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a b s t r a c t

Quay cranes (QC) are key resources at container terminals, and the efficiency of QC operations is vital

for terminal productivity. The Quay Crane Scheduling Problem (QCSP) is to schedule the work activities

for a set of cranes assigned to a single berthed vessel with the objective of minimizing the completion

time of all container handling tasks. The problem is complicated by special characteristics of QC

operations. Considering QC moving time and interference constraints, the concept of contiguous bay

operations is proposed and a heuristic is developed to generate QC schedules with this feature. The

heuristic is efficient and effective: it has polynomial computational complexity, and it produces

schedules with a completion time objective bounded above by a small increment over the optimal

completion time. Importantly, the heuristic guarantees that no quay cranes are idle due to interference.

Numerical experiments demonstrate that the optimality gap is small for practical instances.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Container seaports today are important nodes for global freight
transportation. Terminals face increasing demand from container
shipping customers, and often operate in fierce competition
with alternative terminals. It is vital for a terminal to effectively
utilize its resources such as the ship berthing areas, container
yard, cranes, and manpower, to achieve high productivity and
customer satisfaction. To help in this regard, operations research
methods have been widely applied in terminal operation optimi-
zation [1,2].

Quay cranes (QC) are critical resources in container terminals,
and their operating efficiency has direct and indirect impacts on
the throughput of container terminal. Quay cranes are the most
expensive equipment at terminals, and often represent the bottle-
neck on throughput. When a vessel is berthed, a certain number
of QCs are designated to serve this vessel, i.e., to perform
container discharging and loading operations. Containers to be
handled are currently stacked or are to be stacked at different
locations on vessel, and QCs move along the quay on rails to
convey these containers [3].
ll rights reserved.

),
The Quay Crane Scheduling Problem (QCSP) is to find a complete
schedule for the QCs serving a vessel, and its decisions include
assigning container handling tasks to specific QCs, sequencing these
tasks on each QC, and specifying each task’s operation start time.
The QCSP can be viewed as an extension of the single stage parallel
machine scheduling problem with positioned jobs (containers) and
movable machines (QCs). The processing time of each job is the
required container handling time, while the setup time between
jobs is sequence-dependent and depends on the time required for
the QC to travel from the predecessor job location. Furthermore, jobs
have precedence relationships dictated by container stowage loca-
tions on the vessel, and machines must respect some spatial
interference requirements with each other when performing jobs.
In addition to these complexities, the large number of container jobs
in practical QCSP instances also increases the difficulty of effectively
solving the QCSP.

The rest of this paper is organized as follows: Section 2 reviews
relevant literature on the QCSP. Section 3 describes the problem
addressed in this paper. Specifically, the concepts of contiguous
and non-contiguous QC schedules are defined, which describe
different container-to-QC assignment patterns. Additionally, a
decomposition of QC operating time into four parts is proposed,
in connection with the spatial interference constraints. Based on
the concepts defined in Section 3, Section 4 proposes a poly-
nomial time complexity heuristic which generates a contiguous QC
schedule. Section 5 proves the existence of a bounded objective
function value gap between the generated contiguous schedule
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and an optimal schedule. Section 6 demonstrates the size of this gap
for a set of practical test instances, and discusses the effectiveness of
the heuristic. Section 7 finally presents conclusions.
2. Literature review

Bierwirth and Meisel [4] provide a review and a classification
scheme for QCSP, and summarize potential job discretization
choices when modeling and solving the QCSP, such as bay area,
single bay, container group, stack and single container. As the
discretization becomes more detailed, the accuracy of the QC
scheduling model increases at the expense of increased complex-
ity and problem scale.

Daganzo [5] first studied the problem of QC assignment among
different holds on multiple vessels to minimize total weighted
completion time. A principle-based heuristic was proposed for
the static problem where vessels arrive at time 0, and is then
modified for the dynamic problem. Peterkofsky and Daganzo [6]
further studied the static problem with the objective of minimiz-
ing total weighted tardiness, and use a branch-and-bound
solution approach. These two studies do not consider QC inter-
ference, which is an important feature of QC operations. QCs
move along shared quayside guiding rails and cannot pass one
another (non-crossing constraint). Additionally, a safety distance
must always be maintained between two adjacent QCs whenever
they are handling containers or moving along the guiding rail
(safety distance constraint).

Steenken et al. [7] included non-crossing constraints when
assigning QCs to bays on vessels. By restricting QCs to contiguous
bay areas, the problem was converted to a partition problem. Lim
et al. [8] further considered the safety distance constraint for QCs
and non-simultaneous constraints among bays. Jobs also refer to
bay areas, but crane schedules are periodically updated given the
dynamically changing environment. Thus for each period, there is
no temporal component in their problem; instead the throughput
of each possible crane-to-job assignment is given. The resulting
crane-to-bay allocation problem is represented by a bipartite-
graph matching problem with the objective of maximizing the
total throughput. Dynamic programming, tabu search, as well as
squeaky wheel optimization heuristics were adopted. Lim et al.
[9] augmented this work by relaxing the contiguous bay area
restriction and incorporating operation processing time. A job is
defined to be all container handling work for a single ship bay,
and the objective is to minimize the makespan of all jobs.
By considering only non-crossing interference constraints, the
problem becomes an NP-hard m-parallel machine scheduling
problem. The paper proved that under any given bay-to-crane
allocation, a crane schedule following a straightforward unidirec-
tional operation mode is optimal. Thus there exists at least one
unidirectional schedule which is globally optimal, and the deci-
sion space is reduced to bay-to-crane allocations. Several heur-
istics for the problem were presented. Lee et al. [10] extended
these models by considering a handling priority for each vessel
bay, and proposed a genetic algorithm to obtain near-optimal
solutions. However, none of these four studies simultaneously
considers non-crossing constraints, safety distance constraints,
and a QC moving time model.

Liu et al. [11] studied the problem of QCs serving bays on multiple
vessels to minimize the maximum relative tardiness of vessel
departures. The QCSP was augmented to also select vessel berthing
times given fixed berthing locations. The problem was decomposed
into two levels. Each lower vessel-level problem is a QCSP with non-
crossing constraints, safety distance constraints, and a QC moving
time model. The objective of each QCSP is to minimize processing
completion time given a fixed number of assigned QCs. The higher
berth-level problem determines vessel berthing times and a QC-to-
vessel assignment, based on the solutions to QCSPs at vessel-level.
The authors proposed two types of QCSP models: one with pre-
emptive operations where a QC can take over for another at a ship
bay, and the other non-preemptive where each QC must fully process
an assigned bay before moving to another. Computational results
demonstrate the improvements possible by preemptive scheduling.

Ak [12] describes various configurations of QC operations
when processing multiple vessels, i.e., QCs can be roaming or
dedicated, shifting or blocking. A berth and quay crane scheduling
problem (BQCSP) with roaming and shifting QCs was solved using
a tabu search heuristic.

Ng and Mak [13] refine the job discretization by dividing the
containers to be handled for each bay into two groups: discharging
and loading. Furthermore, the time horizon is also discretized. The
bays on vessel are partitioned into almost non-overlapping zones
(only allowed to be overlapped at the boundary bays) which are
assigned to different QCs. The unidirectional operation mode is
proved to be optimal for any given partition, and dynamic program-
ming is used to search for optimal partitions. However, no safety
distance constraint is enforced.

Using instead the more detailed container group discretization,
Bierwirth and Meisel [14] addressed some deficiencies in QC inter-
ference constraint models in earlier studies [15–17], and proposed a
modified model. A fast branch-and-bound algorithm assuming the
unidirectional operation mode was developed which outperforms
other existing algorithms. Based on this algorithm, Meisel and
Bierwirth [18] generated benchmarks for QCSP with various config-
urations and evaluated the effectiveness of the model assuming
different job granularities (container group, bay, and bay area). The
results suggest that the reduction in vessel processing time gained
when solving more detailed models with smaller granularity might
not be worth the increase in required computational effort.

For other discretization choices such as stack [19] and con-
tainer [20], research focuses on QC scheduling for a single bay.
Double cycling is adopted to enhance the handling efficiency.

In this paper, a QC schedule for an entire vessel is constructed
with the objective of minimizing the makespan of all container
discharging and loading jobs. The workload of each bay may be
assigned to multiple QCs, and thus the bay handling operation is
preemptive. QC moving time is explicitly modeled, and interfer-
ence constraints are included. According to the scheme proposed
in [4], the QCSP addressed in this paper can be written as
Bay,prmp9move9cross,save9max(compl). The purpose of this paper
is to develop a method to quickly acquire a feasible QC schedule
for such problem with some assured maximum optimality gap.
3. Problem description

Containers to be handled are distributed among different bays on
a vessel. Before starting the loading or discharging operation of a
given container job, the QC must be aligned to the job’s bay location
on the vessel, as shown in Fig. 1. Containers in a single bay can be
assigned to multiple QCs, but only one QC can handle this bay at any
time. By viewing each container as a container group, our problem
formulation is similar to the model of [14], except that we ignore QC
initial position and ready time. It is assumed in this paper that each
QC is available from time 0 and no set-up time is required for its first
assigned job, i.e., each QC can be initially aligned to the bay location of
its first assigned container at time 0, as long as the safety distance is
maintained. Such relaxation retains the major characteristics of QCSP,
such as the precedence of container jobs, interference (non-crossing
and safety distance) among QCs, sequence-dependent setup time,
etc., and the problem remains NP-hard.
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Fig. 2. A vessel’s job numbers for bays and job assignments for QCs.
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Fig. 1. Three QCs serving a vessel with 20 bays.
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As shown in Fig. 1, the bay indexes can be used to indicate the
spatial locations of QCs along the quayside. Without loss of generality,
QC index increases in the same direction with bay index, which is from
bow to stern of the vessel, and is also from left to right in all figures of
this paper. The vessel superstructures can be viewed as empty virtual
bays. The time of QC traveling one bay is assumed constant and is used
as the temporal unit for scheduling. The following two sub-sections
further describe the concept of a contiguous bay range and the
decomposition of QC operating time, respectively.

3.1. Contiguous and noncontiguous bay ranges

To represent the job assignment among QCs, the following
parameters are used:
jAJ¼ f1,:::,Jg
 set of container jobs
iAQ ¼ f1,:::,Qg
 set of QCs
bAB¼ f1,:::,Bg
 set of bays
Bj
 Job j’s bay location
JBay
b DJ
 set of jobs in Bay b
mBay
b

number of all jobs to be handled in Bay b
Moreover, the following decision variables are used:
Ji,bDJ
 set of jobs in Bay b that are assigned to

QC i. Obviously,[
i

Ji,b ¼ JBay
b

Ji ¼[
b

Ji,b
 set of jobs that are assigned to QC i
mi,b
 number of jobs in Ji,b.

Obviously,
P

i

mi,b ¼mBay
b

mQC
i ¼

P
b

mi,b

number of all jobs assigned to QC i
wmin
i ¼ argmin

b

mi,b40
 smallest index of bay with jobs
assigned to QC i
wmax
i ¼ argmax

b

mi,b40
 largest index of bay with jobs assigned
to QC i
Ri ¼ fw
min
i ,:::,wmax

i g
 Operating Bay Range of QC i
tj
m

Fig. 2 illustrates the mi,b, mQC
i and mBay

b values for a vessel with
7 bays and 3 QCs, and the operating bay ranges are illustrated by
shaded grids. For example QC 2 is assigned 8 jobs from Bay 3, 4 jobs
from Bay 4 and 2 jobs from Bay 7; 4 and 3 jobs of Bay 4 are assigned to
QC 2 and QC 3, respectively; QC 3 is assigned 20 jobs in total; and Bay
7 contains 9 jobs. A bay is called a Shared Bay if its jobs are assigned
to more than one QC, e.g., Bay 3, 4 and 7 in Fig. 2. wmin

i and wmax
i can

be viewed, respectively as the lower and upper index boundary of QC
i’s operating involved bays. For example, wmin

1 ¼ 1, wmax
1 ¼ 3;

R1 ¼ f1,2,3g, R2 ¼ f3,4,5,6,7g and R3 ¼ f4,5,6,7g.
QC operating bay ranges can be categorized into two types:

contiguous and noncontiguous ranges. Intuitively, a contiguous range
contains no bays from the ranges of other QCs, except for the possibly
shared boundary bays. A noncontiguous range contains at least one
bay from the ranges of other QCs, aside from the possibly shared
boundary bays. For example, in Fig. 2, R2 is a noncontiguous range
since it contains Bay 4, 5 and 6 which are also bays in R3. R3 is
noncontiguous since it contains Bay 5 and 6 which are also bays in R2.
However R1 is contiguous, since although it contains one bay (Bay 3)
from another range R2, this Bay 3 is its upper boundary. The detailed
definitions of these concepts are as follows:

Definition 1. For any QC i with operating bay range Ri ¼ fw
min
i ,

:::,wmax
i g, if 8i’AQ \fig wmin

i Zwmax
i’

or wmin
i’

Zwmax
i , Ri is a Contigu-

ous Range; otherwise, Ri is a Noncontiguous Contiguous Range.

QC operating bay ranges reflect different job-to-QC assignment
patterns, based on which the QC schedules can also be categor-
ized into two types, as follows:

Definition 2. For a feasible QC schedule S, if the operating bay
range Ri of each QC i is contiguous, then S is a Contiguous Schedule;
otherwise, S is a Noncontiguous Schedule.
3.2. Active and idle QC times

Based on the job assignment among QCs, a complete schedule can
be derived by further determining the job sequence and the proces-
sing start time on each QC. In other words, for any QC, given the set of
its assigned jobs, its total operating time depends not only on its job
sequence, but also on the operations conducted by other QCs, due to
the existence of QC moving and interference constraints. Based on the
characteristics of QC operation, each QC’s operating time can be
decomposed into two parts: the active time when it is handling some
container or moving to change its bay location; and the idle time
when it has to wait complying with interference constraints. Each
part can be further decomposed into two components. To define
these components, we first define the following parameter:

tfix
j fixed handling time of Container j by QC

Moreover, following decision variables are used:
ove
 variable lateral moving time of QC before handling
Container j
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Ti
 total operating time of QC i with assigned jobs of Ji
T fix
i

container handling time of QC i
Tmove
i

lateral moving time of QC i
Tconf
i

conflict idle time of QC i
Tbloc
i

blocking idle time of QC i
Tact
i

active time of QC i
We have

Ti ¼ Tfix
i þTmove

i þTconf
i þTbloc

i ð1Þ

The first part is the QC’s actual handling time for its assigned
containers. tfix

j represents the QC component (including trolley and
spreader) moving time between the vessel and internal trucks, in
order to convey Container j. During this handling time the QC
position on quayside is fixed and the QC does not move along the
guiding rail. Thus tfix

j is only determined by Container j’s location
on vessel and is independent of its operating order on QC i. Hence
T fix

i ¼
P

jA Ji
tfix

j and is constant given Ji.
The second part is the QC’s moving time between the handling

of assigned containers. tmove
j represents QC i’s lateral traveling

time along the guiding rail in order to handle Container j. If the
job that immediately precedes j, say, j0, is in a different bay from j,

then tmove
j takes a positive value, otherwise tmove

j ¼ 0. Thus tmove
j is

dependent on Container j’s operating order on QC i. Hence

Tmove
i ¼

P
jA Ji

tmove
j and is variable under the given Ji.
7
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Fig. 3. Gantt charts for two schedules (a) ignoring
Handling and moving time comprise QC i’s active time under
some schedule, i.e., Tact

i ¼ Tfix
i þTmove

i . The active time would be
the time required by the QC to serve its assigned containers, in
the absence of the QC interference constraints.

The latter two parts of (1) comprise QC i’s idle time of waiting
caused by interference with other QCs. Conflict and blocking idle
time are differentiated as they relate to safety distance (denoted
by r in this paper, see Section 4) and non-crossing constraints,
respectively. On one hand, when Job j is to be processed by QC i, it
is possible that some bay indexed between ½Bj�r, Bjþr� is being
operated by another QC. Since QCs can not simultaneously operate
jobs in bays within the safety distance, conflict occurs, and QC i must
idle, thus Tconf

i is increased. On the other hand, when Job j is to be
processed by QC i, it is also possible that some QC is operating a
third bay between the current bay of QC i and the bay indexed by Bj.
Since QCs cannot cross each other, blocking occurs, and again QC i

must idle, thus Tbloc
i is increased.

As a simple illustration, two QC operating schedules are acquired
from the job assignment in Fig. 2, and their Gantt charts are
provided in Fig. 3. In the Gantt charts, each bar corresponds to a
grid in Fig. 2 and is labeled with the number of its assigned jobs.
Here, we suppose each container job requires the same handling
time, which also equals the QC moving time between adjacent bays.
The schedule (a) is an infeasible schedule that ignores QC inter-
ference constraints, while the schedule (b) is feasible by fixing those
QC blocking and conflicts. Schedule (b)’s makespan increases
from schedule (a) as the result of respecting such interference
7
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constraints. The two kinds of interference constraints have diff-
erent impact on QCs of different operating range types. A QC with
a noncontiguous range may get blocked by other QCs, since its
operating range overlaps with other QCs’ ranges, while a QC with
a contiguous range is free from blocking constraints, since contig-
uous ranges exclude the necessary condition for QC blocking: the
spatial inclusion of another QC’s operating bay. Conflict can happen
to both QCs with contiguous and noncontiguous ranges. For
instance, in Fig. 3(b), QC 2 is blocked by QC 3 after finishing
handling Bay 4, and conflicts with QC 3 for handling Bay 7.

4. Heuristic for job assignment and sequencing

In this section, a polynomial time heuristic procedure is proposed
to assign and sequence jobs on QCs. The generated schedule Sc is
contiguous and follows a unidirectional operating mode. The sche-
dule Sc does not explicitly specify job starting times; thus, it is not
initially clear whether any scheduled crane incurs interference time
beyond its active time. However it will be proved in Section 5 that QC
interference would not exist if each QC independently operates its
assigned and sequenced jobs according to the generated Sc.

For the vessel to be handled, the following parameters are
defined:
bL
 smallest index of bay with jobs to be handled, i.e., the
index of the left-most non-empty bay on vessel.

bL ¼ argmin
b

mBay
b 40.
bR
 largest index of bay with jobs to be handled, i.e., the
index of the right-most non-empty bay on vessel.

bR ¼ argmax
b

mBay
b 40.
sb
 difference of b and the index of Bay b’s nearest left-sided
non-empty bay. It equals the required QC moving time
from Bay b’s nearest left-sided non-empty bay to Bay b.

Note that sb ¼ 0,8brbL.

s0b
 the sbvalue for non-empty Bay b. s0b ¼ 0, 8b9mBay

b ¼ 0;

s0b ¼ sb, otherwise.
d
 maximum sb for all b.
j
 sum of the largest (Q�1) sb values among all b.
j0
 sum of the largest (Q�1) s0b values among all b.
r
 safety distance measured in bays. For two QCs located at
Bay b1 and Bay b2, such safety distance is maintained if

and only if b1�b2

�� ��Zrþ1.
Brþ1
max
maximum active time needed to process any rþ1
consecutive bays.
To illustrate the defined terms, consider a vessel with 20 bays. The
workload distribution among bays is shown as in Fig. 4. According to
the definition, bL ¼ 3, bR ¼ 19. Besides, fsbg ¼ f0,0,0,1,1,1,2,1,1,1,
b

bm

b

b

Fig. 4. Illustration of sb
2,3,4,1,1,2,1,2,3,1g, fs0bg ¼ f0,0,0,1,1,0,2,1,1,0,0,0,4,1,0,2,0,0,3,0g.
For instance, s6 ¼ 1 since Bay 6’s nearest left-sided non-empty bay is
Bay 5; s7 ¼ 2 since Bay 7’s nearest left-sided non-empty bay is Bay
5 as well; s06 ¼ 0 since no workload is required on Bay 6; s07 ¼ s7 ¼ 2
since non-zero workload is required on Bay 7. d¼ s13 ¼ 4, which is
the largest among all sb values. Thus j¼ 4, 7, 10, 12, 14, and j0 ¼ 4,
7, 9, 11, 12, when Q¼2, 3, 4, 5, 6, respectively. For instance, when
Q¼4, since the largest three sb values are 4, 3 and 3, j¼4þ
3þ3¼10; and the largest three s0b values are 4, 3 and 2, j0 ¼4þ
3þ2¼9.

For any feasible schedule, the following decision variables are
defined:
, d and j concepts.
Cmax
 makespan value of vessel processing. P

Tsum
 total operating time of all QCs. Tsum ¼

i

Ti.
Tact
sum
 total active time of QCs. Tact

sum ¼
P

i

Tact
i .
Tact
avg
 average active time of all QCs. Tact

avg ¼ Tact
sum=Q .
Tmove
sum , Tmove

avg ,

Tfix
sum, T fix

avg
can be defined similarly. Note that the latter
two are constant for any feasible schedule.
Lact
avg
minimum required average active time of all
QCs.
First, Tmove
sum , the total moving time of all QCs, has a lower bound of

bR�bL�j. This can be proved through the following Lemmas 1–3.
For any feasible schedule (not necessarily contiguous), suppose

the number of utilized QCs is Q0(Q 0rQ). Without loss of generality,
re-index these Q0 QCs from 1 to Q0, in non-decreasing order of
wmin

i ,iAf1,:::,Q 0g. Since QCs can not get across each other, the wmax
i

values are thus also non-decreasing ordered for iAf1,:::,Q 0g. As a
result, wmin

1 rbL and wmax
Q 0

ZbR. We have:

Lemma 1. If (iAf2,:::,Q 0g, wmax
i�1 owmin

i �1) mBay
b ¼ 0, 8bAfwmax

i�1 þ

1,:::,wmin
i �1g

Proof. Suppose given the conditions, there exists some b for
which Bay b is non-empty. Then there should be at least one
QC, say, QC k, for which wmin

k rbrwmax
k , so that the tasks in Bay b

can be handled. Two cases are differentiated:

Case 1 kr i�1. Since bZwmax
i�1 þ14wmax

i�1 Zwmax
k , such case

does not exist.
Case 2 kZ i. Since brwmin

i �1owmin
i rwmin

k such case does
not exist either.

As a result, contradiction exists. &

This lemma implies that for any two adjacent QCs, if their bay
ranges are not overlapped, then all bays in between their bay ranges’
b
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gap should be empty. Note that this is applicable to both contiguous
and non-contiguous schedules. This leads to the following:

Lemma 2.
P

iA f2,:::,Q 0 g

ðwmin
i �wmax

i�1 Þrj

Proof. As shown in Fig. 4, whenever s0bZ2, it represents the
number of some contiguous empty bays, or the length of this
empty bay segment. Thus j0 is no smaller than the sum of the
Q�1 longest empty bay segments on vessel. Additionally, j0rj,
since s0brsb.P

iA f2,:::,Q 0 gðw
min
i �wmax

i�1 Þ is the sum of Q0 �1 bay range gaps, and

it is maximized when these Q0 �1 bay range gaps are exactly

the Q0 �1 longest empty bay segments on vessel. SinceQ 0rQ ,P
iA f2,:::,Q 0gðw

min
i �wmax

i�1 Þrj0rj. &

Thus we have

Lemma 3. Tmove
sum ZbR�bL�j

Proof.

Tmove
sum ¼

X

iA f1,:::,Q 0 g

Tmove
i ðJiÞ ¼

X

iA f1,:::,Q 0g

ðwmax
i �wmin

i Þ

¼�wmin
1 þ

X

iA f2,:::,Q 0 g

ðwmax
i�1 �wmin

i Þþwmax
Q 0 Z�bL�jþbR : &

Lemma 3 proves the lower bound of Tmove
sum as bR�bL�j.

Consider the example in Fig. 4 when Q¼4. Since j¼10, the lower
bound is bR�bL�j¼ 19�3�10¼ 6. This lower bound value can be
approached when R1 ¼ f3,4,5g, R2 ¼ f7,8,9g, R3 ¼ f13,14,15,16g
and R4 ¼ f19g. The moving times for each QC are 2, 2, 3 and 0,
respectively.

Consider Lact
avg, the minimum required average active time of all

QCs. Since T fix
sumþðbR�bL�jÞ is the minimum required total

handling and moving time of all QCs, we have Lact
avg ¼

T fix
avgþðbR�bL�jÞ=Q . Lact

avg is constant for any feasible schedule
and is a lower bound of Cmax. Thus

Lact
avgrCmax ð2Þ

Since at any time there can be at most one QC processing any
consecutive rþ1 bays, Brþ1

max is another lower bound of Cmax. Thus

Brþ1
max rCmax ð3Þ

By using a combined lower bound LB¼maxfLact
avg,Brþ1

maxg, the
detailed heuristic procedure is provided as follows:

Heuristic Procedure:
1. Sequence all jobs in J:

For each Bay b, and any two jobs j1 and j2 in JBay
b , if
QC 1
QC 2

Bay IndexQC 3
QC 4

Handling Time

Fig. 5. QC operating ranges and moving directions of Sc acquired by heuristic.
precedence constraint exists between j1 and j2, arrange j1
prior to j2, i.e., j1-j2; otherwise, ties are broken randomly.

Denote Seqb the resulted sequence. Denote SeqR
b the

reversed sequence of Seqb.

Order J as {SeqR
1-SeqR

2 � � �-SeqR
b � � �-SeqR

B}.

2. Partition J to Ji:

Set Ji ¼ |,8i¼ 1,:::,Q; Set i¼1, j¼1.
For j¼1 to J

IF ioQ

IF Tact
i ðJiÞrLBþd
Ji ¼ Jiþfjg

Else
iþþ

Ji ¼ Jiþfjg

EndIF
Else

Ji ¼ Jiþfjg

End IF
EndFor
3. Re-Sequence jobs in each Ji:

Order assigned jobs in each Ji in accordance with
Seqwmin

i
- � � �-Seqwmax

i
.

The main idea of the proposed heuristic procedure is to extract
one by one each element (job) from the original job set J and to assign
it into some QC i’s job set Ji, and to determine the operating sequence
of jobs assigned to each QC i. First, the sequence of all the jobs in J is
arranged: for two jobs from different bays, the one with smaller bay
index precedes the other one with larger bay index; for two jobs from
the same bay, their precedence constraint, if exist, is reversed for
subsequent partition sub-procedure. Second, following this sequence,
jobs will be taken out of J one by one, and appended to the end of
some QC’s operating sequence. Specifically, jobs taken out of J are
initially assigned to QC 1, and QC 1’s required active time for already
assigned jobs is updated every time a new job is appended to its
operating sequence. We stop assigning jobs to QC 1 once its active
time exceeds LBþd, and start assigning jobs to QC 2. Such process
continues for QC 3, QC 4 y etc, until all jobs are assigned to some QC.
In this way, if each QC i handles its assigned jobs following their order
of entering Ji, each QC will have a contiguous operating range and
moves within this range unidirectionally from bow to stern of the
vessel, as illustrated in Fig. 5. However, every inner-bay job pre-
cedence constraint will be violated, as in the arranged job sequence of
J. Hence lastly, after all jobs have been assigned to QCs, each QC’s
operating sequence is further adjusted to respect inner-bay job
precedence constraints. Such inner-bay operating sequence adjust-
ments will not change the required active time of each QC. The
complexity of the heuristic procedure is O(J).

Obviously, in the generated Sc, QCs’ workloads may not be
precisely balanced for two reasons: (1) Since after i reaches Q,
extracted jobs will all be assigned to QC Q no matter whether
LBþd is reached or not, it is possible that QC Q is relatively over-
loaded compared with other QCs. (2) It is also possible that some
QCs will be assigned no jobs, since the procedure may terminate
before i reaches Q. However, the objective of our procedure is not
to optimally balance workloads, but to ensure a bounded gap of
makespan between the acquired feasible solution and the theo-
retic optimal schedule. It will be proved in Section 5 that such a
bound exists under all circumstances (Theorem 1). Specifically,
each QC’s active time is bounded regardless of the workload
balance of QCs (Formula (4) and Lemma 4).

Note that the heuristic only explicitly acquires job assign-
ments and sequences on QCs. The detailed job starting times
should be further determined considering possible interference
among adjacent QCs, as illustrated in Fig. 3. Since in Sc all QCs
move unidirectionally, whenever two QCs are conflicting with or
blocked by each other, the only resolution is to prioritize the job
on the right-sided QC, and to add conflict or blocking idle time to
the left-sided QC’s schedule. However such resolution will be
proved unnecessary in Section 5 since no QC interference will
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occur, given the job assignments and sequences in Sc (Lemma
5–8).
5. Proof of a bounded objective gap

The logic of this section is: Formula (4) and Lemma 4 together
ensure that the active time of any QC is bounded. It is further proved
by Lemma 5–8 that no blocking or conflict idle time exists, i.e., the
makespan value of each QC equals its active time, and thus is
bounded as well. Hence Theorem 1 can be derived that the make-
span value of vessel processing is bounded.

Denote Q0ðQ 0rQ Þ as the QC index to which the last job of J is
assigned, and thus QC Q0 þ1,y,QC Q are assigned no jobs.

Since dþmax
jA J

tfix
j is an upper bound of QC active time required

for processing any single job j, the heuristic procedure itself
ensures that for Sc:

LBþdoTact
i ðJiÞrLBþ2dþmax

jA J
tfix

j , 8i¼ 1,:::,Q 0�1, ð4Þ

Lemma 4. For Sc, Tact
Q 0 ðJQ 0 ÞrLBþ2dþmax

jA J
tfix

j

Proof. Suppose Tact
Q 0 ðJQ 0 Þ4LBþ2dþmax

jA J
tfix

j , two cases can be
differentiated:

Case 1 Q0oQ

Denote j the last job in JQ 0 . Given the hypothesis, Tact
Q 0 ðJQ 0�fjgÞ4

LBþd, thus according to the heuristic procedure, Job j will be assigned

to QC Q0 þ1 since Q 0 þ1rQ . Therefore this case does not exist.

Case 2 Q0 ¼Q

We have:
X

i ¼ 1,:::,Q

Tact
i ðJiÞ ¼

X

i ¼ 1,:::,Q

½T fix
i ðJiÞþTmove

i ðJiÞ�

¼
X

i ¼ 1,:::,Q

Tfix
i ðJiÞþ

X

i ¼ 1,:::,Q

Tmove
i ðJiÞ ¼ Tfix

sumþ
X

i ¼ 1,:::,Q

Tmove
i ðJiÞ

Given the hypothesis, we also have:
P

i ¼ 1,:::,Q

Tact
i ðJiÞ4ðQ�1ÞUðLBþdÞþðLBþ2dÞZQULact

avgþðQþ1ÞUd

¼QUT fix
avgþðbR�bL�jÞþðQþ1ÞUd

¼ T fix
sumþðbR�bL�jÞþðQþ1ÞUdZTfix

sumþbR�bLþ2d

Thus
P

i ¼ 1,:::,Q

Tmove
i ðJiÞ4ðbR�bLþ2dÞ. But since Sc is contiguous

and unidirectional, bR�bL is the maximum required total moving

time for all QCs in Sc. Therefore a contradiction exists. &
Fig. 6. Illustration of container assignment
Lemma 5. For Sc, wmax
i �wmin

i Zrþ1, 8i¼ 1,:::,Q 0�1.

Proof. Suppose wmax
i �wmin

i rr for some iA ½1,Q 0�1�, thus the
number of bays contained in QC i’s operating range is no more
than rþ1. Hence Tact

i ðJiÞrBrþ1
max rLB for such iA ½1,Q 0�1�, which

violates (4). &

Lemma 6. For Sc, wmin
iþ1�wmin

i Zrþ1, 8i¼ 1,:::,Q 0�1.

Proof. 8i¼ 1,:::,Q 0�1, since wmin
iþ1Zwmax

i , from Lemma 5,
wmin

iþ1�wmin
i Zwmax

i �wmin
i Zrþ1. &

As assumed in Section 3, at time 0, each QC can reach its initial
location which is aligned to the bay location of its first assigned
container job, as long as the safety distance is maintained. Lemma
6 suggests that in Sc, such safety distance is ensured, thus QCs can
immediately start processing their first assigned container jobs at
time 0.

Lemma 7. Sc contains no blocking idle time.

Proof. Sc is a contiguous schedule since each QC i of Sc has
contiguous bay range as depicted in Fig. 5. Thus operating time
TiðJiÞ contains no blocking idle time, and Tsum contains no blocking
idle time as well. &

Lemma 8. Sc contains no conflict idle time.

Proof. Each QC i (i¼1,y,Q0) of Sc has a contiguous bay range with
boundary bays that are possibly shared by adjacent QCs: QC i�1
and QC iþ1. Note that for QC 1, its only adjacent QC is QC 2, i.e.,
the lower boundary bay of QC 1 is not a shared bay. And similarly,
for QC Q0, its only adjacent QC is QC Q0 �1, and the upper
boundary bay of QC Q0 is not a shared bay. So for Sc there can
be at most Q0 �1 shared bays.

Suppose conflict idle time exists in Sc. Since Sc is contiguous and

QCs move unidirectionally, such conflict idle time occurs only

when QCs are operating near their boundary bays and the

minimum safety margin is reached. Precisely, the necessary

condition for nonzero conflict idle time is that there exist two

adjacent QC i�1 and QC i, and QC i�1 reaches some Bay b0 before

QC i reaches Bay b0 þrþ1. Consider the largest iA ½2,Q 0� for which

QC i�1 has conflict idle time, thus Tconf
i0 ðJi0 Þ ¼ 0, 8i0A ½i,Q 0�, i.e.,

there is no conflict idle time for QC i,:::,Q 0. Depending on different

boundary modalities between QC i�1 and i, three scenarios are

differentiated and discussed, respectively, each of which contains

a contradiction and therefore this lemma can be proved.

Scenario 1 wmax
i�1 ¼wmin

i

and boundary modality for Scenario 1.
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Fig. 8. Decomposition of operating ranges of QC i�1 and QC i under Scenario 1.1.
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The container assignment and boundary modality between the

two QCs are illustrated in Fig. 6. Bay b is the bay shared by QC i�1

and QC i, and wmax
i�1 ¼wmin

i ¼ b. The safety distance constraint

applies only when at least one QC is located within the open

interval between Bay b�r�1 and Bay bþrþ1. Precisely, for QC

i�1 to have conflict idle time, there must exist some xA ½1,rþ2�

for which QC i�1 reaches Bay b�xþ1 before QC i reaches Bay

b�xþrþ2. Consider the largest xA ½1,rþ2� which causes the

conflict idle time, thus QC i�1 does not need conflict idle time

when processing bays indexed from wmin
i�1 to b�x.

If x¼ rþ2, given the condition of conflict idle time occurrence,

QC i�1 has to reach Bay b�r�1 before QC i reaches Bay b.

Besides, from Lemma 5, wmin
i�1 rwmax

i�1 �r�1¼ b�r�1, which means

QC i�1 reaches Bay wmin
i�1 no later than it reaches Bay b�r�1.

Thus in order to incur conflict, QC i�1 has to reach Bay wmin
i�1

before QC i reaches Bay wmin
i , which is infeasible since Lemma 6

ensures that both QC i�1 and QC i can reach their first assigned

jobs at time 0. Therefore we only need to consider xA ½1,rþ1� in

the rest part of this Scenario 1.

Based on the x value (xA ½1,rþ1�), jobs assigned to these two

QCs can be partitioned into at most six sets. Fig. 7 illustrates such

decomposition of QC i�1 and QC i’s operating ranges for a given

xA ½1,rþ1�. The six sets are labeled as A–F. A–C comprise jobs

assigned to QC i�1, and D–F comprise jobs assigned to QC i. Jobs

of A are those on bays indexed no more than b�x, jobs of B are on

bays indexed from b�xþ1 to b�1, jobs of C and D are on the

shared Bay b, jobs of E are on bays indexed from bþ1 to

b�xþrþ1, jobs of F are on bays indexed no less than b�xþrþ2.

Note that Fig. 7 represents a general decomposition and some

set may actually be null or empty. A set is null if it does not exist,

i.e., the set contains no bays at all. A set is empty if it exists but all

bays in the set contain no jobs to be handled. By definition, each

of Bay wmin
i�1 , Bay wmax

i and Bay b contains at least one job to be

handled, and Set C and D are not null or empty.

From Lemma 6, 8i¼ 2,:::Q 0, wmin
i�1 rwmin

i �r�1¼ b�r�1rb�x,

i.e., Set A contains at least one bay (Bay wmin
i�1 ) and is not null

or empty.

From Lemma 5, 8i¼ 2,:::Q 0�1, wmax
i Zwmin

i þrþ1¼ bþrþ1Z

b�xþrþ2, i.e., Set F contains at least one bay (Bay wmax
i ) and is

not null or empty when ioQ0. Set F may be null when i¼Q0, but is

not empty as long as it exists.

Set B, E may be null. For example Set B is null when x¼1, Set E is

null when x¼rþ1, and both Set B and E are null when r¼0.

Besides, even though exists, Set B or E may be empty.

From this perspective, six scenarios are further differentiated:

Scenario 1.1 Set F is null and Set E is null
A B

b-x b-x+1 b-1

D

b

C

iw

Fig. 7. Decomposition of operating ranges
Under this scenario, i¼Q0, x¼ rþ1 and wmax
Q 0
¼ b. Fig. 7 trans-

forms to Fig. 8. Since Bay wmin
Q 0�1

is not empty, sb�r Z1. Given the

condition of conflict idle time occurrence, QC Q0 �1 reaches Bay

b�r before QC Q0 reaches Bay bþ1. we have:

Tact
Q 0�1ðAÞþsb�r oTact

Q 0 ðDÞþ1¼ Tfix
ðDÞþ1

Note that Bay bþ1 may be an empty bay on vessel, or even an

virtual bay outside the vessel range that is only used to locate QC

position. In this way, even after finishing Bay b on vessel, QC Q’

continues to move in order to maintain the safety distance from

QC Q0 �1.

If B is null or empty, dZsb ¼ sb�rþrZrþ1. We have

Brþ1
max ZTact

Q 0 ðB [ C [ DÞ ¼ T fix
ðCÞþT fix

ðDÞ4T fix
ðCÞþðTact

Q 0�1ðAÞþsb�r�1Þ

¼ ðTact
Q 0�1ðAÞþTfix

ðCÞþsbÞ�sbþsb�r�1¼ Tact
Q 0�1ðA [ B [ CÞ�r�1

4 ðLBþdÞ�r�1Z ðBrþ1
maxþdÞ�r�1¼ Brþ1

maxþðd�r�1ÞZBrþ1
max

Otherwise, B is not empty, we have

Brþ1
max ZTact

Q 0 ðB [ C [ DÞ ¼ Tact
Q 0 ðB [ CÞþTfix

ðDÞ ¼ Tact
Q 0�1ðB [ CÞþTf ix

ðDÞ

4Tact
Q 0�1ðB [ CÞþðTact

Q 0�1ðAÞþsb�r�1Þ

¼ ðTact
Q 0�1ðAÞþTact

Q 0�1ðB [ CÞÞþsb�r�1

ZðTact
Q 0�1ðA [ B [ CÞ�dÞþsb�r�14 ðLBþdÞ�dþsb�r�1

ZðBrþ1
maxþdÞ�dþsb�r�1¼ Brþ1

maxþðsb�r�1ÞZBrþ1
max

Contradiction exists in both cases under this scenario.

The proofs of the rest 5 sub-scenarios (Scenario 1.2–1.6) given

wmax
i�1 ¼wmin

i are provided in Online Appendix. Moreover, the
FE

b+1 b-x+r+1 b-x+r+2
iw

of QC i�1 and QC i under Scenario 1.
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other two scenarios (wmax
i�1 ¼ wmin

i �1, wmax
i�1 owmin

i �1) can be

analyzed for contradiction similarly, where 12 additional sub-

scenarios will be differentiated (Scenario 2.1–2.6; Scenario 3.1–

3.6). The proofs of these two scenarios (i.e., 12 sub-scenarios) are

also provided in Online Appendix. There are similarities between

the proofs of some scenarios, and some other scenarios are proved

infeasible. Fig. 9 summarizes these internal relations. Finally, after

identifying contradiction for each 18 possible scenarios given that

QC conflict idle time exists for Sc, Lemma 8 is proved. &

Theorem 1. CmaxðS
c
ÞrCn

maxþ2dþmax
jA J

tfix
j , where Cn

max is the
makespan of optimal schedule.

Proof. Based on (2), (3), LB¼maxfLact
avg,Brþ1

maxgrCn

max; based on
Lemma 7 and 8, TiðJiÞ ¼ Tact

i ðJiÞ, 8i¼ 1,:::,Q 0; then according to
(4) and Lemma 4, we have

CmaxðS
c
Þ ¼max

iAQ
fTiðJiÞg ¼ max

i ¼ 1,:::,Q 0
fTact

i ðJiÞg

rLBþ2dþmax
jA J

tfix
j rCn

maxþ2dþmax
jA J

tfix
j &

Example 1. For this example, we consider a case of scheduling a
ship with very large task volume variance between adjacent bays.
To simplify the numerical expression, let the fixed handling time
of each container equal 1 unit of time, which is also the QC
moving time between two adjacent bays. We have:
1.1

1.2

1.3

1.6

1.4

1.5

2.1

2.2

2.3

2.6

2.4

2.5

3.1

3.2

3.3

3.6

3.4

3.5

Fig. 9. Internal relations among proofs of different scenarios for Lemma 8.

Table 1

mi,b, Tact
i ðJiÞ and RTi,b values of schedule Sc acquired by heuristic.

i

b

1 2 3 4 5 6 7 8 9 10 1

m1,b 100 1 0 42
m2,b 58 1 0 84
m3,b 16 1 0 100 1
m4,b

m5,b

RT1,b 0 101 103 104

RT2,b 0 59 61 62

RT3,b 0 17 19 20 1

RT4,b

RT5,b
B¼20, J¼707, Q¼5, r¼1, fmBAY
b g¼{100,1,0,100,1,0,100,1,0,100,

1,0,100,1,0,100,1,0,100,1}, bL¼1, bR¼20, fsbg¼{0,1,1,2,1,1,2,1,1,2,

1,1,2,1,1,2,1,1,2,1}, d¼ 2, j¼ 8, Brþ1
max ¼ 101, T fix

avg ¼ 141:4, Lact
avg ¼

143:6, LB¼ 143:6, LBþd¼ 145:6, LBþ2dþmax
jA J

tfix
j ¼ 148:6.

The mi,b values of the schedule Sc acquired by heuristic are shown
in the top 5 rows of Table 1. Bay 4, 7, 13 and 16 are shared bays, so
Lemmas 5 and 6 are verified. This schedule is contiguous by
definition, so Lemma 7 is verified. Since each container job has
fixed handling time of 1, the active time of each QC can be calculated
and are listed in the right-most column, so both Formula (4) and
Lemma 4 are verified. Besides, RTi,b, the time of QC i reaching Bay b

are given in the bottom 5 rows of Table 1, and Lemma 8 can be
verified. For example, considering QC 4 and QC 5, since RT4,144
RT5,16, RT4,154 RT5,17, RT4,164 RT5,18, QC 4 and QC 5 would not
conflict with each other. Finally, the makespan of Sc equals 146, and
Theorem 1 is verified.
6. Numerical experiment

6.1. Test instance modification

The test instances for the proposed heuristic are modified
from the QCSP test sets provided by [18]. The test instances of
[18] adopt the granularity of container group, and for each
container group, its handling time equals its number of contain-
ers, i.e., the average handling time for a single container is one
unit of time. For our experiment, the information about each
container j should be further generated, including its handling
time tfix

j , stack location Sj and precedence constraints with other
containers.

The generated tfix
j should fulfill two requirements: (1) tfix

j is
distributed between [1�y, 1þy] units of time, where y is a
parameter indicating the variance range of single container handling
time; (2) the sum of tfix

j in each group equals o, which is the
number of containers in this group.

For this purpose, the idea of ‘‘group processing time genera-
tion’’ procedure in Section 4.2.2 of [18] is borrowed. This proce-
dure splits the total amount of processing time into a given
number of random segments, while the maximum duration of
each segment is ensured, and the minimum duration of each
segment is set to zero. This procedure is modified to further
ensure a minimum duration of (1�y) for each segment, so that
the two requirements on tfix

j can be satisfied in the generated
instance. The modified procedure is:

Step1 By using the ‘‘group processing time generation’’ procedure,
split yo into o segments ftj, j¼ 1,:::og, while ensuring 0rtjr
2y, 8j¼ 1,:::o.
Tact
i ðJiÞ

1 12 13 14 15 16 17 18 19 20

146

146

0 22 146

78 1 0 64 146

36 1 0 100 1 142

21 123 124

0 79 81 82

0 37 39 40 141
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Step2 Let tfix
j ¼ 1-yþtj, 8j¼ 1,:::o.

Step3 Repeat Step1–2 for each group.

After generating tfix
j for each container, its stack location Sj is

randomly assigned. As to the precedence constraints, for contain-
ers from different groups, the precedence relations of their groups
are inherited; for containers in the same group, if they are also in
the same stack, a precedence relation is randomly indicated.
6.2. Test results discussion

The test results are shown in Table 2. Following the definitions of
[18], instance set A, B, C represent test sets of small, media and large
vessels, respectively; and notation n, f, loc, d, q represent number of
tasks, handling rate, location parameter, precedence density and
number of cranes, respectively. Detailed explanations related to
these test sets are given in [18]. In Table 2, UB is the proved upper

bound for Cmax(Sc) and equals LBþ2dþmax
jA J

tfix
j . Each LB, Cmax(Sc)
Table 2
Test results of numerical experiment.

Test set

A
n¼ 10 15 20

LB 5,032.5 5,035 5,036

Cmax(Sc) 5,057.93 5,058.08 5,056.82

UB 5,086.5 5,083 5,082

Gap-1(%) 0.51 0.46 0.41

Gap-2(%) 1.07 0.95 0.91

B
n¼ 45 50

LB 7,699.5 7,623.5

Cmax(Sc) 7,721.17 7,645.67

UB 7,739.5 7,665.5

Gap-1(%) 0.28 0.29

Gap-2(%) 0.52 0.55

C
n¼ 75 80

LB 11,382.33 11,107.67

Cmax(Sc) 11,402.05 11,129.91

UB 11,416.33 11,147.67

Gap-1(%) 0.17 0.20

Gap-2(%) 0.30 0.36

D
f¼ 0.2 0.2

loc¼ cl1 cl2

LB 4,718 3,641.25

Cmax(Sc) 4,742.07 3,665.56

UB 4,766 3,685.25

Gap-1(%) 0.51 0.67

Gap-2(%) 1.02 1.21

E
d¼ 0.8

LB 7,623.5

Cmax(Sc) 7,645.67

UB 7,665.5

Gap-1(%) 0.29

Gap-2(%) 0.55

F
q¼ 2

LB 15,062.5

Cmax(Sc) 15,083.65

UB 15,104.5

Gap-1(%) 0.14

Gap-2(%) 0.28

G
r¼ 0

LB 7,526.25

Cmax(Sc) 7,549.98

UB 7,568.25

Gap-1(%) 0.32

Gap-2(%) 0.56
and UB item takes the sum value of 10 instances with different
random seeds, as in [18]. Gap-1 is calculated by (Cmax(Sc)/
LB�1)n100%, and Gap-2 is calculated by (UB/LB�1)n100%.

In test set E, different d values are compared, representing various
precedence densities among groups. Without loss of feasibility, we
supplement precedence relations to the instances of do1 until d¼1.
Consequently, the results for do1 are the same with results of d¼1
in test set E.

For each instance, LBo Cmax(Sc)oUB is verified, as proved by
Theorem 1. Gap-1 represents the difference between acquired
contiguous schedule and optimal schedule, and Gap-2 represents
the maximum possible Gap-1 value as proved. The average of
Gap-1 is 0.3%, and the average of Gap-2 is 0.57%. Both values turn
out to be very small under practical problem scales.

Comparing our test results to those reported in [18], a smaller
makespan value can be observed in most cases. Denote ZMB the test
results reported in [18]. Cmax(Sc)oZMB is expected since by using
lower granularity, better workload balance among QCs can be
achieved. Besides, the additional assumption that each QC is available
25 30 35 40

5,037 5,038 5,039 5,039.5

5,057.89 5,055.68 5,057.37 5,057.12

5,079 5,078 5,075 5,075.5

0.41 0.35 0.36 0.35

0.83 0.79 0.71 0.71

55 60 65 70

7,664.25 7,658.75 7,650 7,553.75

7,684.98 7,676.90 7,668.69 7,573.5

7,702.25 7,694.75 7,686 7,589.75

0.27 0.24 0.24 0.26

0.50 0.47 0.47 0.48

85 90 95 100

10,790 10,631 10,773 10,785.33

10,812.84 10,651.74 10,792.97 10,806.83

10,832 10,667 10,807 10,821.33

0.21 0.20 0.19 0.20

0.39 0.34 0.32 0.33

0.2 0.8 0.8 0.8

uni cl1 cl2 uni

3,456.75 12,023.25 12,026.25 12,027

3,478.22 12,042.3 12,045.14 12,047.37

3,498.75 12,059.25 12,064.25 12,065

0.62 0.16 0.16 0.17

1.22 0.30 0.32 0.32

0.85 0.9 0.95 1

7,623.5 7,623.5 7,623.5 7,623.5

7,645.67 7,645.67 7,645.67 7,645.67

7,665.5 7,665.5 7,665.5 7,665.5

0.29 0.29 0.29 0.29

0.55 0.55 0.55 0.55

3 4 5 6

10,038.33 7,623.5 7,352 7,352

10,059.91 7,645.67 7,375.01 7,375.01

10,080.33 7,665.5 7,394 7,394

0.21 0.29 0.31 0.31

0.42 0.55 0.57 0.57

1 2 3 4

7,623.5 9,949 12,398 14,054

7,645.67 9,973.27 12,419.64 14,077.55

7,665.5 9,991 12,440 14,096

0.29 0.24 0.17 0.17

0.55 0.42 0.34 0.30
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from time 0 also improves the solution quality, since it reduces a
small amount of set-up time required for each QC’s first assigned job.
However, there are five cases under which Cmax(Sc) values are slightly
larger than ZMB values, i.e., the test set F with q¼5, 6 and the test set
G with r¼2, 3, 4. This is mainly because the obtained contiguous
schedule by the heuristic is not optimal considering single container
granularity. As aforementioned, the purpose of this paper is not to
find optimal solutions, but to balance between schedule quality and
solving speed. For this purpose, this paper actually focuses
on only contiguous bay area partition and unidirectional operation
manner; additionally, the proposed heuristic is constructed to gen-
erate only ‘‘conflict-free’’ schedules. Indeed, there can be some global
optimal schedule at single container granularity which are not
contiguous bay area partitioned, not unidirectionally operated, or
not conflict-free. Nevertheless, although the scope of considered
schedules is limited in this paper, the quality of obtained solution is
ensured, i.e., its gap above the global optimal solution (Gap-1) is
proved to be bounded (by Gap-2) and quite small in practice (0.3% on
average).

Quantitatively, according to (4), a lower bound LBP ¼ LBþd can
be identified for the conflict-free contiguous schedule Sc gener-
ated by the proposed heuristic. Comparatively, as aforementioned
in (2) and (3), LB is the lower bound for any feasible QC schedule,
no matter whether it is contiguous or noncontiguous, with or
without conflict idle time. For the five cases with Cmax(Sc)4ZMB,
Table 3 summarizes their lower bounds and makespan values,
where Gap-3 is calculated by (Cmax(Sc)/ZMB�1)n100%. For these
cases, although Cmax(Sc)4ZMB, the actual difference is quite small
(Gap-3 is 0.15% on average).This is acceptable in practice.

Note that, LBP is smaller than ZMB for the first case. This implies
the possible existence of an optimal conflict-free contiguous
schedule which is better than ZMB. This also reveals a limit of
the search implemented in the straightforward heuristic.
The proposed heuristic first generates a sequence of all containers
on vessel by the beginning ‘‘sequence’’ sub-procedure, where ties
are broken randomly when no precedence relation exists between
two containers. Then the posterior ‘‘partition’’ and ‘‘re-sequence’’
sub-procedures decode this sequence. In this way a conflict-free
contiguous schedule is obtained. However, there actually exists a
huge number of feasible sequences of containers, in addition to the
one randomly generated by the ‘‘sequence’’ sub-procedure; and any
feasible sequence can produce a conflict-free contiguous schedule
using the same ‘‘partition’’ and ‘‘re-sequence’’ sub-procedures.
To improve the search, such polynomial-time ‘‘partition’’ and
‘‘re-sequence’’ sub-procedures in the proposed heuristic can be
incorporated into some meta-heuristic algorithm as the decoding
and evaluation method, while the meta-heuristic searches within
the space of feasible container sequences. In this way, an improved
conflict-free contiguous schedule may be found which is better than
the reported initial Sc. Nevertheless, such improved Cmax(Sc) will not
outperform the LBP value, and the tightness between current
Cmax(Sc) and LBP values (the gap of 0.12% in this case) is likely not
worth such computational burden.

Furthermore, note that LBP is larger than ZMB for the rest four
cases in Table 3. As aforementioned, this implies the limited scope
of considered schedules in this paper. Thus theoretically, in these
Table 3
Comparison between test results under five cases.

Case ZMB Z LBP LB Gap-1(%) Gap-3(%)

q¼5 in test set F 7,373 7,375.01 7,366 7,352 0.31 0.03

q¼6 in test set F 7,361 7,375.01 7,366 7,352 0.31 0.19

r¼2 in test set G 9,954 9,973.27 9,963 9,949 0.24 0.19

r¼3 in test set G 12,399 12,419.64 12,412 12,398 0.17 0.17

r¼4 in test set G 14,054 14,077.55 14,068 14,054 0.17 0.17
cases, there will be no optimal conflict-free contiguous schedule
with better makespan than ZMB, as long as the partition condition
in the heuristic is used. However, since LBoZMB, a schedule at the
granularity of single container with better makespan than ZMB

possibly exists. The feasible solution space can be expanded by
using other partition conditions, by allowing conflict idle time, or
by incorporating noncontiguous schedules. Nevertheless, such
improved Cmax(Sc) will not outperform the LB value eventually,
and the small difference between current Cmax(Sc) and LB values
(the average Gap-1 of 0.22% in these four cases) indicates little
improvement potential.

As a result, although not fully optimized and worse than ZMB in
some cases, the obtained contiguous schedule by the heuristic
achieves a good trade-off between solution quality and solving speed.
Besides, note that the five cases in Table 3 actually reflect relatively
congested situations, where many cranes or large safety distances
may inhibit an effective utilization of all cranes. Even so, the proposed
contiguous schedule and heuristic can still appropriately handle such
situations, by simultaneously utilizing two different lower bounds.
This issue will be discussed in detail in Section 6.3.

6.3. Correlation between LB value and QC workload balance

In the heuristic, in order to eliminate the conflict idle time, the
LB value is set as the maximum between Lact

avg and Brþ1
max . However,

only the larger one of them is active for a given instance and
adopted into the partition condition of the heuristic. This property
influences the QC workload balance of the obtained contiguous
schedule.

Figs. 10–15 illustrate the utilized lower bounds and scheduled
QC operating times for different cases. For each case, only the
instance with random seed of 1 is selected for illustration.

In Fig. 10, Lact
avg varies little under different cases in test set A. This

is because by definition, Lact
avg ¼ T fix

avgþðbR�bL�jÞ=Q ¼ ðT fix
sumþbR�

bL�jÞ=Q , and thus its value is mainly influenced by the total
workload on vessel and the number of deployed QCs, both of which

remain unchanged in test set A. Brþ1
max fluctuates under different

cases, because by definition, Brþ1
max not only depends on the total

workload and available QCs, but also depends on the particular

workload distribution among bays. Note that under each case, Lact
avg

remains larger than Brþ1
max , thus by (4), QC 1’s operating time, i.e.,

Tact
1 ðJ1Þ , is no larger than ðTfix

sumþbR�bL�jÞ=2þ2dþmax
jA J

tfix
j . This

implies that the remaining workload assigned to QC 2 should be

closed to ðTfix
sumþbR�bL�jÞ=2 as well, which accords with Fig. 10,

where operating times of two QCs are well balanced.
In Fig. 11, Lact

avg varies little under different cases in test set B,
while Brþ1

max fluctuates. Operating times of four QCs are also well
balanced for most cases (except for n¼60). The reasons are the
same as in test set A. For the case of n¼60, Lact

avg is smaller than
+

Fig. 10. QC operating times for cases of Set A (instance seed¼1).



+

Fig. 12. QC operating times for cases of Set C (instance seed¼1).

+

Fig. 13. QC operating times for cases of Set E (instance seed¼1).

+

Fig. 14. QC operating times for cases of Set F (instance seed¼1).

+

Fig. 11. QC operating times for cases of Set B (instance seed¼1).
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+

Fig. 15. QC operating times for cases of Set G (instance seed¼1).

Fig. 16. Correlation between RLB and RBA values for all instances from test sets.
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Brþ1
max , thus by (4), Tact

i ðJiÞ4Brþ1
maxþd4ðT

fix
sumþbR�bL�jÞ=4,

8i¼ 1,2,3. This implies the remaining workload assigned to QC
4 is smaller than ðT fix

sumþbR�bL�jÞð1�3=4Þ, and hence Tact
4 ðJ4Þo

Brþ1
max ¼ LB. Accordingly in Fig. 11, under this case of n¼60, the

operating times of QC 4 is not balanced with QC 1, 2 and 3.
In Fig. 12, Lact

avg again varies little under different cases in test
set C, while Brþ1

max fluctuates. For cases of n¼90 and n¼100,
operating times of six QCs are well balanced. The reasons are
also the same as in test set A. For the cases of n¼75, 80, 85 and 95,
since Lact

avgoBrþ1
max ¼ LB, they are similar to the case of n¼60 in

Fig. 11, only with worse workload balance observed.
In Fig. 13, since the total workload on vessel is proportional to

the handling rate in test set E, both Lact
avg and Brþ1

max increase with
higher handling rate in test set E, and Lact

avg varies little under the
same handling rate. By definition, under the same handling rate,
the Brþ1

max value should be largest with single Gaussian distributed
containers (cl1), and smallest with uniform distributed containers
(uni). This trend is significant when f¼0.2. However when f¼0.8,
Brþ1

max values have no significant differences, since each bays’
capacity has already been highly occupied. The QC workloads
are balanced when f¼0.8 and Lact

avg4Brþ1
max , and unbalanced when

f¼0.2 and Brþ1
max 4Lact

avg. Moreover, given the relatively small
amount of containers on vessel when f¼0.2, only three of the
available QCs are utilized, i.e., Q0 ¼3.

In Fig. 14, with more QCs being deployed in test set F, Lact
avg

decreases since it is approximately inversely proportional to the
number of available QCs, whereas Brþ1
max remains unchanged since it is

only related to containers’ distribution on vessel and safety distance
of QCs. For the cases of q¼2, 3 and 4, Lact

avg4Brþ1
max , thus

the QC workloads are balanced. For the cases of q¼5 and
6, Brþ1

max 4Lact
avg, thus the QC workloads are unbalanced. Furthermore,

the acquired schedules are the same under these two cases, since the
containers’ distribution on vessel are the same and LB takes the fixed
value of Brþ1

max . As a result, only five QCs are actually utilized in the
case of q¼6.

In Fig. 15, with larger QC safety distance specified in test set G,

Brþ1
max increases since it is positively correlated with the r value,

whereas Lact
avg remains unchanged since it is unrelated to the r value.

For the cases of r¼0 and 1, Lact
avg4Brþ1

max , thus the QC workloads are

balanced. For the cases of r¼2, 3 and 4, Brþ1
max 4Lact

avg, thus the QC

workloads are unbalanced, and only three QCs are actually utilized,

respectively in these cases. Furthermore, the acquired schedules are

the same under cases of r¼0 and 1, since containers’ distribution on

vessel are the same and LB takes the fixed value of Lact
avg.

Moreover, instances in Figs. 10–15 also imply that by the heuri-

stic, the relatively larger gap between Brþ1
max and Lact

avg can intensify the

workload unbalance among QCs. Denote RLB
¼ Brþ1

max =Lact
avg, which

indicates the relative quantity of Brþ1
max and Lact

avg, and denote

RBA
¼ min

i ¼ 1,:::Q
Tact

i ðJiÞ=CmaxðS
C
Þ, which evaluates the balance among

QC workloads. To illustrate their correlation, RLB and RBA values of all



Fig. 17. Sensitive of gaps under different y values.
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tested instances are summarized as the scatter points in Fig. 16. It

shows that when RLBr1, i.e., when Brþ1
max rLact

avg and LB¼ Lact
avg, RBA

values are quite close to 1, meaning that QC workloads are well

balanced. However, when RLB41, i.e., when Brþ1
max 4Lact

avg and LB¼

Brþ1
max , RBA values start declining from 1 to 0, indicating unbalanced

QC workloads. For many instances, RBA takes the value of 0, meaning
that at least one available QC is not utilized.

Note that Brþ1
max remains unchanged as more QCs are assigned to a

vessel, whereas Lact
avg decreases, since it measures the average work-

load of QCs. Thus the value of RLB can be viewed as an estimation of
QC congestion relative to vessel workload. Facing higher QC con-
gestion, the proposed heuristic can eliminate the conflict idle time
for the generated contiguous schedule, at the cost of compromising
some workload balance among QCs. Hence for the terminal operator
to properly decide the deployed QC number, it is recommended to
choose the q value which makes RLB close to 1. Otherwise, a too large
RLB value induces imbalance among QCs and wastes QCs’ capacity;
whereas a too small RLB value implies the positive marginal utility of
QC number and suggests further makespan improvement by adding
QC resources. Furthermore, for strategic decisions like quayside
resource configuration and equipment parameter selection, a
desired combination of q and r can be determined based on
historical or predicted vessel data, by making the RLB values
clustered near 1 for as many vessels as possible.

6.4. Sensitivity analysis

Although the y value is set to 0.4 in previous tests, the
reasoning and implications in this section still applies with other
y values. The influence of practical y value on Gap-1 and Gap-2 are
illustrated in Fig. 17. With y increases, the average and maximum
values of Gap-2 increases proportionally. However the average
value of Gap-1 and its range do not change much. Thus the
heuristic shows a steady performance under different variation
degrees of container handling time.
7. Conclusion

This paper studies the QCSP based on single container operation.
Ideally, by taking smaller granularity and assigning container jobs in
one bay to multiple QCs, the QC workload can be further balanced
and the equipment utilization can be enhanced. Mathematically,
existing models of QCSP based on container groups are equivalent
to the model studied herein, as long as we view each single container
as a container group. However, existing algorithms of QCSP based on
container groups become much too time-consuming when applied to
single container discretizations, due to the explosion of problem scale
in both variables and constraints. Based on the analysis of practical
characteristics and constraints of QC operations, the proposed heur-
istic procedure is efficient and effective at the granularity of single
container. It uses polynomial time, and is proved to have a bounded
optimality gap under all circumstances. In our experiments, such gap
is quite small in reality, and the proposed method achieves a good
trade-off between solution quality and solving speed. The generated
conflict-free contiguous schedule also reduces the operational com-
plexity for QC operators. Sensitivity analysis shows the steady
performance of our method. Aside from QC schedule generation,
the revealed correlation between LB value and QC workload balance
is also applicable for the decision making of container terminal
operators. For future research, double cycling mode of QCSP should
be considered for our method, so that more efficient QC utilization
can be achieved.
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