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This paper introduces new environmental constraints, namely carbon emission constraints, in multi-
sourcing lot-sizing problems. These constraints aim at limiting the carbon emission per unit of product
supplied with different modes. A mode corresponds to the combination of a production facility and a
transportation mode and is characterized by its economical costs and its unitary carbon emission. Four
types of constraints are proposed and analyzed in the single-item uncapacitated lot-sizing problem.
The periodic case is shown to be polynomially solvable, while the cumulative, global and rolling cases
are NP-hard. Perspectives to extend this work are discussed.
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1. Introduction

Legislation is evolving in order to enforce control on carbon
emissions. This will probably be done by constraining companies
to emit less than a given amount of carbon dioxide by product unit
that is produced and transported. Along with legislation and
norms, some companies may volunteer in this direction for mar-
keting reasons and to get a competitive advantage. The amount
of carbon emission will probably appear on item packages in the
near future. Companies will face new constraints that will force
them to reduce carbon emissions while still minimizing production
and transportation costs. There are few papers addressing produc-
tion planning and transportation problems that take into account
environmental constraints. Generally, environmental issues are
integrated as cost components in the objective function, and the
resulting problems are solved using multi-criteria approaches
(see [13,1]). Note that classical cost components (production and
transportation costs) have the same behavior as environmental
cost components (e.g. reducing the number of vehicles or the total
distance).

One of the main objectives of green logistics is to evaluate the
environmental impact of different distribution and production
strategies to reduce the energy usage in logistics activities.
Although the interest in green logistics has grown in the last dec-
ades, current logistics practice still rarely complies with environ-
ll rights reserved.
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mental constraints. One of the objectives of the Kyoto protocol is
to stabilize and then reduce greenhouse gas emissions in order to
limit global warming. Carbon dioxide being one of the most impor-
tant greenhouse gases, countries will have to reduce their carbon
emissions, and will require companies to trim down their carbon
emissions. A quota of carbon emission per company will probably
be fixed (e.g. California). As a result, some companies have already
started to monitor their carbon footprint to evaluate the environ-
mental impact of their activities. The classical production and dis-
tribution models focus on the minimization of costs subject to
operational constraints. Considering green logistics objectives
and constraints will lead to new problems resulting in novel com-
binatorial optimization models.

Green supply chain management (see [23]) has been extended
to include green inventory models that link inventory and ordering
behavior and emissions. Sbihi and Eglese [21] present a short state-
of-the-art on green logistics and combinatorial optimization. They
describe some of the problems that arise in green logistics which
can be formulated as combinatorial optimization problems. They
focus on the topics of reverse logistics, waste management and
vehicle routing and scheduling. Dekker et al. [9] provides a recent
overview of issues and challenges in green logistics and operations
research, focusing on supply chain management and design for
transportation, inventory and production. Reverse logistics is an
important part of Green supply chain management and a lot of re-
search has been conducted in this field. Teunter et al. [24] address
this issue for lot-sizing problems, and propose two models. In the
first model, they assume that manufacturing and remanufacturing
operations are carried out in the same factory. They model these
operations with a joint setup cost. In the second model, they as-
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sume that manufacturing and remanufacturing operations are
done on two separate lines. Several works on the integration of
remanufacturing in a closed loop supply chain can be found in
the literature [17,15,19].

Depending on the objectives of a company, the integration of carbon
emission constraints can be considered at different decision levels
(strategic, tactical and operational). At the strategic level, designing
supply chain flows or locating a factory or a warehouse impact green
constraints and objectives [8,26,18]. At the tactical level, carbon emis-
sions can be considered in production and distribution planning deci-
sions. Recently, some authors [14,6] study the integration of carbon
emission constraints in classical inventory management models. At
the operational level, carbon emission constraints can be related to
vehicle routing or production scheduling decisions [3,11]. Our paper
focuses on the tactical decision level of a supply chain.

There is little research addressing the introduction of carbon
emission constraints in production and/or distribution planning
models. In lot-sizing, we only found the work of Benjaafar et al. [4]
that integrates carbon emission constraints. The authors insist on
the potential impact of operational decisions on carbon emissions
and the need for Operations Management research that incorporates
carbon emission concerns. The authors also point out that the contri-
bution of operational research in this area is almost absent. Benjaa-
far et al. [4] add a new capacity constraint that links and limits all
carbon emissions related to production and storage over the plan-
ning horizon. The weakness of this constraint is that producers can
create large carbon emissions at the beginning of the horizon by pro-
ducing large quantities, and balance the total carbon emission by
producing nothing at the end of the horizon.

As previously mentioned, the need of companies to monitor
their carbon emissions is growing. This monitoring must be consis-
tent with production and distribution planning models that must
take into account carbon emission constraints. More precisely, if
the monitoring of the carbon footprint is aggregated according to
the type of vehicles and their consumption, there is no need to con-
sider more detailed information on each vehicle in production and
distribution planning models.

There are several methodologies to calculate carbon emissions
(Greenhouse Gas protocol [12], ARTEMIS [2], EcoTransIT [10],
etc.). Greenhouse Gas protocol is the most commonly used, since
it is easy to use and its scope is worldwide. The unitary carbon
emission of a product can be calculated using a linear function that
depends on the distance traveled (in kilometers) and on the carbon
emission of the vehicle used (in grams of CO2 per kilometer). This
carbon emission model is adopted in this paper where, for a given
supplying mode, the carbon emission is proportional to the num-
ber of product units that are shipped. We define a supplying mode
as a combination of a transportation mode (combining one or more
types of vehicles) and a production facility.

In this paper, we study multi-sourcing lot-sizing problems with
carbon emission constraints. These new constraints are induced
from a maximum allowed carbon dioxide emission coming from leg-
islation, green taxes or the initiatives of companies. Contrary to Ben-
jaafar et al. [4], where a global limit of carbon emission is studied, we
consider a maximum environmental impact allowed on average per
item. We study four types of carbon emission constraints: (1) a Peri-
odic carbon emission constraint, (2) a Cumulative carbon emission
constraint, (3) a Global carbon emission constraint and (4) a Rolling
carbon emission constraint. The global carbon emission constraint
has the same drawbacks than the constraint introduced in [4].

The main contribution of this paper is twofold. First, we propose
new lot-sizing models that take into account different carbon
emission constraints. Second, we determine the complexity status
of these new models. We propose a polynomial dynamic program-
ming algorithm for the problem with periodic carbon emission
constraint, and show that the three other problems are NP-hard.
The outline of the paper is as follows. In Section 2, we provide dif-
ferent mathematical formulations to model the four types of car-
bon emission constraints. In Section 3, we show that the
uncapacitated multi-sourcing lot-sizing problem with the periodic
carbon emission constraint can be solved using a polynomial dy-
namic programming algorithm. In Sections 4 and 5, we show that
the uncapacitated multi-sourcing lot-sizing problem with the
cumulative carbon emission constraint, global carbon emission
constraint or rolling carbon emission constraint is NP-hard. We
conclude and discuss some perspectives of this work in Section 6.

2. Mathematical programming models

Consider a multi-sourcing lot-sizing problem faced by a company
that must determine, over a planning horizon of T periods, when,
where and how much to produce of an item to satisfy a deterministic
time-dependent demand. Different production locations and trans-
portation modes are available to satisfy a given demand. Let us con-
sider M different supplying modes, where a mode corresponds to the
combination of a production facility and a transportation mode. To
each mode are associated classical (fixed and variable) supplying
costs together with an environmental impact modeling the carbon
emission of the mode. As previously discussed, we assume that this
carbon emission is proportional to the amount of units supplied with
the mode, and can be expressed as a unitary environmental impact.
We study four types of carbon emission constraints: (1) Periodic car-
bon emission constraint, (2) Cumulative carbon emission constraint,
(3) Global carbon emission constraint and (4) Rolling carbon emis-
sion constraint. We shall see that the first and third constraint types
are actually special cases of the fourth one. To model these new con-
straints, we define the following parameters and variables.

Parameters:

dt
 Demand in period t,

ht(s)
Cost of holding s units at the end of
period t,
pm
t
 Unitary supplying cost of mode m in

period t,

f m
t
 Supplying setup cost of mode m in

period t,

em

t
 Environmental impact (carbon
emission) related to supplying one
unit using mode m in period t,
Emax

t

Maximum unitary environmental
impact allowed in period t.
Variables:

xm

t
 Quantity supplied in period t using
mode m,
ym
t
 Binary variable which is equal to 1 if

mode m is used in period t, and 0
otherwise,
st
 Inventory carried from period t to
period t + 1.
Note that Emax
t depends on period t, since carbon emissions will

probably be forced to be decreased by stages and not to a specific
level right away. The variations of Emax

t depend on the level (strate-
gic, tactical or operational) at which the lot-sizing models are used.
We consider in the following either the stationary case or the gen-
eral case without any assumption on the time dependency of Emax.
The classical formulation for the multi-sourcing lot-sizing problem,
without carbon emission constraint, is given below:
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min
XM

m¼1

XT

t¼1

pm
t xm

t þ f m
t ym

t

� �
þ
XT

t¼1

htðstÞ ð1Þ

s:t:
XM

m¼1

xm
t � st þ st�1 ¼ dt t ¼ 1; . . . ; T ð2Þ

xm
t 6

XT

t0¼t

dt0

 !
ym

t t ¼ 1; . . . ; T; m ¼ 1; . . . ;M ð3Þ

xm
t 2 Rþ; ym

t 2 f0;1g t ¼ 1; . . . ; T; m ¼ 1; . . . ;M ð4Þ
st 2 Rþ; t ¼ 1; . . . ; T

The objective function (1) minimizes the fixed and variable pro-
duction and transportation costs and holding costs. Constraint (2)
models flow conservation, and Constraint (3) ensures that no item
can be supplied with mode m in period t if this mode is not se-
lected. We add to this formulation the carbon emission constraint
(6), (7), (9) or (10), introduced in the following sections.

2.1. Periodic carbon emission constraint

This constraint is very tight, and assumes that the amount of car-
bon emission that is not used in a given period is lost. This constraint
is useful if the company must ensure that it meets periodically its
carbon emission objectives, and can be formulated as follows:PM

m¼1em
t xm

tPM
m¼1xm

t

6 Emax
t ; t ¼ 1; . . . ; T: ð5Þ

This constraint forces the average amount of carbon emission at
any period t to be lower than or equal than the maximum unitary
environmental impact allowed. This constraint can be rewritten:XM

m¼1

em
t � Emax

t

� �
xm

t 6 0; t ¼ 1; . . . ; T: ð6Þ

At first sight, Constraint (6) looks like a capacity constraint but
it is actually very different, since the coefficients ðem

t � Emax
t Þ of the

xm
t variables in Constraint (6) can be positive or negative. This cre-

ates a compensation phenomenon, with no limit on the quantity
that can be ordered. Note that, in any feasible solution, at least
one mode with a non-positive coefficient must be chosen if a posi-
tive quantity is ordered. To ensure feasibility, we assume that, for a
first demand occurring in period t, there is at least one mode m
such that em

t0 6 Emax
t0 in some period t0 6 t.

2.2. Cumulative carbon emission constraint

Constraint (7) below is weaker than Constraint (6). The amount
of unused carbon emission of a given period can be used in future
periods without exceeding the cumulative capacities.Xt

t0¼1

XM

m¼1

em
t0 � Emax

t0
� �

xm
t0 6 0; t ¼ 1; . . . ; T: ð7Þ

This constraint can be modeled using inventory variables Jt

(with Jt P 0 and J0 = 0), representing the amount of unused carbon
emission that can be used in future periods.

Jt ¼ Jt�1 �
XM

m¼1

em
t � Emax

t

� �
xm

t ; t ¼ 1; . . . ; T: ð8Þ
2.3. Global carbon emission constraint

This constraint extends Constraint (7) on the whole horizon,
and is thus weaker. In Constraint (9), the unitary carbon emission
over the whole horizon cannot be larger than the maximum uni-
tary environmental impact allowed. In this case, the maximum
unitary environmental impact Emax

t no longer depends on the hori-
zon and is stationary, i.e. Emax

t ¼ Emax 8t ¼ 1; . . . ; T .
XT

t¼1

XM

m¼1

em
t � Emax� �

xm
t 6 0: ð9Þ

One of the main limitations of Constraint (9) is that the solution
strongly depends on the horizon length T. Generally speaking, this
constraint has similar drawbacks, discussed in Section 1, to those
of the constraint introduced in [4].

2.4. Rolling carbon emission constraint

Constraint (7) assumes, at each period t, that the horizon from 1
to t can be used to compensate carbon emissions between periods.
In Constraint (10) below, we suppose that this is only possible on a
rolling horizon of R periods. This seems more realistic, and makes
the problem less dependent on the planning horizon T. Note that
the periodic carbon emission constraint (6) is equivalent to Con-
straint (10) when R = 1, and that the global emission constraint
(9) is equivalent to Constraint (10) when R = T.Xt

t0¼t�Rþ1

XM

m¼1

em
t0 � Emax

t0
� �

xm
t0 6 0; t ¼ R; . . . ; T: ð10Þ

Inventory variables Jt can still be used, but constraints on perish-
able inventories must be introduced, since unused carbon emission
in period t cannot compensate carbon emission in periods after t + R.

3. The uncapacitated single-item lot-sizing problem with the
periodic carbon emission constraint

We want to establish that the multi-sourcing Uncapacitated Lot-
Sizing problem with the Periodic Carbon emission constraint (ULS-
PC) problem can be solved in polynomial time. More precisely, we
show that we can reformulate the ULS-PC problem as a standard
lot-sizing problem, i.e. without carbon emission constraints, using
a pre-computation step in O(M2T). Thus, standard lot-sizing combi-
natorial algorithms can be used to solve the problem.

3.1. ULS-PC problem analysis

Recall that the periodic carbon emission constraint (6) ensures
that, in each period t, the average amount of carbon emission per
product ordered does not exceed the impact limit Emax

t . For the sake
of conciseness, we denote by �em

t the value em
t � Emax

t

� �
, and a mode

m is called ecological in period t if �em
t 6 0. For a period t, we denote

by Ft ¼ fm 2 1; . . . ;Mj�em
t 6 0g the subset of its ecological modes.

The following dominance properties can be stated.

Property 1. Consider a solution of the ULS-PC problem using two
modes m1 and m2 in a given period t. If pm1

t 6 pm2
t and em1

t 6 em2
t , then

mode m1 dominates mode m2 (i.e. a solution using modes m1 and m2

can be improved by removing the quantity xm2
t produced using mode

m2 and by producing xm2
t using mode m1).
Property 2. Any solution of the ULS-PC problem uses at least one eco-
logical mode in each period with an order, i.e.

PT
m¼1xm

t > 0 )P
m2Ft

xm
t > 0.
Proof. The proof is straightforward, since a solution with an order
in a given period t, i.e. xm

t > 0, and which does not contain a mode
m0 such that em0

t 6 Emax
t cannot be feasible since Constraint (6) is

violated. h
Theorem 1. There exists an optimal solution for the ULS-PC problem
that uses at most two modes in each period: One ecological mode and
possibly one non-ecological mode.
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Proof. Let us introduce variables Xt ¼
P

mxm
t , representing the

total amount of products ordered in period t in a solution. The
ULS-PC problem decomposes, using a Bender’s approach, into a
master problem (MP) and T independent subproblems IPt(Xt), with:

ðMPÞ

min
XT

t¼1

z�t ðXtÞ þ
XT

t¼1

htðstÞ

s:t: Xt � st þ st�1 ¼ dt t ¼ 1; . . . ; T

Xt ¼ 0 t ¼ 1; . . . ; T such that Ft ¼ ;
Xt 2 Rþ t ¼ 1; . . . ; T

8>>>>>><>>>>>>:
where z�t ðXtÞ is the optimal value of the problem below:

ðIPtðXtÞÞ

min
XM

m¼1

pm
t xm

t þ f m
t ym

t

� �
s:t:

XM

m¼1

xm
t ¼ Xt

XM

m¼1

�em
t xm

t 6 0

xm
t 6 Xtym

t m ¼ 1; . . . ;M

xm
t 2 Rþ; ym

t 2 f0;1g m ¼ 1; . . . ;M

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
IPt(Xt) is a single-period ULS-PC problem, which consists in sup-

plying Xt products in period t at minimum cost, while satisfying a
carbon emission constraint. Note that, because of Property 2, IPt(Xt)
is feasible if and only if at least one ecological mode is available. In
the Master Program (MP), this is ensured through Constraints
(Ft = ; ) Xt = 0).

First, consider the relaxation of IPt(Xt) where the last constraint
xm

t 6 Xtym
t is removed. This corresponds to the special case with no

setup cost. The problem then reduces to a linear program on
variables xm with only two constraints. From elementary LP theory,
at most two variables are non-zero in a basic solution, and the first
assertion of the theorem follows. For the second assertion, at least
one ecological mode m1 must be used to obtain a feasible solution. If
another mode m2 is used in the basic solution, then both constraints
are tight, which implies that either �em1

t ¼ �em2
t ¼ 0, and then

pm1
t ¼ pm2

t , i.e. both modes are identical, or �em1
t < 0 and �em2

t > 0.
Now consider the general case with setup costs. Let p̂ ¼ ðx̂; ŷÞbe a

feasible policy and let us denote by cMt ¼ fmjŷm
t ¼ 1g the subset of

modes used in period t. We can transform p̂ into a feasible policy of
lower cost using at most two modes in each period: Given the subsetcMt , we determine the optimal quantities �xm

t to order according to
these modes to fulfill the quantities bXt ¼

P
mx̂m

t , i.e. we solve
problem IPtðbXtÞ where binary variables yt are fixed to ŷt . This
problem is a linear program similar to the previous relaxation with a
restricted subset of modes cMt . Thus, in an optimal basic solution �xt ,
at most 2 variables are not equal to zero, one corresponding to an
ecological mode and the other to a non-ecological mode. Using only
these modes in period t provides a solution with a cost lower than or
equal to p̂, due to the optimality of �xt , which concludes the proof. h

From the dominance property of Theorem 1, we derive the next
results. We show that we can eliminate the carbon emission con-
straint by considering a quadratic number of modes.

Theorem 2. The ULS-PC problem can be reformulated as an unca-
pacitated multi-sourcing lot-sizing problem with M2 modes using
O(M2T) operations.
Proof. Theorem 1 enables us to focus on policies using at most two
modes per period. Assume that, in period t, an optimal policy uses
the pair of modes (m1,m2), with m1 the ecological mode, to order a
quantity bXt . The ordering cost is thus: z�t ðbXtÞ ¼ f m1

t þ f m2
t þ

pm1
t x̂m1

t þ pm2
t x̂m2

t . From the decomposition used in the proof of Theo-
rem 1, variables x̂ are the optimal basic solution of the following LP:
ðRtðbXtÞÞ

min pm1
t xm1

t þ pm2
t xm2

t

s:t: xm1
t þ xm2

t ¼ bXt

�em1
t xm1

t þ �em2
t xm2

t 6 0
xm1

t ; xm2
t 2 Rþ

8>>>><>>>>:
The key observation is that the proportion of products ordered

according to each mode does not depend on the quantity bXt .
Indeed, the second constraint has a zero right-hand side, thus mul-
tiplying bXt by k scales the entire polyhedron by k. Let pm1m2

t be the
optimal value of Rt(1), i.e. the optimal cost to supply one unit of
product, and let us denote by f m1m2

t the quantity fm1 þ fm2 . By con-
vention, pm1m1

t refers to the solution where only ecological mode
m1 is used, and we let f m1m1

t ¼ f m1
t . From the previous discussion,

we have z�t ðbXtÞ ¼ f m1m2
t þ pm1m2

t
bXt .

Clearly, we do not know a priori which pair of modes (u,v) is
used in an optimal policy but, due to Theorem 1, we can replace
program IPt(Xt) by the following optimization problem:

z�t ðbXtÞ ¼min f uv
t þ puv

t
bXtju; v ¼ 1; . . . ;M and �eu

t 6 0
n o

This is exactly the supplying cost of the uncapacitated multi-sourc-
ing lot-sizing problem where, at each period, O(M2) modes are
available. Each mode corresponds to a pair (u,v) with a setup cost
f uv
t and a unitary production cost puv

t . The holding cost function h re-
mains unchanged. This reformulation requires the computation of
all costs puv

t , which can be done in time O(M2) for each period.
The theorem follows. h

As a corollary of Theorem 2, the lot-sizing problem with the
periodic carbon emission constraint is polynomial if and only if
the corresponding lot-sizing problem without the periodic carbon
emission constraint is polynomial. Hence, Constraint (6) does not
modify the complexity status of the problem, but only increases
(in a reasonable amount) the computation time, due to the pre-
computation step and the increase of the number of modes.
Roughly speaking, the algorithmic complexity of the lot-sizing
problem is increased by a factor M2 due to Constraint (6). However,
note that our result is restricted to linear supplying costs. We
show, in the following sections, that the situation is different for
the other carbon emission constraints, as the corresponding ULS
problems become NP-hard.
3.2. A dynamic programming for the USL-PC problem

In this section, we assume that the holding costs ht are linear,
i.e. ht(st) = htst in the objective function (1). We explicitly show
how the dynamic programming algorithm of Wagelmans et al.
[25] can be adapted to solve the ULS-PC problem in O(TM2 -
logM + T2). To formalize the algorithm, the following theorem is re-
quired, which follows from Theorem 2 since the multi-sourcing
lot-sizing problem satisfies the zero inventory ordering (ZIO) pol-
icy (i.e. bIt�1:

PM
m¼1x̂m

t ¼ 0 for t = 1, . . ., T).

Theorem 3. Zero inventory ordering (ZIO) policies are dominant for
the ULS-PC problem.

Using the previous properties, we derive a dynamic program-
ming algorithm to solve the ULS-PC problem. The rationale is
mainly based on the following:

� Each demand is entirely produced in a single period (see
Theorem 3).
� At each period t and for each pair of modes (m1,m2), a dominant

solution Xm1
t þ Xm2

t must cover a demand of type dtt0 ¼
Pt0

k¼tdk

(see Theorem 3).
� At most two modes are used in the same period (see

Theorem 1).



Table 1
Parameters of the instance with a non-ZIO optimal solution.

Parameters Demand eu ev Emax pu pv

Period 1 1 0 D + 1 D 1 1
Period 2 2D + 1 0 D + 1 D 1 0
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In the following, a backward dynamic programming algorithm
is proposed to solve the ULS-PC problem based on recursion formu-
las that use the principles described above and the dynamic pro-
gramming proposed by Wagelmans et al. [25]. The dynamic
programming algorithm uses the following new cost and parame-
ter definitions.

� Let dtt0 define the cumulative demand such that dtt0 ¼
Pt0

k¼tdk.
� Inventory variables can be eliminated from the initial formula-

tion since they can be expressed using production variables and

demands st ¼
Pt

t0¼1

PM
m¼1xm

t0 �
Pt

t0¼1dt0

� �
. The objective function

is reformulated as follows:
PM

m¼1

PT
t¼1 cm

t xm
t þ f m

t ym
t

� �
þPT

t¼1ht
Pt

t0¼1dt with cm
t ¼ pm

t þ
Pt

t0¼1ht0 . This reformulation is
useful because holding costs can be ignored.
� Let G(t) be the value of an optimal solution to the instance of

ULS-PC with a planning horizon from t to T with t = 1, . . ., T.
G(T + 1) is equal to zero.
� Let H(t, t0) be the function that provides the best total cost (fixed

and variable costs) for producing dtt0 in period t. According to
Theorem 1, at most two modes can be used to produce dtt0 in
period t.

Because of the ZIO policy, the following recursion holds:

GðtÞ ¼
min

t<t06Tþ1
fGðt0Þ þ Hðt; t0 � 1Þg; if dt > 0

minfGðt þ 1Þ; min
tþ1<t06Tþ1

fGðt0Þ þ Hðt; t0 � 1Þgg; if dt ¼ 0

8<:
ð11Þ

The optimal value is given by G(1).
We first want to analyze the time complexity for calculating

H(t, t0) for any t and t0. Let al + blX be the cost function associated
to l, where l denotes either one ecological mode or a combination
of two modes. Parameter al corresponds to f uv

t and parameter bl de-
pends on cu

t ; cv
t ; �eu

t and �ev
t . Let z�t ðXÞ be the optimal cost to supply a

quantity X in period t. As observed in the proof of Theorem 2, func-
tion z�t is the lower envelope of the set of cost functions al + blX, and
is thus concave and piecewise linear. Hence, z�t can be defined by a
series of breakpoints and slopes associated to the allowed combi-
nations of modes. Since there are at most M2 possible combina-
tions, there are at most M2 � 1 breakpoints.

First, note that if these breakpoints and slopes are known and
sorted, computing all values H(t, t0) for a fixed period t can be done
in O(T + M2). Indeed to evaluate z�t ðXÞ for a quantity X, it is sufficient
to find an interval of two consecutive breakpoints to which it be-
longs. For a given period t, we must evaluate z�t ðXÞ for at most T dif-
ferent values of X, namely Xt = {dt,t, dt,t+1, . . ., dt,T}. Since both the
values of Xt and the breakpoints are sorted, we can use a merge
procedure to go only once through the set of breakpoints and thus
compute all z�t ðdtt0 Þ in time proportional to the number of break-
points and the number of values to evaluate. Holding costs can
be computed by accumulation during the merge, without increas-
ing the time complexity, due to the linearity of h.

Hence, before starting the dynamic program, we propose to use
a pretreatment procedure to determine the breakpoints and slopes
for each period t. This corresponds to finding the extreme points of
the 2-dimensional polyhedron defined by the inequalities Y 6 al + -
blX. The problem of finding the extreme points of a polyhedron de-
fined by s linear constraints in the plane can be solved in time
O(s logs) using the result of Shamos and Hoey [22]. As a conse-
quence for each period t, we can find all the breakpoints and their
optimal costs in time O(M2 logM), and thus determine all values of
H(t, t0) for t 6 t0 6 T in time complexity O(TM2 logM + T(T + M2))
which is in O(TM2 logM + T2).
Finally let us analyze the time complexity of the dynamic pro-
gramming algorithm. The values H(t, t0) being calculated, quantity
G(t) can be determined in time O(T) for each period t. Thus deter-
mining G(1) can be done in time O(T2). The overall complexity of
the dynamic programming algorithm, including precomputations,
is thus in O(T M2 logM + T2). Note that this complexity cannot be
easily reduced using the geometric techniques described in Wagel-
mans et al. [25] since the production cost (H(t, t0)) is concave and
piecewise linear. A key element of the proof in Wagelmans et al.
[25] is that the production cost is linear in t.

4. The uncapacitated single-item lot-sizing problem with the
cumulative carbon emission constraint

In this section, we study the multi-sourcing Uncapacitated Lot-
Sizing problem with the Cumulative Carbon emission constraint
(ULS-CC): For each period t, the average amount of carbon emission
per product ordered from the first period up to t should not exceed
an impact limit Emax

t . As in the case of the periodic carbon emission
constraint, it is dominant to use at most two modes per period.

Theorem 4. There exists an optimal solution for the ULS-CC problem
that uses at most two modes in each period: One ecological mode and
possibly one non-ecological mode.
Proof. As in Theorem 1, consider variables Xt ¼
P

mxm
t and let us

introduce variables Et ¼
P

m
�em

t xm
t , which represent the algebraic

carbon impact of period t. The mathematical formulation of ULS-
CC then decomposes into one master problem (MP0) and T indepen-
dent subproblems IP0tðXt ; EtÞ, consisting in supplying quantity Xt at
the cheapest cost while ensuring that the emission impact does not
exceed Et . Program IPt(Xt) corresponds to the special case Et ¼ 0.
Program IP0tðXt ; EtÞ still has only two constraints, and Theorem 4
follows in a way analogous to Theorem 1. h

We apparently are in a situation very similar to the periodic car-
bon emission constraint. It turns out that problem ULS-CC is far
more difficult to solve than the ULS-PC problem. Contrary to The-
orem 3, we first show that the ZIO property is not dominant for
the ULS-CC problem, and that the best ZIO policy may perform
arbitrarily badly.

Lemma 1. For the ULS-CC problem, the cost of the best ZIO policy may
be arbitrarily large compared to the cost of an optimal policy.
Proof. The proof is based on the construction on an instance with
two periods and two modes u and v. Setup costs and holding costs
are zero, while the other parameters are given in Table 1. The opti-
mal policy consists in ordering 2 units in period 1 using mode u,
and 2D units in period 2 using mode v. The resulting cost is 2.
Observe that any finite cost policy must order 2 units using mode
u in period 1. Thus the only finite cost ZIO policy consists in order-
ing all the demands in period 1 using mode u, for a total cost of
2D + 2, which concludes the proof. h

We now show that the ULS-CC problem is NP-hard. We reduce
from a special version of the Subset Sum problem with an addi-
tional cardinality constraint on the size of the selected set: There
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are n items, each one associated with a weight wi, together with a
knapsack capacity W and an integer k. The problem consists in
deciding if a subset of exactly k objects exists, allowing multiple
copies of items, such that the total weight equals W. That is, is
there a n-integer vector (a1, . . . ,an) such that

P
iwiai ¼W andP

iai ¼ k? Without the cardinality constraint on the number k of
objects to select, the problem is known as the Money Changing
Problem (MCP) which is NP-hard (see [16,5,20]). Adding the cardi-
nality constraint on the number of objects, Caprara et al. [7] intro-
duce the problem in its {0,1} version, i.e. when each item can be
picked at most once, under the name Exact k-item Subset Sum Prob-
lem (E-kSSP), and show that it is NP-hard. By analogy, we call our
problem Exact-kMCP for Exact k-item Money Changing Problem.
We establish below that Exact-kMCP is NP-complete.

Lemma 2. The Exact-kMCP problem is NP-complete.
Proof. First notice that the problem k-MCP, where the cardinality
constraint is relaxed to select at most k objects, is NP-complete, since
problem MCP is a special case (set k P W/mini wi). We use the same
argument as Caprara et al. [7] to reduce problem Exact-kMCP from k-
MCP. Consider any instance I of k-MCP, with n items of weights wi, a
value W and an integer k. We transform instance I into an instance I0

of Exact-kMCP in the following way. Let us consider n + k items:

� The first n items (original items) have weights w0i ¼ kwi þ 1,
� The last k items (dummy items) have unit weights.

The question is whether there exists k objects summing exactly
to W0 = k(W + 1).

We show that there exists a solution for instance I if and only if
there exists a solution for instance I0. Instance I has a positive
answer if and only if there exists (ai)1,n such that

Pn
i¼1wiai ¼W

and
Pn

i¼1ai 6 k. Denoting by k0 ¼
Pn

i¼1ai, we can extend a to a
(n + k)-vector a0 by setting to one the first k � k0 dummy items such
that

Pnþk
i¼1 a0i ¼ k. Similarly, from a (n + k)-vector a0 whose compo-

nents sum up to k, we can define a n-vector a by keeping only
original items. We have:Xn

i¼1

wiai ¼W () k
Xn

i¼1

wiai þ k0 ¼ kW þ k0 ()
Xn

i¼1

ðkwi þ 1Þai

¼ kW þ k0 ()
Xn

i¼1

w0ia
0
i þ

Xnþk

i¼nþ1

a0i

¼ kW þ k0 þ ðk� k0Þ ()
Xnþk

i¼1

w0ia
0
i ¼W 0

The result follows. h
Theorem 5. The ULS-CC Problem is NP-hard, even on stationary
instances with unit demands.
Proof. We perform the reduction from the Exact-kMCP problem
using the result of Lemma 1. We can restrict to instances with
k P 2 and thus we can assume that W > wi for all items. Without
loss of generality, we can also assume that wi P 1 for all items
(otherwise add 1 to all weights and increase W by k). We transform
an instance I of the Exact-kMCP into a stationary instance of ULS-
CC in the following way:

� There are M = n + 1 different modes. Modes 1 to n are associated
to the Exact-kMCP items and have algebraic impacts �ei ¼
W �wi and setup costs fi = wi. Mode M is the only ecological
mode, with �eM ¼ �ðk� 1ÞW and setup cost fM = W + 1.
� There are T = k + 1 periods, each one with a unit demand to
satisfy.
� The holding cost is set to h = kW and the production costs are

zero for all modes.
� It is asked if a solution of cost at most 2W + 1 exists.

Assume first that instance I has a positive answer: Let S = (i1, -
. . . , ik) be a valid list of items. We can build a valid solution for the
ULS-CC instance by ordering one unit in period 1 using mode M,
and then ordering one unit in period t using mode it�1. The cost of
this solution is (W + 1) + w(S) = 2W + 1 (w(S) is the cost incurred by
items in S). This solution is feasible since

P
i2S�ei ¼ kW �W ¼ ��eM .

Conversely, assume that all the demands can be satisfied at cost
at most 2W + 1. First, observe that it is necessary to use mode M at
the first period to satisfy the constraint carbon emission for t = 1.
Since the total cost cannot exceed (2W + 1), a valid policy orders
using mode M exactly once. Secondly, the value of the holding cost
imposes that e ¼

P
tst does not exceed 1/k < 1. It implies that a valid

policy has to order in every period to satisfy the unit demands. Thus,
since production costs are zero and only mode M is ecological,
exactly one mode is used in each period. Let S be the list of the modes
used from period 2 up to period T = k + 1. We claim that S is a valid
solution for instance I. From the previous discussion, S exactly
contains k elements. Its total weight is equal to the total setup cost
from period 2 to period T. Thus we have fM + he + w(S) 6 2W + 1,
which implies that w(S) 6 W � he = W(1 � ke).

To conclude, we now show that a valid policy does not carry any
inventory (e = 0), which will imply that w(S) = W. Observe that the
only reason to supply more than 1 unit in a period using mode m is
that m has a small carbon emission impact. By an interchange
argument, it is possible to see that it is dominant to carry all the
inventory e from period 1 to 2. If xt is the amount of products
supplied at each period, then we have x1 = 1 + e and

PT
2xt ¼ k� e. It

results that:

wðSÞ ¼
XT

t¼2

wit ¼
XT

t¼2

wit xt þ
XT

t¼2

wit ð1� xtÞP
XT

t¼2

wit xt þ
XT

t¼2

ð1� xtÞ

P
XT

t¼2

wit xt þ e

Satisfying the carbon emission constraint in period T implies
that �ð1þ eÞðk� 1ÞW þ

PT
t¼2�eit xt 6 0. Replacing �eit by its value

W �wit , we obtain the inequality
PT

t¼2wit xt P
PT

t¼2xtW�
ð1þ eÞðk� 1ÞW . It follows that:

wðSÞP
XT

t¼2

wit xt þ e P ½ðk� eÞ � ð1þ eÞðk� 1Þ�W þ e

P ð1� keÞW þ e

The second inequality is due to the fact that
PT

2xt ¼ k� e. As we
established that w(S) 6 W(1 � ke), we necessarily have e = 0: A va-
lid policy orders one unit at each period. The previous inequality
immediately implies that w(S) = W, which concludes the proof. h
5. The uncapacitated single-item lot-sizing problem with the
global carbon emission constraint or rolling carbon emission
constraint

The multi-sourcing Uncapacitated Lot-Sizing problem with the
Global Carbon emission constraint (ULS-GC) is a relaxation of the
ULS-CC problem, where (T � 1) constraints are removed to only keep
Constraint (9). Although the ULS-GC problem is simpler, it remains
NP-hard. The proof uses the same reduction as Theorem 5 and is
omitted.
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Recall that Constraint (10) imposes a maximum per unit carbon
emission Emax

t on every interval of R consecutive periods. It is still
dominant to use at most two modes per period since, in the
decomposition, the subproblems IPt Xt ; E

max
t

� �
are unchanged. The

special case R = 1 of the Uncapacitated Lot-Sizing problem with
the Rolling Carbon emission constraint (ULS-RC) corresponds to
the ULS-PC problem, which is polynomial. On the contrary, the case
R = T of the ULS-RC problem is equivalent to the ULS-GC problem,
and thus the ULS-RC problem is also NP-hard.

6. Conclusion and further research directions

We believe the integration of carbon emission constraints in
lot-sizing problems leads to relevant and original problems. This
paper is a first step to model such problems from which several
new lot-sizing problems could arise. We tried to define and catego-
rize these new constraints. We proposed and studied four types of
carbon emission constraints: (1) periodic carbon emission con-
straint, (2) cumulative carbon emission constraint, (3) global car-
bon emission constraint and (4) rolling carbon emission
constraint. We showed that the multi-sourcing uncapacitated lot-
sizing problem (ULS) with periodic carbon emission can be solved
optimally using a dynamic programming algorithm. We also
proved that, when considering one of the other three constraints,
the ULS problem becomes NP-hard. For future research, it would
be interesting to propose exact methods to solve the NP-hard prob-
lems or approximation algorithms for some special cases.

Different sensitivity analysis can also be conducted by different
actors. In fact, the impact of introducing carbon emission con-
straints in a supply chain can be analyzed from different points
of view. Local authorities or governments could be interested in
conducting some analysis to determine the best way to introduce
a new legislation, possibly in several steps, on carbon emission
without excessively penalizing manufacturers. Companies could
also be interested in conducting some analysis to find out which
carbon emission constraint is more relevant for them. They may
be interested in displaying carbon footprints on their products
while keeping their competitiveness.

In this paper, carbon emissions are aggregated in each supply-
ing mode, which is a combination of a production location and a
transportation mode (requiring one or more types of vehicles).
The carbon emission of each supplying mode is modeled using a
linear function of the quantity delivered. This model could be made
more detailed by considering fixed and variable carbon emissions.
The variable carbon emission would still be a linear function of the
delivered quantity and the fixed carbon emission could depend on
the number of required ‘‘vehicles’’ (e.g. containers). It would be
interesting to study the added value of a more detailed carbon
emission constraint and the complexity of the resulting problems.
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