposed. We construct a grid in G;
the nodes of this grid form a finite set of points T, and it is assumed that the centers of circles to be packed
can be placed only at the points of T. The packing problems of equal circles with the centers at the points
of T are reduced to 0–1 linear programming problems. A heuristic algorithm for solving the packing prob-
lems based on linear models is proposed. This algorithm makes it possible to solve packing problems for
arbitrary connected closed bounded domains independently of their shape in a unified manner. Numer-
ical results demonstrating the effectiveness of this approach are presented.
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1. Introduction

The problem of packing circles in the plane or into a square, tri-
angle, or circle and other geometric configurations in the plane is
studied by many researchers; various approaches to the solution
of such problems have been developed, see Birgin and Gentil [1],
Birgin et al. [2], Castillo et al. [3], Cui and Xu [4], Grosso et al. [8],
Hifi and M’Hallah [10], Huang and Ye [11], Locatelli and Raber
[12], Lubachevsky and Graham [15], Specht [17] and Szabó et al.
[18]. The interest in the packing problem and the closely related
covering problem is due to important applications in various prac-
tical fields. Applications of these problems are discussed in the
works Hamacher and Drezner [9], Love et al. [14] and ReVelle
and Eiselt [16].

Presently, various models of packing problems are developed
that often reduce the packing problem to nonlinear programming
problems (see Birgin et al. [2], Huang and Ye [11], Locatelli and
Raber [12], Castillo et al. [3]) and in the case of packing rectangles,
to a linear programming problem (e.g., see the use of linear pro-
gramming in the work Lodi et al. [13]). There is a series of studies
considering the packing of circles into a rectangle, packing into a
triangle, into a circle, into a strip, etc. We do not analyze the liter-
ature on packing problems in this paper but only mention some
publications where one can find reviews of these problems (e.g.,
see Hifi and M’Hallah [10], Lodi et al. [13], the book by Szabó
et al. [18] and the references therein).

The circle packing problem is most often formulated as packing
n circles of the maximum possible radius (not known in advance)
into a given geometric figure. In problems of practical importance,
the radius of the circles to be packed is typically given, and it is re-
quired to pack in a given domain as many such circles as possible.
We consider the packing problems in which the circle radius is
given.

In this paper, we propose linear models for determining the
maximum number of congruent circles of the given radius that
can be packed into a given connected closed bounded domain G.
We construct a grid in G; the nodes of this grid form a finite set
of points T, and it is assumed that the centers of circles to be
packed can be placed only at the points of T. The packing problems
of equal circles with the centers at the points of T are reduced to 0–
1 linear programming problems. A heuristic algorithm for solving
the packing problems based on linear models is proposed. Numer-
ical results demonstrate the effectiveness (performance) of this ap-
proach. It is important that the proposed approach is fairly general
– it provides a unified method for solving the equal circle packing
problem for arbitrary connected closed bounded domains indepen-
dently of their shape.

2. Problem formulation and auxiliary results

Let G be a connected closed bounded domain on the plane P
with a nonempty interior. A system of n equal open circles Kj,
1 6 j 6 n, forms a packing in the set G, if each circle Kj is contained
in G, 1 6 j 6 n, and each point s of G belongs to at most one of these
circles.

Packing density is the ratio of the sum of areas of packing circles
to the area of G. The packing density is denoted by p.

Here is the problem we intend to solve.
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Fig. 1. The dependence of the solution on the choice of the grid.
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Problem Z1. Determine the maximum number of equal open
circles of the given radius r that can be packed into the domain G
and determine the location of their centers.

We assume that the Cartesian frame of reference xOy is defined
on the plane P. We denote by d(s, t) the Euclidean distance between
the points s and t. Let G⁄ (G⁄ � G) be the set of all points s of G such
that the distance from s to the nearest point of the boundary of G
(frG) is not less than r: G⁄ = {s 2 G: mint2frG d(s, t) P r}. We assume
that G⁄ is not empty. It is clear that G⁄ is a closed set, which can
be unconnected and contain isolated points. It is easy to verify that
every open circle K of radius r with the center in G⁄ consists only of
the interior points of G; therefore, it lies entirely inside G: K � G.
Obviously, the converse is also true; more precisely, the center of
every open circle of radius r contained in G belongs to G⁄.

Let Q be the minimal rectangle containing the set G⁄, and let its
sides be parallel to the coordinate axes. On the set Q, we construct
the rectangular grid of size D along both axes x and y. We assume
that D divides r; that is, r = kD, where k P 1 is an integer. The
nodes of this grid are denoted by s1, s2, . . . , sN, N P 1. A small cell
formed by the grid has a diagonal size equal to

ffiffiffi
2
p

D. The closed
circles Vi of radius

ffiffiffi
2
p

D=2 centered at the points si (1 6 i 6 N) form
a covering of the set Q and, therefore, of the set G⁄. We construct
the set T(D) using the following procedure.

Procedure 1:

1. T(D) is the empty set.
2. For each i (1 6 i 6 N), if Vi \ G⁄ = ;, then go to the next value of i;

if Vi \ G⁄– ;, then do the following:
(a) if si 2 G⁄, then add si to the set T(D);
(b) if si R G⁄, then take the closest to si point s in G⁄ and add it to

T(D) if it is not yet contained in this set.

As a result of applying Procedure 1, we obtain a set of n points
T(D) = {t1, t2, . . . , tn}. The coordinates xi and yi of the points ti

(1 6 i 6 n) are found in an obvious way. Each point ti (1 6 i 6 n) be-
longs to the set G⁄.

If a grid of size D and a grid of size D/2 are constructed, then we
assume that the sets T(D) and T(D/2) are constructed using proce-
dure 1; then, we complete the definition as follows: T(D/
2) :¼ T(D) [ T(D/2). Similarly, we construct T(D/2k) using proce-
dure 1 and then join it with the preceding set T(D/2k�1).

The grid on G may be fairly arbitrary or points in the set
T(D) = {t1, t2, . . . , tn} may be chosen without using the grid nodes
or the grid nodes may be used partially but each point ti (1 6 i 6 n)
belongs to the set G⁄.

Let the set T(D) be constructed.

Problem Z2. Determine the maximum number of equal open non-
overlapping into G circles of the given radius r centered at the
points of the set T(D) and determine the location of their centers.

Below, we solve problem Z2 instead of Z1. It is clear that the
resultant packing gives an approximate solution of problem Z1;
such a solution is acceptable in many engineering calculations.

Remark 1. For a given radius r and an optimal packing into G (in
the case of problem Z1), the centers of the circles are not
necessarily at the points of T(D) for the given D. In this case, the
numbers of the packed circles in problems Z1 and Z2 can be
different.

We illustrate this fact by a simple example. Consider the prob-
lem of packing three circles of the maximum possible radius r3 into
a unit square V. The known optimal packing is shown in Fig. 1. The
set V⁄ of possible locations of the circle centers is the square abcd
with the side 1–2r3. This square is shown in Fig. 1 in a dashed line.
Let the points a, E, and F be the circle centers in the optimal
packing. To obtain this optimal packing using the proposed meth-
od, it is required that some grid nodes coincide with the points a, E
and F. If a rectangular grid is constructed in the square abcd by
dividing its sides into equal parts, the points E and F cannot coin-
cide (for finite number of steps) with the grid nodes because
bF = (1 � 2r3) tan (p/12) and
r3 ¼ 1= 2þ 1=

ffiffiffi
2
p
þ

ffiffiffi
6
p

=2
� �

¼ 0:25433309503 (e.g., see [18]). As a
result, when a rectangular uniform grid is constructed, the number
of packed circles is two rather than three. Let us construct a grid in
which one set of lines forms the angle of p/12 with the axis x, while
the other set of lines forms the angle of p/12 with the axis y. Then,
the points E and F coincide with certain grid nodes, and the number
of packed circles is three. Therefore, the result depends on how the
grid is constructed.

This is a drawback of the approach under consideration. How-
ever, this approach is effective in some cases.

Consider two variants of the grid:

(1) uniform rectangular grid, where one of the lines forming the
grid is parallel to the x-axis, and the other-to the y-axis, and
these lines are drawn at the equal distances D;

2) oblique grid, when one of the lines forming the grid is paral-
lel to the vector (0,2) and the other is parallel to the vector

1;
ffiffiffi
3
p� �

, and these lines are drawn at equal distances D, that
measure out along each generating line. As is known, such
oblique grid nodes determine the optimal packing of equal
circles on the whole plane.

Find out whether one of these grids could be replaced with the
other with some error.

Consider a uniform rectangular grid. Let D satisfies r = kD,
where r is the radius of the packing circles, k is an integer, k > 0.
Suppose that we have a packing, shown in Fig. 2a, in which the
centers of circles of radius r form an equilateral triangle ABC, the
sides of which are equal to 2r. Now let centers of packing circles
be situated at nodes of a rectangular grid, constructed by the step
D, and points A⁄, B⁄ and C⁄ are centers of these circles, see Fig. 2b.

Then, for Fig. 2b, we have: A�C� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�D�Þ2 þ ðC�D�Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkDÞ2 þ ðmDÞ2

q
¼ D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, where m is the smallest integer

such that A⁄C⁄P AC = 2kD. Consequently, the value m is the small-
est integer that is not less than

ffiffiffi
3
p

k. For different values of k it is
easy to find the appropriate value of m. For example, if k is 2, 3,
4, 5, 6, 7 and 8, the values of m are equal to 4, 6, 7, 9, 11, 13 and
14, respectively. Now we can calculate the difference between
the values of A⁄C⁄ and AC, i.e. find out a distance dR = A⁄C⁄ � AC.
These values are given in Table 1 for different k.



Fig. 2. To the choice of the grid.

S.I. Galiev, M.S. Lisafina / European Journal of Operational Research 230 (2013) 505–514 507
Now we consider the oblique grid and find out how to get a
packing in which the centers of circles are one above the other, that
is, on a line parallel to the axis y. Let, as above, D satisfy r = kD,
where r is the radius of the packing circles, k is an integer, k > 0,
and let m be an integer, m P 0. Let C⁄ be the intersection point of
lines A⁄C⁄ and E⁄C⁄, see Fig. 2c. If the points A⁄ and E⁄ are oblique
grid nodes, it is clear that the point C⁄ is also an oblique grid node.
We have: A�E�

ffiffiffi
3
p
¼ A�C�. Then the distance

dU ¼ A�C� � 2kD ¼
ffiffiffi
3
p
ðkþmÞ D� 2kD, where m is the smallest

integer such that
ffiffiffi
3
p
ðkþmÞ D P 2kD. We count the distances dU

and record them in Table 1.
These results imply that if the value of D decreases then the val-

ues of dR and dU can increase, for example, if D = r/4, then
dR = 0.01556r, and if D = r/7, we have dR = 0.10926r, similarly, if
D = r/6, dU = 0.02073r, and if D = r/7, we have dU = 0.22692r.

Table 1 shows that the value of dR in most cases is less than the
value of dU. It follows that this rectangular grid is better suited for
the approximation of an oblique grid than an oblique grid to the
approximation of a rectangular grid. Thus, a rectangular grid is
more admissible.

For a rectangular grid the value of dR does not increase in case of
dividing the value of D in half, therefore, it is better to change the
D, dividing it in half.

It is clear from the above discussion that the rectangular grid is
more suitable for the solving of a packing problem in approximate
way than the oblique grid (by the specified distances).

Let n(D) (n(D/2)) be the maximal number of circles of a given
radius r that can be packed into a given set G when the centers
of these circles are at the points of the set T(D) (T(D/2)). Each pack-
ing of circles of radius r centered in T(D) is a packing of these cir-
cles centered in T(D/2); therefore, we have
nðDÞ 6 nðD=2Þ:
Assume that m is the maximal number of circles Kj of radius r that
can be packed into G if their centers cj (1 6 j 6m) are located arbi-
trarily in G. Suppose that the size D of the rectangular grid is chosen
and the set T(D) is constructed. Let us shift each center cj (1 6 j 6m)
that is not in T(D) to the nearest point in T(D). The shift length is not
greater than

ffiffiffi
2
p

D=2. Then, reduce the radius of all the circles in the
packing by

ffiffiffi
2
p

D=2. The resultant open circles K�j ; 1 6 j 6 m, lie in G
Table 1
Values of dR and dU.

Values of k(D = r/k) 1 2 3 4

dR 0.23607r 0.23607r 0.23607r 0.
dU 1.46410r 0.59808r 0.30940r 0.

9 10 11 12
dR 0.03973r 0.05913r 0.07504r 0.
dU 0.11695r 0.07846r 0.04697r 0.
and do not overlap with one another; therefore, they form a packing
in G.

Let n(D) be the maximal number of circles Kj of radius r that can
be packed into G if their centers belong to T(D), and let n⁄(D) be the
maximal number of circles K�j of radius r1 ¼ r �

ffiffiffi
2
p

D=2 that can be
packed into G if their centers belong to T(D). Then, we obviously
have

nðDÞ 6 m 6 n�ðDÞ:

Thus, we can evaluate the maximum number of circles Kj of radius r
that can be packed into G.

The area of G is also denoted by G. Obviously, that m 6 [G/(pr2)],
where [x] is integer part of x. If G is a convex domain, then an esti-
mate of the value of m can be improved by using the well-known
theorem: if a convex domain of area F contains at least two congru-
ent non-overlapping circles, then the sum of their areas S satisfies
the inequality S < pF=

ffiffiffiffiffiffi
12
p

(see Fejes Tóth [5]); a tighter bound can
be obtained using the results in Folkman and Graham [6]; for the
cases of a square and an equilateral triangle, the results in Gáspár
and Tarnai [7] help obtain a better bound.

In this paper, unless otherwise specified, we construct a uni-
form rectangular grid (all the grid cells have the same size). It is
clear that this is not the only possible way to construct a grid. In
many respects, the form of this grid depends on the domain G,
and we believe that there is no universal method for constructing
such a grid.

3. Mathematical model of problem Z2

Let the set G into which the circles of radius r should be packed
be given, the grid size D be chosen, and the set T(D) = {t1, t2, . . . , tn}
be constructed.

Let ci be the center of the ith circle being packed, where
1 6 i 6m and m P 1. Define the variables

zi ¼
1; if ci coincides with ti;

0; otherwise;

�
;1 6 i 6 n: ð1Þ

Let the center ci of the circle Ki coincide with the point ti; that is,
zi = 1 for 1 6 i 6 n. In order for Ki to be non-overlapping with the
other circles being packed, it is necessary that zj = 0 for all the points
tj (i – j) that are closer to ti than 2r.
5 6 7 8

01556r 0.05913r 0.08833r 0.10926r 0.01556r
16506r 0.07846r 0.02073r 0.22692r 0.16506r

13 14 15 16
01556r 0.03228r 0.04665r 0.00111r 0.01556r
02073r 0.13175r 0.10320r 0.07846r 0.05681r
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Suppose that for the given point ti we have mi points tj

(i – j,1 6 j 6 n) for which d(ti, tj) < 2r. We can write non-overlap-
ping condition in the form

If zi ¼ 1 then for all j : dðti; tjÞ < 2r; we have zj

¼ 0; i – j; 1 6 j 6 n: ð2Þ

Proposition 1. Condition (2) is equivalent to the condition

mizi þ
X

j:dðti ;tjÞ<2r;i–j

zj 6 mi: ð3Þ
t1 t2 t3

t4 t5 t6
Proof. Let condition (2) be fulfilled. Let zi = 1, then the first term on
the left side of (3) is mizi = mi. The remaining term on the left side of
(3) are equal to zero by (2). Hence, we have the condition (3).

Conversely, let condition (3) be fulfilled. Then, if zi = 1, then we
have zj = 0 (i – j,1 6 j 6 n) for all j such that d(ti, tj) < 2r. Hence, we
get the condition (2). Notice that, if zi = 0, then inequality (3) holds
true for all zj under the summation sign. h

The fulfillment of condition (2) (or (3)) implies that, if the center
of a circle of radius r is at the point ti (1 6 i 6 n), then any other cir-
cle can be centered only at the points tj (i – j,1 6 j 6 n) that are at
the distance not less than 2r from ti. Therefore, under this condi-
tion, the open circles of radius r centered at ti and tj do not
intersect.

Let, as above, each point ti have mi points tj (i – j,1 6 j 6 n) for
which d(ti, tj) < 2r.

Define the coefficients

aij ¼
1; if dðti; tjÞ < 2r;

0; if dðti; tjÞP 2r

�
; i – j; 1 6 i; j 6 n;

aii ¼ mi; 1 6 i 6 n:

It is clear that, for the chosen i, condition (2) (and, hence, condition
(3)) can be written in the form

ai1z1 þ ai2z2 þ � � � þ ainzn 6 mi; 1 6 i 6 n

Let A be the n � n matrix with the elements aij, 1 6 i, j 6 n, Z and M
be the vectors Z = (z1, z2, . . . , zn)T and M = (m1, m2, . . . , mn)T, respec-
tively and zi, 1 6 i 6 n, are defined by (1).

We consider the problem:

subject to
N ¼

Xn

i¼1

zi !max

Az 6 M;

zi 2 f0;1g;1 6 i 6 n:

ð4Þ

This problem is to maximize the number of variables zi taking the
value 1 and such that zi and zj are equal to 1 if d(ti, tj) P 2r. There-
fore, the open circles with centers at the points ti and tj are mutually
disjoint. Consequently, the problem (4) is a packing problem in G
with the largest number of circles of radius r with centers in some
of the points of T.

Solving problem (4), we find the number N of the circles of ra-
dius r, and the values zi thus obtained determine the circle centers.

The relaxation of problem (4) is obtained if the conditions
zi 2 {0,1}, 1 6 i 6 n, are replaced by the conditions: 0 6 zi 6 1,
1 6 i 6 n:

subject to
N ¼

Xn

i¼1

zi !max

Az 6 M;

0 6 zi 6 1;1 6 i 6 n:

ð5Þ
Sometimes, the relaxation of the problem of type (4) is used to eval-
uate the value of the objective function and to approximate values
of the variables zj, 1 6 j 6 n, of problem (4). In this case, it cannot be
done because of the following. It is easy to see that the vector z = (1/
2, 1/2, . . . , 1/2)T is a feasible solution of problem (5). Therefore, we
find that N⁄P n/2. Thus, the value N⁄ for (5) can be very large (for
large values of n), even if we find that N = 1 for (4). Consequently,
values of the objective function of the integer problem (4) and the
relaxed problem (5) can differ very significantly. This implies that
the relaxed problem does not allow us to estimate the value of
the objective function of the original problem, and it is not yet clear
how the solution of problem (5) can be used to solve problem (4).

4. Algorithm for packing congruent circles into a given domain

Problem (4) stated in the preceding statement is an integer lin-
ear program. It is clear that when the grid size D is reduced, the
probability of obtaining an acceptable packing increases; however,
as D decreases, the size of the problem (the number of variables)
increases.

Obviously, we can solve problem (4) by any method (algorithm)
designed for integer linear programs if the solution time is accept-
able. If the size of problem (4) is large, the time needed to solve it
by available exact methods is long (often unacceptably long). In
this case, one can use the methods based on directed search or
the methods that use stochastic or heuristic approaches and the
like. In this paper, we propose a heuristic method based on a nat-
ural packing procedure in which the packing is performed step-by-
step—first, several (may be three or four) layers of circles are
packed, then some more layers with regard to the circles already
packed, etc.

Before presenting a detailed description of this heuristic algo-
rithm, we carry out some additional reasoning.

Suppose that we want to pack the maximum possible number
of open congruent circles of radius 1 into a rectangle R of width
4 and height 3. It is clear that only two such circles can be packed
into R. This solution can be obtained by constructing model (4).
Take the grid size D = 1; then, the set T(D) consists of six point:
T(D) = {t1, t2, . . . , t6} (see Fig. 3). Then, problem (4) is written as

N1 ¼ z1 þ z2 þ z3 þ z4 þ z5 þ z6 !max ð6Þ

subject to the constraints

3z1 þ z2 þ z4 þ z5 6 3;
z1 þ 5z2 þ z3 þ z4 þ z5 þ z6 6 5;
z2 þ 3z3 þ z5 þ z6 6 3;
z1 þ z2 þ 3z4 þ z5 6 3;
z1 þ z2 þ z3 þ z4 þ 5z5 þ z6 6 3;
z2 þ z3 þ z5 þ 3z6 6 3;
zi 2 f0;1g;1 6 i 6 6:

ð7Þ

By solving problem (6), (7), we conclude that the maximum value of
N1 is 2, and the circle centers can be at the points either t1 and t3, or
t1 and t6, or t3 and t4, or t4 and t6.
Fig. 3. The introduction of the levels of the circles centers.
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If we want the circles to be as low in R as possible, then we
should modify the model (6) and (7). For that purpose, we assume
that the points t1, t2, and t3 are at the second level (tier), while the
points t4, t5, and t6 are at the first level. The levels are counted from
the bottom to the top. The points of the same level have identical y
coordinates. We want to place the circle centers as low as possible.
For that reason, we multiply the variables corresponding to the
first-level points by a constant (weight) c1 that is more than the
weight c2 multiplying the variables corresponding to the second-
level points. Set c1 = 2 and c2 = 1. Then, we can write

N2 ¼ z1 þ z2 þ z3 þ 2z4 þ 2z5 þ 2z6 !max ð8Þ

instead of (6). Solving problem (8) subject to constraints (7), we
conclude that the maximum value of N2 is 4, and two circles can
be centered only at the points t4 and t6. Therefore, by a proper selec-
tion of weights for different levels, we can ensure that the circle
centers are at the desired level.

Determining the level weights is a nontrivial problem because
no optimal packing can be obtained if the weights are inappropri-
ate. We illustrate this fact using a simple example. Suppose that we
want to pack circles of radius 1 into a rectangle of width 4 and
height H. Consider two packings shown in Fig. 4.

In Fig. 4a, we assume that the grid nodes coincide with the
intersection points of the horizontal and vertical dashed lines. In
the case of Fig. 4a, this set of nodes consists of 15 points on five lev-
els. Similarly, for Fig. 4b we obtain 15 grid points formed by the
intersection of the horizontal and vertical dashed lines.

Let cj be the weight of the jth level, where 1 6 j 6 5. Then, the
objective function of problem (4) with regard to the tier weights
can be written as

N ¼ c1z1 þ c1z2 þ c1z3 þ c2z4 þ c2z5 þ c2z6 þ � � � þ c5z13 þ c5z14

þ c5z15

Set the following values for the weights: c1 = 1.3, c2 = 1.2, c3 = 1.18,
c4 = 1.08, and c5 = 1.05. Then, the value of the objective function for
the packing shown in Fig. 4a is 6.01; for the packing shown in
Fig. 4b, it is 5.96. Therefore, the packing in Fig. 4a is preferable to
the one in Fig. 4b, which is an ambiguous conclusion. Therefore,
when the weights of levels are selected, it is important to take into
account which packing is adequate to the purpose of the study.

Now, let us find out which effect can be achieved by introducing
subsets in the set G.

Suppose that the coordinate y of the points in G satisfies the
condition a 6 y 6 b and the coordinate y of the points in G⁄ satisfies
the condition a⁄ 6 y 6 b⁄. Take a1 such that a1 P a⁄ + 4r and a1 6 b,
where r is the radius of the circles to be packed. Define the set Da1

as the subset of points in G that are below the line y = a1. For Da1,
we construct D�a1 in the same way as G⁄ was constructed for
Fig. 4. The introduction of the weights of the levels.
G : D�a1 ¼ fs 2 Da1 : mint2frDa1
dðs; tÞP rg. Next, we define on D�a1

a grid whose nodes generate the set Ta1(D) = {t1, t2, . . . , tn1} con-
sisting of n1 elements. The points tj with the same coordinate yi

(1 6 j 6 n1) are assumed to be on the same level. The set
Ta1(D) = {t1, t2, . . . , tn1} constructed for D�a1 can contain points that
are on k (k P 1) levels (the levels are counted from the bottom to
the top). Define k weights for these tiers: c1 P c2 P � � �P ck. Let cj

be the weight for level j. The variables zj in the objective function
are multiplied by the weight corresponding to the level on which
the point tj (1 6 j 6 n1) resides. As a result, we obtain a new objec-
tive function, while the constraints are constructed as for problem
(4) but using the set Da1. The resultant problem with account for
the level weights is considered as an auxiliary problem. The solu-
tions to this problem are considered to be solutions for the set
Da1. As a result of the solution, we obtain a packing of circles into
Da1 for the subset Da1 # G. This packing is denoted by Pa1.

Let Da(i�1) be constructed and a packing Pa(i�1) found for this
subset. The boundary of Dai(i P 2) consists of the following parts:

– segments of the lines y = ai and y = ai�1 � 2r � D lying within G,
– segments of the boundary of G between these lines,
– if the line y = ai�1 is the uppermost one among the lines of this

kind, then the segment of the line y = ai�1 � 2r � D lying inside
G and the boundary of G lying above y = ai�1 � 2r � D are con-
sidered to be the boundary of Dai.

The set D�ai is constructed as follows:

D�ai ¼ fs 2 G : ðmin
t2frDai

dðs; tÞP rÞ&ð min
Kj2Paði�1Þ

dðs; qjÞP 2rÞg;

Here, qj is the center of the circle Kj belonging to the packing Pa(i�1).
Therefore, when constructing D�ai (1 < i 6m), we use the packing
Pa(i�1) constructed for the subset Da(i�1). Next, we construct on
the set D�ak a grid whose nodes generate the set Tai(D). Then, we
use Tai(D) to set up an auxiliary problem with account for the
weights of levels. The solution of this problem gives the packing
Pai for Dai.

Let the grid size of D be specified, the set G⁄ for G be found, and
set T(D) be constructed on G⁄ using the grid nodes and procedure 1.
Assume that the same grid size D is established for all the sets D�ai,
and the corresponding sets Tai(D) (1 6 i 6m) are constructed one
after another. Let n be the number of elements in T(D) and ni be
the number of elements in Tai(D), 1 6 i 6m. It is important that
each ni (1 6 i 6m) is less than n and, furthermore, the sum of all
ni is also less than n. Thus, the sizes of the auxiliary problems for
D�ai are less than the size of problem (4) for the entire set G.

We assume that, if the number of variables (the problem size) in
(4) is n⁄, then, this problem can be solved in an acceptable amount
of time.

Algorithm A.

1. For the set G find G⁄. Select the size D of the grid and construct
the set T(D) = {t1, t2, . . . , tn}.

2. If the number of elements (n) in T(D) is acceptable (n 6 n⁄), then
construct and solve problem (4) and terminate the algorithm;
otherwise, go to step 3.

3. If n > n⁄, then construct m subsets Dai (1 6 i 6m) of G such that
the auxiliary problems for them are of acceptable size. Solving
the auxiliary problems one after another for each subset begin-
ning with Da1, produce packings in these subsets. The union of
the packings thus obtained is considered as a solution of the
packing problem for G. Terminate the algorithm.
It is clear that the packings for the individual subsets Dai

(1 6 i 6m) are not independent. The solution for each subset,
beginning with the second one, depends on the preceding sub-
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sets. Even if the packing for each subset is optimal, the overall
result is not necessarily optimal. However, test computations
showed that the algorithm produces acceptable results in rea-
sonable time, which makes the algorithm quite effective.

Algorithm A1 has the following parameters:

� the number (m) of subsets Dai (1 6 i 6m) constructed for the
original set G,
� the quantities a1, a2, . . . , am�1, which determine m subsets of G,
� grid size for each subset of G,
� the weight cji of level i (1 6 i 6 lj), where lj is the number of lev-

els in the jth subset of G (1 6 j 6m).

In the next section, we analyze the influence of these parame-
ters on the results produced by the algorithm.

It is clear that, instead of pressing the circles at the bottom (by
selecting the tier weights), we could press them at the top, or (and)
right, or left.

5. Fitting algorithm parameters

1. The number m of subsets Dai is mainly chosen so as to make it
possible to solve the auxiliary problem for each Dai (1 6 i 6m).
This depends on the size of the 0–1 linear program. It is impor-
tant to select the grid size D for Dai (1 6 i 6m) simultaneously.
An effective approach is at first select m so as to ensure that the
number of circles packed into G could be quickly determined for
the given grid size D; then, the grid size D/2 is tried, and so on
while the number of circles changes. Upon determining the grid
size (after which the number of packed circles stops to change),
we start to improve the solution. For that purpose, we construct
subsets Dai (1 6 i 6m) for a lower m such that the size of the
problems on Dai (1 6 i 6m) remains acceptable.

2. Next, a1, a2, . . . , am�1, which determine the subsets Dai

(1 6 i 6m � 1) and Dam, are chosen. Initially, these parameters
are chosen taking into account the conditions described in item
1. After the grid size D has been refined, a1, a2, . . . , am�1 can be
locally optimized as follows.
For the chosen ai and the set Dai (1 6 i 6m � 1), solve problem
(4) without level weights. As a result, we obtain a packing for
Dai that contains, say, qi circles in Dai, Dai # G. Then, iteratively
reduce ai by Da while the number of circles packed into Dai

remains equal to qi. When this number changes, return to the
preceding iteration step and subtract Da/2 from ai. When the
number of packed circles changes again, subtract Da/4 from
ai, and so on. Thus, we fit ai to the desired accuracy. Before fit-
ting the next ai+1, the auxiliary problem with level weights
(with the fitted ai) must be solved for Dai so that the circles
are as low as possible. Then, ai+1 is improved, and so on. This fit-
ting procedure is not needed if the computations show that the
resultant number of packed circles is independent of the spe-
cific values of a1, a2, . . . , am�1.

3. Fitting the grid size was discussed above in item 1.
4. Fitting the weights of levels in the subsets Daj (1 6 j 6m). Sup-

pose that there are lj levels in Daj (lj P 1, 1 6 j 6m). If the
parameters a1, a2, . . . , am�1 were fitted using the improvement
procedure described in item 2 above, then the weights are
selected so as not to change the number of circles qi in Dai; how-
ever, the lower is the level, the higher its weight should be. If
the parameters were chosen without the use of the improve-
ment procedure, then the level weights significantly affect the
solution. For example, a certain selection of weights yields that
the packing shown in Fig. 4a is optimal. For the other weights,
the packing shown in Fig. 4b can turn out to be optimal (with
a greater value of the objective function). This is important if
this packing was obtained for Daj with 1 6 j 6m � 1. For the
set Daj with j = m, this is of no importance because we want
to find the number of packed circles. In this study, we selected
the level weights for Daj by the formula
cji ¼ 1þ sðaj � yiÞ; 1 6 i 6 lj; ð9Þ
where cji is the weight of level i in Daj, s is a fitted parameter, aj is
the parameter determining the subset Daj, yi is the coordinate y of
tier i in Daj, and lj is the number of levels in Daj (1 6 j 6m), where
the level indexes are counted from the bottom to the top. The quan-
tity s in (9) was chosen in the interval [0.1,0.35].

6. Numerical results

We considered the packing of circles into three geometric
configurations:

The first non-convex figure B is shown in Fig. 5. The size of B can
be easily determined from Fig. 5a taking into account the fact that
B contains three circles of radius 1.

The second configuration is the rectangle of width 3 and height
6; it is denoted by R (see Fig. 6).

The third configuration is the rectangle R from which two cir-
cles of radii 0.625 and 0.5 are cut out; we denote it by Rd. In Figs. 7
and 8, the parts that were cut out from Rd are shown in gray.

Our studies are motivated by the need of cutting out from a
steel sheet as many circles (discs) of a given radius as possible tak-
ing into account that the steel sheet can be partially used. There-
fore the rectangle R and figure Rd were chosen. Sizes of the
rectangle R are thus selected that R was similar to the figure of a
real metal sheet. Figure B (bootee) was chosen to show the poten-
tial of the method for the packing of equal circles in a non-convex
domain. Note that the packing in the rectangular area was consid-
ered in many papers; see, for example, the works Bergin and Gentil
[1], Bergin et al. [2], Lubachevsky and Graham [15] and the refer-
ences therein. We want to pack as many circles of a given radius
as possible into these configurations.

Consider the packing of congruent circles into the figure B. If the
radius is equal to 1, then it is clear that three circles can be packed.
This obvious solution can be obtained as follows. Let D = 1 and the
set T(D) consist of five points: T(D) = {t1, . . . , t5} (see Fig. 5a). Prob-
lem (4) is

N ¼ z1 þ z2 þ z3 þ z4 þ z5 !max

subject to

z1 þ z2 6 1;
z1 þ 3z2 þ z3 þ z4 6 3;
z2 þ 2z3 þ z4 6 2;
z2 þ z3 þ 3z4 þ z5 6 3;
z4 þ z5 6 1; zi 2 f0;1g; 1 6 i 6 5:

By solving this problem, we obtain the desired solution
z1 = z3 = z5 = 1, z2 = z4 = 0. Hence, the circle centers are at the points
t1, t3, and t5. To solve the problem of packing into B, R, and Rd, a com-
puter program based on CPLEX-11.2 was developed.

Consider the figure B. First, we solve the packing problem for
the entire set B assuming that the weight of each level is unity;
then, we solve the same problem using the construction of the sub-
sets Dai (1 6 i 6m) on the set B and different level weights. The
problem is solved using Algorithm A.

Let the circle radius be r = 0.375 and D = 0.09375 (D = r/4). Con-
struct a rectangular grid on B⁄. The grid nodes generate the set
T(D) = {t1, t2, . . . , t767} consisting of 767 points. Therefore, the size
of problem (4) in this case is 767. The solution of this problem
on the computer at our disposal (Intel Core2Duo CPU T7300 with



Fig. 5. Packing into figure B: (a) packing of 3 circles, (b) packing of 17 circles, (c) packing of 18 circles, and (d) packing of 81 circles.

Fig. 6. Packing into R: (a) 18 circles of radius 0.5, (b) 74 circles of radius 0.25, and (c) 140 circles of radius 0.1875.
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frequency 2.00 GHz, RAM 2.00 Gb, OS Windows 7) took 58 s (s) and
produced the packing of 17 circles shown in Fig. 5b. Now, let
D = 0.046875 (D = r/8). Then, the size of problem (4) is 2986, the
solution takes 4 h and produces the packing of 18 circles shown
in Fig. 5c. Fig. 5d shows the packing of 81 circles obtained for the
circle of radius 0.1875.
Let hi be the time needed to find the packing for the set Dai

(1 6 i 6m); Hs be the total time needed to find the packing using
the sets Dai (1 6 i 6m), that is, Hs ¼

Pm
i¼1hi þ ts, where ts is the time

needed for preparatory computations; and H be the time needed to
find the packing without the use of the sets Dai (1 6 i 6m). The
computation time is given accurate to seconds.



Fig. 8. Packing of circles of radius 0.1875 by pressing them down: (a) packing of
111 circles and (b) packing of 118 circles.

Fig. 7. Packing of 26 circles with radius 0.375: (a) packing circles by pressing them
down, and (b) packing circles without pressing them down.
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The computation results for the set B and various radii of circles
are presented in Table 2. The columns in Table 2 contain the fol-
lowing data:

� Column 1 contains the circle radius;
� Column 2 contains the grid size D;
� Column 3 contains the number of variables (size of the prob-

lem) for the packing problem solved on the entire set B; the
number of variables in the case when the problem is solved
on the subsets Dai (1 6 i 6m) separated by the symbol «/»is
shown in parentheses;
� Column 4 contains two numbers separated by «/». The first

number is the number of the packed circles obtained using
the subsets Dai, 1 6 i 6m, and the second one is the number
of the packed circles obtained without using DaI (without using
our heuristic Algorithm A) The dash «-»indicates that the second
number was not obtained because of too large computation
time or the lack of memory.
� Column 5 contains the obtained density of packing (p);
� Column 6 contains the quantities a1, a2, . . . , am�1 used for the

construction of the subsets Dai (1 6 i 6m). For the case of two
subsets Dai (1 6 i 6m, m = 2), a1 is shown; if three or more
Dai (1 6 i 6m) are constructed, then a1, a2, . . . , am�1 are sepa-
rated by the symbol «/»;
� Column 7 contains the computation time for the subsets Dai

(1 6 i 6m) separated by «/». Here, as everywhere, «h», «m» and
«s» are the hour, minute and second, respectively. The computa-
tion time is given accurate to seconds;
� Column 8 contains the total computation time with account for

preparatory operations;
� Column 9 contains the computation time spent on solving the

packing problem without using the subsets Dai (1 6 i 6m) with
the unit weight for each level. The computation was interrupted
if the computation time for the entire configuration exceeded
12 h;
� Column 10 contains the ratio of the computation times (H/Hs)

without the use of the sets Dai (1 6 i 6m) and with the use of
the sets Dai (1 6 i 6m).

The columns in Tables 3 and 4 contain the same parameters as
those in Table 2 for packings into R and Rd, respectively.

It is seen from Table 2 that the number of packed circles ob-
tained with the use of DaI, 1 6 i 6m, (using our heuristic Algorithm
A) is the same as that obtained without the use of these subsets.
However, the computation times are significantly different (if H
were obtained). For example, for the radius 0.375 the computation
time (H) for the set B without using Dai is by a factor of 19 more
than the computation time (Hs) with the use of two subsets Da1

and Da2 on B.
When the time of the calculation H turned out more than 12 h,

the task was removed from the account. In these cases, the packing
density allows to evaluate the quality of the packing. Note that if
the account is stopped, then the ratio H/Hs can be much greater
than what’s listed in the table.

Table 3 presents the computation results for packing the maxi-
mum number of circles into the rectangle R.

Let r be the radius of n circles packed into the rectangle R.
Then, n circles of radius r/3 can be packed into the rectangle of
width 1 and height 2; that is, they can be packed into the config-
uration formed by two unit squares put one on the top of the
other. It is easy to verify that, for the circles of radii 0.5 and
0.25, the number of circles shown in Table 3 is exactly the dou-
bled number of circles of radius r/3 that can be packed into a unit
square (see Table 13.1 in [18], where the best known results con-
cerning the packing of circles into a unit square are presented).
This result implies that we cannot increase the number of packed
circles by using the possible free space at the interface between
the squares. For the case r = 0.275 (r/3 = 0.09166667), the table
in [18] mentioned above implies that at least 60 circles can be
packed into two unit squares. The algorithm proposed in this pa-
per packs 61 circles into R.

Let r = 0.1875 (r/3 = 0.0625). In [18] it is pointed that if the circle
radius r⁄ � 0.06252008, then 68 circles can be packed into the unit
square. In this case, the packing density is approximately equal to
0.835022. We have found that into R 140 (140 = 68 + 68 + 4) circles
of radius r = 0.0625 are packed and the packing density is equals to
0.859, which is more than the packing density of 68 circles of ra-
dius r⁄ in the unit square.

Fig. 6 shows the packing of 18, 74 and 140 circles obtained for
packing into R.



Table 2
Packing of equal circles into B.

Circle
radius

D Problem dimension Circle
number

Packing density
p

Values a1/a2/
a3 . . .

Calculation time h1/h2/
h3 . . .

Hs H H/Hs

0.625 0.15625 157 5/5 0.530 – 3c 3c 1
0.5625 0.0703125 892 7/7 0.601 – 22s 22s 1
0.5 0.125 354 11/11 0.747 – 3s 3s 1
0.4375 0.0546875 1950 (1185/575) 13/13 0.675 2.05/– 2m10s/10s 2m21s 24m20s 10.35
0.375 0.046875 2986 (1841/763) 18/18 0.687 2.025/– 7m28s/54s 8m28s 4h4m8s 28.83
0.3125 0.078125 1221 (503/172/254) 27/27 0.716 1.55/2.35/– 8s/1s/1s 11s 7m37s 41.55
0.275 0.06875 1697 (730/116/394) 37/37 0.760 1.55/2.35/– 7s/1s/2s 11s 4h23m48s 1438.9
0.25 0.0625 2134 (470/488/628) 45/– 0.763 1.05/2.05/– 2s/2s/5s 12s >12 h >3600
0.1875 0.046875 4101 (1095/1079/

1229)
81/– 0.773 1.05/2.15/– 20s/1m29s/45m28s 47m27s >12 h >15

Table 3
Packing of equal circles into the rectangle R.

Circle
radius

D Problem dimension Circle
number

Packing
density p

Values a1/a2/
a3

Calculation time h1/h2/h3 Hs H H/Hs

0.625 0.078125 1403 10/10 0.682 – 49s 49s 1
0.5625 0.0625 2449 (961/1029) 13/13 0.718 3/– 16s/23s 42s 19m43s 28.17
0.5 0.125 697 (289/291) 18/18 0.785 3/– 2s/1s 4s 8s 2
0.4375 0.0546875 3666 (1521/1885) 21/– 0.701 3/– 12m10s/8m02s 20m19s >12 h >35
0.375 0.09375 1425 (625/628) 32/32 0.785 3/– 6s/5s 13s 48m57s 225.92
0.3125 0.078125 2139 (682/546/541) 45/– 0.767 2.3/4.2/– 34s/4s/3s 44s >12 h >980
0.275 0.06875 2880 (1044/716/752) 61/– 0.805 2.5/4.3/– 5m10s/15s/20s 5m51s >12 h >120
0.25 0.0625 3649 (1353/866/866) 74/– 0.807 2.5/4.3/– 2h25m16s/48s/45s 2 h

26m56s
>12 h >26

0.1875 0.046875 6897 (1026/117/1078/
1192/1098)

140/– 0.859 1.5/2.3/3.6/
4.95/–

42m02s/01m12s/1m14s/
1m45s/1m15s

48m42s >12 h >14

Table 4
Packing of equal circles into Rd.

Circle
radius

D Problem dimension Circle
number

Packing
density p

Values a1/a2/a3

. . .

Calculation time h1/h2/h3

. . .

Hs H H/Hs

0.625 0.078125 1084 8/8 0.625 – 32s 32s 1
0.5625 0.0703125 1475 10/10 0.633 – 2m01s 2m01s 1
0.5 0.125 552 14/14 0.700 – 6s 6s 1
0.4375 0.0546875 2912 (1157/1314) 17/17 0.650 3.5/– 100600/5500 2m07s 2m39s 1.25
0.375 0.09375 1152 (477/544) 26/26 0.731 3.5/– 400/700 12s 8m210s 40.83
0.3125 0.078125 1749 (757/800) 39/39 0.761 3.5/– 2100/1200 35s 1h34m32s 162.63
0.275⁄ 0.06875 2383 (1044/716/255) 52⁄/– 0.786⁄ 2.5/4.3/– 5m08s/15s/1s 5m28s >12 h >130
0.275 0.06875 2383 (605/780/579) 47/– 0.711 2.65/4.5/– 17s/1m45s/16s 2m20s >12 h >290
0.25 0.0625 3043 (467/939/935) 61/– 0.762 2.5/4.25/– 32s/7m58s/3m18s 12m18s >12 h >58
0.1875⁄ 0.046875 5815 (628/398/1114/

1383/960)
118⁄/– 0.828⁄ 1.5/2.3/3.6/

4.95/–
42m09s/30s/46s/1m08s/
9s

44m57s >12 h >16

0.1875 0.046875 5815 (628/398/1114/
1383/960)

111/– 0.780 1.8/2.4/3.6/
4.95/–

7s/2s/38m56s/22m27s/
1m31s

1 h
03m21s

>12 h >11
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Table 4 presents the computation results for packing the maxi-
mum number of circles into the configuration Rd (the rectangle
from which two circles of a known radius are preliminary
removed).

When calculating the packing density for Rd we considered area
of Rd excluding the rectangle parts lying below a pre-cut circles.

The results for circles with radii of 0.275 and 0.1875 are pre-
sented in Table 4 for two cases when shaded circles are at the
top and at the bottom of the figure. The obtained results for the
case when the shaded circles are at the top of the figure are marked
with an asterisk (⁄).

Table 4, as the preceding tables, shows that the computation
times needed to produce a packing using the subsets Dai

(1 6 i 6m) and without using these subsets can be significantly
different.
Weights of levels may be useful based on the following consid-
erations. Fig. 7 shows packings of circles of radius 0.375 into the
configuration Rd. The packing in Fig. 7a was obtained using weights
of levels, while the packing in Fig. 7b was obtained without using
such weights. In both cases, the number of circles is the same.
However, the packing in Fig. 7a can be more practical because it
leaves larger parts of the configuration (material) than the packing
depicted in Fig. 7b, which may be used for other purposes.

In some cases, the packing result may depend on directions of
circles pressing up or down, right or left. Packing into Rd can be
solved by pressing the circles up or down due to the selection of
level weights. For the figure Rd pressing up circles is equivalent
to the fact that the pre-cut circles (shaded in the figures) are placed
at the top of the rectangle, and the packed circles are being still
pressed down. For circles of radius 0.625, 0.5625, 0.5, 0.4375,
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0.375, 0.3125, and 0.25 the number of packing circles did not de-
pend on whether gray circles were at the bottom or top of the rect-
angle. For circles of radius 0.275 and 0.1875 we received different
numbers of packing circles, depending on where the gray circles
were. This is due to the fact whether in the early stages of packing
circles are packed more ‘‘correct’’ or not. Fig. 8 shows the packing
of 111 and 118 circles obtained at different position pre-cut (gray)
circles. In Fig. 8a gray circles are at the bottom, and in Fig. 8b—at
the top.

The problem (4) for the region B was solved (at our not powerful
computer) without using the heuristic algorithm when the number
N of packing circles did not exceed 37 and the dimension of the
problem (4) was not more than 1697 (see Table 2). Sometimes
the solution for higher dimension is possible to find, for example,
for the dimension of 2986 when N = 18. It depends on successful
choice of execution path of the program CPLEX-11.2.

A time solution of the problem (4) depends not only on the
dimension of the problem, but also on the particular problem. In
each of Tables 2–4, we give the solution time both using heuristics
and without dividing the area into parts. For example, for the do-
main B without dividing into parts we have the following. For each
value of radius 0.625, 0.5625, 0.5, 0.4375 and 0.3125 the solution is
obtained not more than 25 min (see Table 2); for each of the radii
0.375 and 0.275 the solution was obtained in 4.5 h.

For the rectangle R we were able to solve the problem (4) with-
out using the heuristic algorithm when the number of circles did
not exceed 18 and the dimension of the problem (4) was not more
than 2449. As an exception, the solution was found without using a
heuristic algorithm for N = 32, see Table 3. For the figure Rd solu-
tions were obtained without involving heuristic algorithm when
the number of circles did not exceed 39, see Table 4.

Note again that in all cases, when the problem (4) was solved
both without the involvement of the heuristic algorithm and with
the involvement of this algorithm, the numbers of packing circles
were the same. For cases, when the problem (4) was solved only
with heuristic algorithm, the quality of solution was characterized
by the packing density. In particular, packing density for R was
compared with the density of the best-known packings, see the
explanation after Table 3.

The numerical results demonstrate the effectiveness of the pro-
posed approach.

7. Conclusions

The proposed linear model of the packing of equal circles of a
given radius allows to pack the maximal possible number of circles
in a bounded domain. It is important that in the packaging process
it’s possible to press packed discs to a selected side (selected sides)
of the region or not to do it. The heuristic algorithm presented in
this paper allows to find the approximate number of packed circles
and their location for large dimensions of constructed linear
models.

The obtained numerical results confirm the effectiveness of this
method. Presently, the problem solution based on the proposed
models may be inferior to some other approaches in terms of accu-
racy. However, these models provide universal engineering means
for packing congruent circles of the given radius into arbitrary
domains.
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