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a b s t r a c t

This paper investigates thenotion of preemption in scheduling,with earliness and tardiness
penalties. Starting from the observation that the classical cost model where penalties only
depend on completion times does not capture the just-in-time philosophy, we introduce
a new model where the earliness costs depend on the start times of the jobs. To solve this
problem, we propose an efficient representation of dominant schedules, and a polynomial
algorithm to compute the best schedule for a given representation. Both a local search
algorithm and a branch-and-bound procedure are then derived. Experiments finally show
that the gap between our upper bound and the optimum is very small.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Researchers and practitioners have shown interest in just-in-time scheduling for about two decades. A common idea is to
notice that a job that completes either tardily or early in a schedule induces extra costs.We can find in the literature the study
of many scheduling problems that aim to minimize an earliness–tardiness criterion. However, while preemptive problems
are an important part of the scheduling theory, preemptive earliness–tardiness scheduling problems seem somewhat
neglected. This paper focuses on the one-machine problem.
In non-preemptive problems, earliness–tardiness costs are function of the job completion time: a tardiness penalty is due

if the job completes after its due date, conversely an earliness penalty is due if it completes before the due date. However,
in a scheduling environment where preemption is allowed, such functions may not bring the desired results: indeed, when
the job has been started, the goal is to complete it as soon as possible, so that it can be removed from the production line.
We also say that the work-in-process has to be minimized. If the costs only depend on the completion time of the job, idle
time within the execution of the job might not be penalized, and the work-in-process will be large. In order to avoid this
problem, we are going to propose a model that attaches the earliness costs to the job start, while tardiness costs remain tied
to the completion of the jobs. The idea of having the optimization criterion depending on the job start has been introduced by
Hoogeveen and Van De Velde [12]: they tackle a bicriteria problemwhere onewants tominimize themaximum promptness,
i.e. the difference between the start of the job and a given target start time, and the mean flow time.
In this paper, we adapt the classical one-machine earliness–tardiness problem, to allow preemption and, in order to

determine earliness–tardiness costs, we consider that each job has two due dates instead of one: one tied to the start time
of the job and the other tied to its completion time. Formally, we consider a set of jobs J = {J1, . . . , Jn} which has to be
scheduled on a single machine. Each job Jj ∈ J has a processing time pj. We define tardiness costs as Tj = max(0, Cj − dcj ),
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where Cj is the completion time of job Ji and dcj is the ideal completion time (or due-date) of job Jj, and earliness costs as
Ej = max(0, dsj − Sj) where Sj is the start time of job Jj and d

s
j = d

c
j − pj is the ideal start time (that is the target start

time in [12]) of job Jj. We want to minimize
∑n
j=1(αjEj+ βjTj). We call this problem JIT-POMP which stands for Just-In-Time

Preemptive One-Machine Problem. This problem is NP-hard: if all earliness penalties are nil, there is an optimal schedule
without job interruption, so that we have an instance of 1 ‖

∑
wiTi which is strongly NP-hard [14].

We firstmake two remarks about this preemptivemodel. First, the earliness of a job is a function of its start time. Indeed, if
earliness classically is estimatedby the expressionmax(0, dcj−Cj), we can show that there is an optimal schedule inwhichno
job completes early. Indeed, if a job is early, an infinitesimal piece of length ε of it can bemoved so that it becomes scheduled
in the time interval [dcj − ε, d

c
j ]. Therefore, it has no cost at all, which means that the problem is equivalent to the single

machine preemptive problemwith only weighted tardiness costs. Second, if a job is scheduled without interruption, its cost
is equal to its classical earliness–tardiness non-preemptive cost. Therefore, for a given instance, any feasible schedule of the
non-preemptive problem (and especially an optimal one) gives an upper bound for JIT-POMP. The non-preemptive problem,
namely 1 ‖

∑
i fi(Ci)with fi(Ci) = max(αi(di − Ci), βi(Ci − di)) has been extensively studied. One way to approach this NP-

complete problem [8], is to consider a particular polynomial case, the so-called timing problem inwhich the order of the jobs
has already been determined. This subproblem is often used as a core sub-routine in a branch and bound procedure [11,16]
or in a local search procedure [9,21,7]. Garey et al. [8] have proposed an O(n log n) algorithm to solve the timing subproblem
in the case of unary earliness–tardiness penalties. Several papers [6,19,5,17,15,10] have extended this algorithm, in order
to improve its practical efficiency and to adapt it for problems with non-symmetric and even non convex penalties. One
generalization that we will use in this paper, is to consider that the cost functions fi are convex and piecewise linear. From
here onwards, the number of segments of fi will be denoted by ‖fi‖ and s =

∑
i ‖fi‖. Hendel and Sourd [10] have proposed

an O(s log n) algorithm for this criterion.
In this paper, we follow a similar approach for JIT-POMP. The first point is to find how to represent the set of solutions.

A representation is a set R of constraints that are to be satisfied by the represented schedule. Therefore, when we consider
the constraints of JIT-POMP plus the constraints of R, we may have a set of several possible schedules. We will say that
a representation is efficient if |R| is polynomial in n and there is a polynomial algorithm (the so-called timing algorithm)
that finds the best schedule in JIT-POMP subject to R. A possible representation would be to fix all the start times (that
is R contains n constraints of the form ‘‘Si = ai’’). However, the resulting problem JIT-POMP subject to R is equivalent to
1|pmtn, ri|

∑
wjTj, which is NP-hard [14]. Therefore, this representation is not efficient. We show in the next section that

an order for the start and completion times of the jobs is sufficient to get a polynomial timing problem.
In Section 2, we give a first efficient representation in which the schedule is defined by a sequence of the 2n start and

completion times, and the timing problem is solved by linear programming. In Section 3, we propose some dominance
properties on the sequences and the schedules in order to get a better representation for which the timing algorithm
is strongly polynomial. In Section 4, a local search procedure based on our efficient representation is proposed. Finally,
Section 5 is devoted to a branch-and-bound procedure that uses both dominant sequences and a dedicated lower bound.

2. A linear programming-based representation

From here onwards, we denote by σ an order for {S1, . . . , Sn, C1, . . . , Cn}. Si denotes the start time of Ji, that is, according
to the context, either the start event or the variable of the proposed linear program. Ci similarly denotes the completion
time of Ji. The sequence σ is given as a list and corresponds to a representation, as defined in the introduction, by adding
the corresponding inequalities between the start and completion time variables. For example, the representation of the
sequence σ = (S1, S2, S3, C1, C3, C2) is the series of inequalities S1 ≤ S2 ≤ S3 ≤ C1 ≤ C3 ≤ C2. For each i ∈ {1, . . . , n}, we
are going to assume that Si is before Ci in the sequence.
We now introduce the values Pσ (X, Y ) that represent the mandatory processing time that occurs between two distinct

events X, Y ∈ {S1, . . . , Sn, C1, . . . , Cn}. If Y precedes X in the sequence, we simply set Pσ (X, Y ) = −∞. Otherwise, Pσ (X, Y )
is the sum of the processing times of the jobs that must start after X and that must complete before Y . For example, in the
previous example, Pσ (S1, C3) is equal to p1+ p3 because both J1 and J3 must be processed between S1 and C3, while J2 can be
processed after C3. Pσ (X, Y ) is equal to 0 if no job is constrained to be processed between X and Y . Clearly, all these values
only depend on σ , so that they are constant values in the following linear program that solve JIT-POMP subject to σ :

(LP) : min
n∑
i=1

(αiEi + βiTi) (1)

s.t. Ei ≥ dsi − Si, i = 1, . . . , n (2)

Ti ≥ Ci − dci , i = 1, . . . , n (3)

Y − X ≥ Pσ (X, Y ), X, Y ∈ {S1, . . . , Sn, C1, . . . , Cn} (4)
Ei, Ti ≥ 0 i = 1, . . . , n. (5)

This linear programprovides the start and completion times for each job. Inequalities (1)–(4) are clearly necessary conditions
that must be satisfied by any preemptive schedule. In order to show that any solution to (LP) corresponds to a feasible
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Fig. 1. Proof of Property 1.

Fig. 2. Proof of Property 2.

schedule, we first observe that the objective function implies Ei = max(0, dsi − Si) and Ti = max(0, Ci − d
c
i ) in any solution

of (LP). The existence of a feasible schedule such that the processing of Ji is done in [Si, Ci], directly derives from Hall’s
theorem [3]. To build the schedule, we observe that the start and completion times respectively induce release dates and
deadlines; by Jackson’s rule we get a feasible schedule with less than 2n preemptions.
As for the complexity, (LP) has O(n) variables but O(n2) constraints. It is therefore polynomial and it can even be solved

in strongly polynomial time as Tardos’ method [20] can be applied. It can also be solved as special cases of the network
problems with separable convex cost functions solved by Karzanov and McCormick [13] and Ahuja et al. [2]. However, in
order to pratically solve JIT-POMP, the timing procedure has to be called very often. In the next section, we present a second
efficient representation which takes advantage of some dominance rules. The benefits of this second approach are twofold.
First, we will show in Section 3.3 that the resulting timing algorithm is faster. Second, we show in the beginning of Section 4
that the size of the solution space is smaller.

3. A combinatorial algorithm for the timing problem

The timing algorithm we propose in this section does not work for all the sequences that satisfy Si ≤ Ci, but only for
a subclass of sequences which are dominant. This class is defined in Section 3.1 and the algorithm is then presented in
Section 3.2. In Section 3.3, we experimentally compare our algorithm to solving (LP) with ILOG CPLEX.

3.1. Valid sequences

Wewill denote by P(σ ), the timing problem corresponding to the sequence σ and by Opt(σ ) the optimal cost for P(σ ).

Property 1. For every sequence σ1, such that for a pair of jobs (Ji, Jj), Si ≤ Sj ≤ Ci ≤ Cj, then there is a sequence σ2 such that
Si ≤ Ci ≤ Sj ≤ Cj and Opt(σ2) ≤ Opt(σ1).

Proof. We consider the execution intervals of Ji and Jj in a schedule whose cost is Opt(σ1). The execution intervals of Ji and Jj
can be rearranged in such away that Ji is totally processed before the start of Jj. To do so, we proceed iteratively: we consider
the earliest piece of Jj which is executed before the last pieces of Ji. We swap the largest possible amount of the piece of Jj
with the latest possible amounts of pieces of Ji (by doing so, another preemption may be added). We perform the same
operations on the current schedule until Ji is entirely executed before Jj. Consequently the completion time of Ji is moved
backward and the start time of Jj is postponed. Thus the costs induced by the two jobs can only decrease. Fig. 1 illustrates
the transformation (the gray rectangles represent other jobs). �

Property 2. Let us consider a schedule where, for some job Ji, there is some idle time between Si and Ci, then we can build a
schedule with a lower or equal cost such that there is no idle time between Si and Ci.

Proof. Consider a schedule where there is some idle time between the start of job Ji and its completion. As illustrated by
Fig. 2, the execution intervals of job Ji can be rearranged in order to fill the gaps between the start and the completion of Ji.
In that manner, Ci and the cost of the schedule can only decrease. �

For any pair of jobs (Ji, Jj), according to Property 1, we have four possibilities: Si ≤ Sj ≤ Cj ≤ Ci, Sj ≤ Si ≤ Ci ≤ Cj,
Si ≤ Ci ≤ Sj ≤ Cj or Sj ≤ Cj ≤ Si ≤ Ci. In the first two cases, we say that Jj (resp. Ji) is nested in Ji (resp. Jj). In the other cases,
we say that Ji and Jj are separated. Thus, the first property ensures a structure which is analogous to the nested parenthesis
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Fig. 3. Tree associated to the first main block of σ11 .

structure [1]: for a given job Jj, each job started between Sj and Cj, must be finished before Cj, and is therefore nested in Jj. We
call the subsequence associated with each job, a block: we call Bj the block associated with job Jj, it contains all the jobs that
are executed within the interval [Sj, Cj]. Moreover, according to the second property, there is no idle time in Bj, therefore,
we denote by Pj the constant length of this block which is pj+

∑
Jk∈Bj
pk. A maximum block which is not nested in any other

block is called a main block. A main block is a connected component of the inclusion graph of the blocks. From Property 2,
there is an optimal schedule where idle time is only between the main blocks.
A sequence with this nested parenthesis structure is said to be valid. Below is an example of a valid sequence of 11 jobs:

σ11 = (S1(S2, C2)(S3(S4, C4)(S5, C5)C3)(S6(S7(S8, C8)(S9, C9)C7)C6)C1)(S10(S11, C11)C10)

σ11 has two main blocks, B1 and B10.
A nested parenthesis structure can be represented by a forest. Each main block is represented by a tree. A leaf represents

a stand alone job Jj i.e. when Cj is the immediate successor of Sj in the sequence (and then, Cj − Sj = pj). A node r with k
sons in the left-right order, represents a job Jr such that Sr (resp. Cr ) precedes (resp. follows) k sub-sequences of the original
sequence in their left-right order. The number of nodes in the tree corresponds to the number of jobs in the corresponding
main block. The tree represented in Fig. 3 corresponds to the first main block of σ11.

3.2. Solving the timing problem

In this section, we solve the timing problem corresponding to a valid sequence. For the sake of simplicity, a dummy job
J0 is introduced in order to represent the idle time. This idle time is lower thanmaxi dci (for there is no idle time after the last
due date). A new sequence σ0 is derived from σ by adding S0 and C0 respectively before and after the other dates of σ . The
processing time of J0 is p0 = maxi dci . This job comes at no cost, and it is easy to see that Opt(σ0) = Opt(σ ). This way, σ0 is
made up of a single main block B0 that starts at S0 = 0 and completes at C0 =

∑n
i=0 pi.

Since there is a single main block, a single tree is used to represent σ0. Our data structure is based on this tree structure
and each node r contains the following data:

• Pr the total processing time between Sr and Cr
• fr(t) the cost function of scheduling block Br such that Cr = t (and Sr = t − Pr ).

We are going to prove by induction, that the information stored in each node can be derived from the information
stored in the child nodes. Moreover, we also prove by induction, that the cost functions fi are piecewise linear and convex.
First, since a leaf represents a stand-alone job that is executed without preemption, the cost function stored is the classical
earliness–tardiness function fi(Ci) = max(αi(di−Ci), βi(Ci−di)), which is piecewise linear and convex. Let us now consider
an inner node r and its associated job Jr . We assume that k blocks, denoted by B[1], . . . , B[k] are nested in Br and we denote
by T1, . . . ,Tk the subtrees in the left-right order. The tree Ti holds the cost function of B[i], which is piecewise linear and
convex by the induction hypothesis, and the length P[i] of block B[i].
We first have Pr =

∑k
i=1 P[i]+ pr . If we fix Cr , Sr is also fixed because there is no idle time inside the block (Sr = Cr − Pr ).

The blocks B[1], . . . , B[k], in this order, have to be scheduled in an optimal manner within the time interval [Sr , Cr ], the sum
of the idle periods in this interval being pr . However, to build fr(Cr), we need to compute the cost of block Br for every Cr . To
achieve this goal, we first compute the optimal schedule when the sub-blocks are not constrained by Sr and Cr (see Fig. 4(a)),
then we show that the constrained optimal schedule is derived from this latter schedule.
By the induction hypothesis, the blocks B[1], . . . , B[k] have constant execution times and have convex and piecewise

linear cost functions. Therefore, they can be viewed as jobs which are executed without preemption, and have convex
piecewise linear cost functions. Thus, in order to compute the optimal schedule of these blocks without the constraint that
they are between Sr and Cr , we can apply the timing algorithm proposed by Hendel and Sourd [10]. This algorithm solves the
timing problem for a sequence of non-interruptible jobswith a convex piecewise linear cost function. The obtained schedule
provides a new block decomposition: we denote by B′

[1], . . . , B
′

[l] the maximum sets of blocks without idle time. Every block
B′
[i] has a convex and piecewise linear cost function f

′

[i] (as a sum of convex piecewise linear cost functions) and a processing
time P ′

[i] (which is the sum of the processing times of the original blocks contained in this new block). We denote by C
′

[i] its
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Fig. 4. Optimal schedules without a completion time constraint, next constrained by Sr and Cr .

Fig. 5. Cost function of a block B′
[i] and its contribution to fr .

completion time in this schedule (which corresponds to the minimum of f ′
[i]). In Fig. 4(a), B[1] and B[2] have merged into B

′

[1],
B[4] and B[5] into B′[3].
We next have to add the two constraints which force the jobs to be executed after Sr and before Cr : setting Sr forces the

leftmost blocks to be right-shifted and setting Cr forces the rightmost blocks to be left-shifted (see Fig. 4(b)). We then say a
block is critical when it is constrained by the time window [Sr , Cr ]: a block B′[i] is said to be right-critical (resp. left-critical),
when there is no idle time between B′

[i] and Cr (resp. when there is no idle time between Sr and B
′

[i]). If a block B
′

[i] is not
critical, it is said to be on time and its completion time remains C ′

[i]. On Fig. 4(b), B
′

[1] and B
′

[2] are left-critical, B
′

[3] is on time
and B′

[4] is right-critical.
We are nowable to calculate the cost of B′

[i] in function of the completion time Cr of Br . Formally, let τi = C
′

[i]+
∑l
j>i P

′

[j] and
τ ′i = C

′

[i]+ pr +
∑l
j>i P

′

[j]. Block B
′

[i] is on timewhen τi ≤ Cr ≤ τ
′

i and its cost is f
′

[i](C
′

[i]). B
′

[i] is right-criticalwhen Pr ≤ Cr < τi

and its cost is given by f ′
[i](Cr −

∑l
j>i P

′

[j]). B
′

[i] is left-criticalwhen Cr > τ ′i and its cost is given by f
′

[i](Cr −pr −
∑l
j>i P

′

[j]). Fig. 5
shows how the cost of B′

[i] in function of Cr is derived from the cost function f
′

[i](t). Roughly speaking, it simply consists of
inserting a horizontal segment of length pr at the minimum of f ′[i] and translating the function horizontally. Since C

′

[i] is the
time at which f ′

[i] is minimum, the contribution of block B
′

[i] to the computation of fr is convex and piecewise linear.
Eventually, we obtain fr by adding the contributions of all the blocks plus the earliness and tardiness costs of Jr . This sum

is therefore piecewise linear and convex. We have thus proved the induction hypothesis.
The cost functions f[1], . . . , f[k] are piecewise linear and convex and have respectively ‖f[1]‖, . . . , ‖f[k]‖ segments. In

Hendel and Sourd [10], it is proved that the non constrained schedule can be obtained in O(
∑k
j=1 ‖f[j]‖ log n). Then the

contribution of each block B′
[i] has to be computed: this contribution is derived from f

′

[i] in O(‖f
′

[i]‖) and has at most ‖f
′

[i]‖ +
1 segments. Finally, fr(t) is obtained by adding these contributions and by taking into account the earliness and tardiness
costs of job Jr . On the whole, fr(t) is computed in O(

∑k
j=1 ‖f[j]‖ log n) time and has at most

∑k
j=1 ‖f[j]‖ + k+ 2 segments.

We now want to estimate the complexity to compute f0(t). First, all the inner nodes of the tree have to be treated.
We now show by induction that the cost function stored at each node has at most 3n′− 1 segments where n′ represents

the total number of descendant nodes: each cost function stored at a leaf has (3 × 1 − 1) segments. Suppose that a node
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Table 1
Comparaison Timing (top)—CPLEX (middle)—Ratio (bottom)

n ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1.0

200 9.3 ms 6.4 ms 9.4 ms 6.2 ms 6.3 ms 7.9 ms
900.1 ms 912.3 ms 903.1 ms 915.7 ms 871.8 ms 890.7 ms
96.78 142.55 96.07 147.69 138.38 112.75

300 11.0 ms 28.2 ms 23.5 ms 29.9 ms 29.6 ms 20.2 ms
2562.2 ms 2632.9 ms 2587.5 ms 2531.3 ms 2448.6 ms 2489.2 ms
232.93 93.37 110.11 84.66 82.72 123.23

400 7.8 ms 34.3 ms 48.5 ms 45.3 ms 32.9 ms 40.9 ms
4970.1 ms 4976.6 ms 5059.4 ms 4973.3 ms 4903.1 ms 4915.6 ms
637.19 145.09 104.32 109.79 149.03 120.19

500 12.6 ms 56.4 ms 56.3 ms 53.5 ms 54.7 ms 54.6 ms
9148.3 ms 9298.5 ms 9020.4 ms 8835.9 ms 8824.9 ms 9008.1 ms
726.06 164.87 160.22 164.85 161.33 164.98

600 17.2 ms 106.3 ms 93.7 ms 93.5 ms 107.7 ms 110.8 ms
14914.1 ms 15257.8 ms 14818.7 ms 14082.7 ms 13632.7 ms 14096.7 ms
867.10 143.54 158.15 150.62 126.58 127.23

which has k sub-trees representing n′1, . . . , n
′

k nodes such that
∑k
i=1 n

′

i = n
′
− 1 and each sub-tree has less than 3n′i − 1

segments. According to the previous section, it is clear that the number of segments of fr is
∑k
i=1 3(n

′

i − 1) + 2 + k which
is lower than 3n′ − 1, which means that the computation of fr is done in O(n′ log n′) time. Therefore, the complexity for
computing all the nodes, and especially f0 is in O(n2 log n) time.

3.3. Experimental results

In this section, we compare the efficiency of the linear program (LP) and the timing algorithm presented in Section 3.2.

3.3.1. Instances
In order to solve (LP), we use CPLEX 9.1 on a 3.6 GHz PC with 3.5 Go RAM. We have randomly generated instances with

200, 300, 400, 500 and 600 jobs. The processing times are generated from the uniform distribution [1, 10]. The due dates
are generated from the uniform distribution [max(0, P(1− 3ρ/2)), P(1+ ρ/2)], where P =

∑
j∈J pj and ρ is a parameter.

When ρ is large, the due dates are scattered between 0 and P(1 + ρ/2). When ρ = 0.0, all jobs have a common due date.
ρ has the values 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Earliness and tardiness penalties are generated from the uniform distribution
[1, 5]. For each value of ρ and n, we have generated 10 instances.
The execution of the timing algorithm requires a fixed sequence. These sequences are generated randomly by inserting

one job at a time at a randomly determined position in the forest associated to the sequence.

3.3.2. Results
The timing algorithm is implemented in Java. The timing algorithm and CPLEX are executed with the same instances and

the same fixed sequences. Results are reported in Table 1. In each cell of the table, the first value is the execution time of
the timing algorithm. The second value is the execution time of CPLEX. The execution times are in milliseconds. The third
value indicates the ratio between the second and first values that indicates the speed improvement. As illustrated by Fig. 6
for instances with ρ = 0.2, we observe that the timing algorithm generally runs more than 100 times faster than CPLEX.
An interesting observation is the fact that the execution time of CPLEX for a given number of jobs is quite constant. But

executing the timing algorithm on instances with ρ = 0.0, that means instances with a common due date, the timing
algorithm runs faster than when ρ > 0.0. This can be explained by the fact that the optimal schedule contains no idle time.

4. Neighborhood search

We now consider the general problem and the aim of this section is to find good sequences for S1, C1, . . . , Sn, Cn that
lead to near optimal solutions. The solution space corresponds to the set of valid sequences defined in Section 3.1. We first
observe that if the set of feasible solutions is defined as in Section 2, its size would be (2n)!

2n . With the dominance rules of

Properties 1 and 2, the size is significantly reduced: since there are Cn =

(
2n
n

)
n+1 well parenthesized words (Cn is the number

of Catalan) and n!ways to assign the n jobs to the n pairs of parentheses, the size of the solution set is ‘‘only’’ n!Cn = (2n)!
(n+1)! .

However, this set is still too large to be completely enumerated, and thus this section is devoted to a local search.
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Fig. 6. Comparison of the Timing algorithm with CPLEX (ρ = 0.2).

4.1. Neighborhood definition

Local Search methods are known to provide good results for just-in-time scheduling problems [18]. In this section, we
propose a neighborhood search for the preemptive problem. The considered neighborhood is based on the data structure
introduced in Section 3.2. An iterated improvement (or descent) method is then implemented and the experimental results
are finally reported.
We only define this neighborhood on valid sequences. For a given solution, we execute two operations to construct the

neighborhood. The first operation is a SWAP operation. This operation consists of exchanging two jobs Ji and Jj in σ , that is Si
is swapped with Sj and Ci is swapped with Cj. In the forest associated to σ , it means that node i is swapped with node j. The
second operation is an INSERT operation. The basic idea is to delete, for each job Ji, the corresponding events Si and Ci from
σ and to insert them again at new positions. These new positions are well defined in the tree representation: 4 positions
are considered for each job Ji:

• around job Jj : . . . Si Sj . . . Cj Ci . . .
• within job Jj : . . . Sj Si . . . Ci Cj . . .
• before job Jj : . . . Si Ci Sj . . . Cj . . .
• after job Jj : . . . Sj . . . Cj Si Ci . . . .

The described modifications can easily be interpreted in the tree representation. Node i which corresponds to job Ji is
deleted from the tree. Then, for each job Jj, node i is reinserted as follows:

• node i is inserted between j and its father
• node i is inserted as son of node j and the sons if j become the son of node i
• node i is inserted as left brother of node j
• node i is inserted as right brother of node j.

The definition of the neighborhood ensures that the parenthesis structure is preserved. For each sequence of the
neighborhood, we apply the timing algorithm presented in Section 3.2. The size of the neighborhood is at most 5n2. If we
apply the timing algorithm of Section 3.2 to each sequence in the neighborhood, the overall complexity is in O(n4 log(n)). It
should be noted that some methods may be developed to avoid computing from scratch the timing of each sequence in the
neighborhood.We refer to Hendel and Sourd [10] for efficient neighborhood search for the one-machine earliness–tardiness
scheduling problem without preemption.

4.2. Experimental results

4.2.1. Algorithms
The goal of this section is to test the efficiency of our neighborhood, and to detect the classes of instances that are harder

to solve. Therefore, we limit our study to an iterated improvement procedure. Clearly, more elaborated meta-heuristics
would improve the quality of the solutions at the price of longer computation times but experiments in Section 4.2.3 show
that our simple procedure gives satisfactory results.
Our algorithm has two steps. First, an initial non-preemptive solution is obtained by executing an iterated descent for the

non-preemptive problem, based on the neighborhood defined in Hendel and Sourd [9]. This choice is motivated by the fact
that this heuristic is fast, and we observed that there are in general few preemptions in optimal solutions. Then, a descent
based on the neighborhood defined in Section 4.1 is launched.
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Table 2
Quality of solution and execution times after five descents

n 30 60 90 Average

Best fit 8.19% 5.46% 4.81% 6.15%
6.1 s 94.6 s 554.6 s

First fit 8.46% 5.49% 4.69% 6.22%
3.3 s 38.6 s 181.5 s

Fig. 7. Improvement of the quality of the solution with the number of iterations.

In our experimental results, we compare the ‘‘best-fit’’ and the ‘‘first-fit’’ implementations of the neighborhood search.
In the best-fit method, the best sequence is chosen once the entire neighborhood is explored. This best sequence will be
used for the next iteration. In the first-fit method, a new iteration is started as soon as an improving solution is found.
To improve the execution time for the ‘‘first fit’’ implementation, the order in which neighbors are considered is

important. The INSERT neighborhood is explored first. We define a heuristic distance between each pair of jobs Ji and Jj
and, in the nondecreasing order of these distances, we try to reinsert Ji into the four positions around Jj (and of course, in
the same time, to reinsert Jj around Ji). The SWAP neighborhood is then similarly explored.

4.2.2. Instances
The generation scheme of these instances is based on those of the literature [11,16]. There are no release dates specified.

We tested instances with n = 30, 60, 90 jobs. The processing times are generated from the uniform distribution [10, 100)
and the earliness–tardiness penalties are drawn from the uniform distribution [1, 5]. The due date of each job is drawn from
the uniform distribution [dmin, dmin + ρP]where dmin = max(0, P(τ − ρ/2)) and P =

∑n
j=1 pj. The two parameters τ and

ρ are, respectively, the tardiness and range parameters. These instances are available online.1

4.2.3. Results
The neighborhood search was implemented in Java, and the code was run on a 3.6 GHz PC with 3.5Gb RAM. The main

conclusion is that execution times are satisfactory, since instances with up to 90 jobs can be solved in a reasonable time.
Table 2 presents the average execution times for five executions in seconds ordered by the size of the instances. This
execution time includes the computation of the initial sequence. The best-fit and first-fit algorithms are compared. We
observe the first-fit version is at least 50% faster than the best-fit version.
To evaluate the quality of a solution, we compare its value to the lower bound presented in Section 5.2. We run the

descent five times for each instance. The deviations are presented in Table 2. For the best fit version, we observe an average
deviation of 6.15%. The first fit version provides an average deviation of 6.22%. We observe that the two versions provide
results of equivalent quality, while the first fit method is significantly faster. Since the first step of the local search starts
with a random sequence, multiple executions of the neighborhood search can improve the upper bound (and therefore the
deviation). We executed the first fit version ten times for each instance and observed the deviation between the best known
preemptive solution and the lower bound. For example, this deviation improves from 5.61% to 4.63% for instances with 90
jobs. Fig. 7 shows the improvements for jobs with n = 30, 60, 90 jobs and with up to ten iterations.
To determine the instances that are difficult to solve, that means the deviation between the lower bound and the result

of the local search algorithm is high, the instances are sorted according to τ and ρ. Table 3 shows results of instances with

1 http://www-poleia.lip6.fr/~sourd/project/et/sks30-90.zip.

http://www-poleia.lip6.fr/~sourd/project/et/sks30-90.zip
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Table 3
Variation of quality for 60 job instances for five executions executed with the first fit version

τ τ = 0.2 τ = 0.5 τ = 0.8

Dev Heur/LB 4.52% 6.28% 5.69%
Dev NP/Heur 0.6% 1.15% 1.12%
Dev NP/LB 5.45% 8.05% 7.34%
CPU Time 5.14 s 7.9 s 10.14 s

ρ ρ = 0.2 ρ = 0.5 ρ = 0.8

Dev Heur/LB 3.09% 4.72% 8.67%
Dev NP/Heur 0.17% 0.59% 2.11%
Dev NP/LB 3.37% 5.58% 11.89%
CPU Time 3.09 s 4.72 s 8.67 s

n = 60 jobs obtained with the first fit version. Each instance is executed five times. For each value of τ and ρ four values
are displayed:

(1) the deviation between the lower bound and the result of the local search heuristic (Dev Heur/LB),
(2) the deviation between the non-preemptive solution and the local search heuristic which expresses a possible
improvement of the solution by allowing preemption (Dev NP/Heur),

(3) the deviation between the non-preemptive solution and the lower bound (Dev NP/LB),
(4) the average computation time of the local search algorithm (CPU Time).
The value of τ does not influence the quality of the solution, but the value of ρ does. The deviation between the non-

preemptive solution and the lower bound is tighter for smaller ρ, and we observe a less important improvement between
the non-preemptive upper bound and the preemptive solution. On the other hand, when ρ is large, the difference between
the upper bound and the lower bound is more important and preemption is able to significantly improve the solution. On
average, preemption improves non-preemptive solution by 2%. When comparing the computation times, we remark that
instances with larger τ and ρ lead to longer computation times.

5. Branch and bound algorithm

In this section, we present a branch and bound algorithm, which allows one to compute exact solutions for simple
instances. First we present the branching scheme and briefly discuss the upper bound and the dominance rules. In
Section 5.2, we give special attention to the lower bound. In the last subsection we report experimental results.

5.1. Branching scheme

Let σ be a partial sequence where k jobs have already been inserted, that is σ is a valid sequence for these k jobs. At each
node, an unscheduled job is selected, and its start and completion times are inserted at every possible positions into the
existing sequence σ . Only those insertions are considered which satisfy the Property 1 of nested sequences. Heuristically,
the unscheduled job – say Jk? – with a minimal due date is selected and we first insert Ck? at the rightmost position in σ
and then we insert Sk? at the rightmost position such that the new sequence is valid. Clearly, O(k2) branches are generated
(see Fig. 8).
The efficiency of the branch-and-bound algorithm mainly relies on the lower bound presented in the next section. The

upper bound used with the lower bound to cut nodes is the one provided by the solution of the neighborhood search
presented in Section 4. We only compute this upper bound at the root node but it is update when a better feasible schedule
is found during the search.

5.2. A lower bound

In this section, we propose a lower bound for JIT-POMPwhich is an adaptation of the ones proposed by Sourd and Kedad-
Sidhoum [16] and independently by Bülbül et al. [4] for the non-preemptive case. The main idea of the lower bound is to
compute a minimum cost assignment: each job Ji is divided into pi operations oi1, oi2, . . . , oipi which have unit execution
times. These operations are to be assigned to T distinct time slots [t − 1, t) where 1 ≤ t ≤ T and T is the horizon of the
schedule. The assignment costs are assumed to be operation-independent: we introduce for each job and each time slot an
assignment cost cit , whose value will be defined later. The problem can then be expressed as a transportation problem:

(TP) : min
n∑
i=1

T∑
t=1

citxit

s.t.
T∑
t=1

xit = pi, ∀i = 1, . . . , n
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Fig. 8. Descendant partial sequences of σ = S1C1S2S3C3S4C4C2 .

n∑
j=1

xit ≤ 1, ∀t = 1, . . . , T

xit ≥ 0, ∀i = 1, . . . , n and ∀t = 1, . . . , T .

Since the time complexity depends on the scheduling horizon T , it has to be finite and as small as possible. A valid value for
T is the makespan of the optimal schedule of 1|rj, pmtn|Cmax where rj = dsj . This problem is solved in polynomial time using
Jackson’s rule. We can easily prove that an optimal schedule for JIT-POMP completes before T .
To produce a valid lower bound, the assignment costs cit of the above described transportation problem have to verify

some additional sufficient conditions.

Property 3. A sufficient condition for (TP) to provide a lower bound for JIT-POMP is to satisfy the following conditions:

(1) For each job Ji, the assignment costs of the operations are non-increasing between the interval [1, dci ] and non-decreasing
between the interval [dci + 1, T ].

(2) The costs cit are nonnegative.
(3) For each job Ji and for each time point t, we have∑

t<t ′≤t+pi

cit ′ ≤ αimax(0, (dsi − t))+ βimax(0, ((t + pi)− d
c
i )).

Proof. For any feasible preemptive schedule, we can define a feasible (non-optimal) solution to (TP) by setting xit = 1 if
and only if Ji is in process in the time slot [t − 1, t). Proving that

∑
it citxit is not greater than the cost of the corresponding

schedule is sufficient to prove the validity of the lower bound. We prove a slightly stronger result that is, for any job Ji,∑dci
t=1 citxit ≤ αiEi and

∑T
t=dci+1

citxit ≤ βiTi.

To prove the first inequality, we first observe that condition (3)with t = dsi gives
∑dci
t ′=dsi+1

cit ′ ≤ 0 and since condition (2)

prohibits negative values, the strict equality
∑dci
t ′=dsi+1

cit ′ = 0 holds. From condition (2), we also have that cit = 0 for

t = dsi + 1, . . . , d
c
i . Therefore, we only have to prove that

∑dsi
t=1 citxit ≤ αiEi. We define ni =

∑dsi
t=1 xit be the number of

operations assigned before dsi in (TP). If ni = 0, then the inequality is obviously satisfied. Otherwise, we have Si < d
s
i . We

have
∑dsi
t=1 citxit =

∑dsi
t=Si+1

citxit ≤
∑Si+ni
t=Si+1

cit ≤
∑Si+pi
t=Si+1

cit . The first inequality comes from condition (1) and the second

inequality comes from condition (2). Finally, deriving condition (3) with t = Si gives that
∑Si+pi
t=Si+1

cit ≤ αiEi, which proves

that
∑dci
t=1 citxit ≤ αiEi. The proof of the other inequality is symmetrical. �

For the non-preemptive problem, condition (3) alone is sufficient (and necessary) for the validity of the (TP) lower bound.
The following example shows that conditions (1) and (2) are indeed necessary in the preemptive case. Let us consider two
jobs J1 and J2 such that (p1 = 2, d1 = 5, α1 = 2, β1 = 100) and (p2 = 3, d2 = 4, α2 = 100, β2 = 100). The assignment
costs of job J1 satisfy condition (3) but violate (1) and (2). They are defined as follows:

c11 = 6 c12 = 0 c13 = 4 c14 = −2 c15 = 2 c1i = 98, i > 5
c21 = 100 c22 = 0 c23 = 0 c24 = 0 c25 = 100 c1i = 100, i > 5
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Fig. 9. The value of the schedule is 6, but the minimal matching has a value of 8.

As illustrated by Fig. 9, the value of the minimal matching is 8, whereas the value of the optimal schedule is 6, which
clearly proves that such assignment costs do not give a valid lower bound. The assignment costs proposed by Sourd and
Kedad-Sidhoum [16] and Bülbül et al. [4] both satisfy conditions (1) and (3) but the cost proposed in the latter paper may
be negative. Therefore, we will consider the costs of Sourd and Kedad-Sidhoum which are given by

c ′jt =


αj

⌊dcj − t
pj

⌋
if t ≤ dcj ,

βj

⌈ t − dcj
pj

⌉
if t > dcj .

(6)

This lower bound provides good results for the non-preemptive case. Since the optimum of JIT-POMP is smaller than the
optimum of the non-preemptive case, the gap between the lower bound and the optimum is even smaller.
To compute the lower bound, Sourd and Kedad-Sidhoum [16] proposed an O(n2T ) algorithm which is based on the

Hungarian algorithm.
This lower bound can be incorporated into the branch and bound algorithm to compute a lower bound for a partially

fixed sequence. The cost of the partial sequence can be computed with the timing algorithm presented in Section 3. This is,
of course, a lower bound for any extended sequence derived from this partial sequence. But we can reinforce it by adding the
value of (TP) for all the unscheduled jobs. As jobs are inserted in a fixed order (the non-decreasing order of their due dates),
we know that nodes that are at the same height in the branching tree always contain the same subset of jobs. Therefore,
only n instances of (TP) are useful, namely the instances (TPi) (1 ≤ i ≤ n) that are the restrictions of (TP) for the n − i jobs
with largest due dates. Thus we can pre-solve them before the start of the branch-and-bound search.
This lower bound independently considers scheduled and non-scheduled jobs, which is a very strong relaxation. We

have tried to adapt the assignment costs to take into account the partial sequence. In such an approach, the transportation
problem has to be solved at each node, which is very time consuming. Unfortunately, our experimental tests showed that
the improvement of the lower bound was not good enough with respect to the computation times.

5.3. Experimental results

This branch and bound algorithm has been implemented in Java. Instances with n = 10, 12, 14, 16, 18, 20 jobs were
generated. The processing times are drawn from the uniform distribution [1, 20] and the earliness and tardiness penalties
are in [1, 5]. The due dates are chosen from the uniform distribution [P − 3ρP/2, P + ρP/2] where P =

∑n
i=1 pi and

ρ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. Five instances were generated for each value of n and ρ.
Table 4 shows the details of the execution. For each pair of ρ and n, four values are displayed:

(1) the deviation between the upper bound and the optimal preemptive solution (Dev UpperNP/OptP),
(2) the deviation between the optimal non-preemptive solution and the optimal preemptive solution (Dev OptNP/OptP),
(3) the deviation between the optimal preemptive solution and the lower bound (Dev OptP/LB),
(4) the average computation time of the branching procedure in seconds (computation of the upper bound is not taken into
account) (CPU Time).
The possibility of solving instances in a reasonable time clearly depends on the difficulty of the instance. When the due

dates are tighter, the algorithm takesmore time. On the one hand, when ρ = 1.0, instances with up to 20 jobs can be solved.
On the other hand, when ρ = 0.2, then even small instances with n = 12 jobs need more than 100 min to get solved. We
remark that the variance of the CPU times are large even for the same class of instances. For example, the average CPU time
for ρ = 1.0 and n = 20 is 6246.58 s. But four of the five instances have been solved in less than 130 s.
93% of the tested instances admit an optimal preemptive solution that is strictly better than the non-preemptive

optimum. The overall improvement between the optimal non preemptive solution and the optimal preemptive solution
is 9.21%. For 68% of the tested instances the upper bound provides the optimal solution. The overall deviation between the
preemptive upper bound and the optimal preemptive solution is 1.48%. It shows that our simple iterative improvement
procedure is very efficient.
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Table 4
Results for branch and bound algorithm

Number of jobs 10 12 14 16 18 20

ρ = 0.2 Dev UpperP/OptP 1.65% 1.84%
Dev OptNP/OptP 2.26% 2.6%
Dev OptP/LB 5.95% 6.67%
CPU Time 279.59 s 6151.85 s

ρ = 0.4 Dev UpperP/OptP 3.68% 1.6% 1.33%
Dev OptNP/OptP 7.29% 4.25% 12.12%
Dev OptP/LB 7.02% 7.03% 6.82%
CPU Time 2.74 s 121.08 s 139.73 s

ρ = 0.6 Dev UpperP/OptP 0% 0% 1.32% 0.77% 0% 0%
Dev OptNP/OptP 12.02% 10.61% 13.07% 8.63% 6.97% 7.67%
Dev OptP/LB 10.93% 9.41% 11.63% 12.02% 6.68% 7.74%
CPU Time 2.61 s 0.6 s 2.84 s 4.89 s 271.18 s 56.61 s

ρ = 0.8 Dev UpperP/OptP 1.25% 0% 2.34% 0.74% 1.47% 4.11%
Dev OptNP/OptP 10.68% 14.59% 6.13% 8.03% 8.53% 8.78%
Dev OptP/LB 6.82% 5.87% 1.62% 8.8% 9.98% 9.34%
CPU Time 3.75 s 6.61 s 3.09 s 6.08 s 66.12 s 29.34 s

ρ = 1.0 Dev UpperP/OptP 0% 4.19% 3.39% 0% 4.02% 0.59%
Dev OptNP/OptP 14.23% 11.63% 10.83% 11.71% 9.31% 7.44%
Dev OptP/LB 7.4% 10.72% 12.85% 8.19% 8.46% 6.63%
CPU Time 0.03 s 0.35 s 1.54 s 2.06 s 269.02 s 6246.58 s

6. Conclusion

We have introduced a new earliness–tardiness problem, in order to deal with preemption. We have proposed a
polynomial algorithm to solve the essential timing sub-problem. Then, we have shown the interest of this algorithm in
solving the general problem: indeed, our descent algorithm finds near-optimal feasible schedules.
An interesting perspective would consist in finding a more compact encoding of the feasible schedule, in order to obtain

both a faster timing problem and a smaller solution set. Such an approach would require new dominance properties on the
sequences. In view of practical applications, we should consider a more precise model for preemption in order to penalize
the number of job interruptions and to introduce additional ‘‘launch’’ times when a job is restarted.
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