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Abstract

We consider the problem of partitioning a set of positive integers values into a given number of subsets, each having
an associated cardinality limit, so that the maximum sum of values in a subset is minimized, and the number of values in
each subset does not exceed the corresponding limit. The problem is related to scheduling and bin packing problems.
We give combinatorial lower bounds, reduction criteria, constructive heuristics, a scatter search approach, and a lower
bound based on column generation. The outcome of extensive computational experiments is presented.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Given n items Ij (j = 1 , . . . ,n), each characterized by an integer positive weight wj, and m positive integers
ki (i = 1 , . . . ,m) with m < n 6

Pm
i¼1ki, the ki-Partitioning Problem (ki-PP) is to partition the items into m

subsets S1 , . . . ,Sm so that jSij 6 ki (i = 1 , . . . ,m) and the maximum total weight of a subset is a minimum.
The problem was introduced by Babel et al. [1] and finds possible applications, e.g., in Flexible Manufac-
turing Systems. Assume that we have to execute a set of operations of n different types, and that the oper-
ations of type j, requiring in total a time wj, must be assigned to the same cell: If the capacity of the specific
tool magazine of each cell imposes a limit on the number of types of operation the cell can perform, then
ki-PP models the problem of completing the process in minimum total time.
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A famous scheduling problem (usually denoted as PkCmax) asks for assigning n jobs, each having an inte-
ger positive processing time wj, to m identical parallel machines Mi (i = 1 , . . . ,m), each of which can process
at most one job at a time, so as to minimize their total completion time (makespan). By associating items to
jobs and subsets to machines, it is clear that ki-PP is the generalization of PkCmax arising when an addi-
tional constraint imposes an upper bound ki on the number of jobs that can be processed by machine
Mi. Since PkCmax is known to be strongly NP-hard, the same holds for ki-PP.

Another special case of ki-PP, that also generalizes PkCmax, is the Pj# 6 kjCmax scheduling problem, in
which an identical limit k is imposed on the maximum number of jobs that can be assigned to any machine.
Upper and lower bounds for this problem have been developed by Babel et al. [1], Dell�Amico and Martello
[6] and Dell�Amico et al. [4].

The Bin Packing Problem (BPP) too is related to ki-PP. Here we are given n items, each having an asso-
ciated integer positive weight wj, and an unlimited number of identical containers (bins) of capacity c: The
problem is to assign all items to the minimum number of bins so that the total weight in each bin does not
exceed the capacity. Problem BPP can be seen as a ‘‘dual’’ of PkCmax: By determining the minimum c value
for which an m-bin BPP solution exists, we also solve the corresponding PkCmax problem. By introducing a
limit k on the number of items that can be assigned to any bin, we similarly obtain a dual of Pj# 6 kjCmax.
In order to obtain a dual of ki-PP, we can impose the given limits ki (i = 1 , . . . ,m) to the first m bins, and a
limit equal to one to all other bins.

The dual relations above have been used to obtain heuristic algorithms and lower bounds for
PkCmax (Coffman et al. [2], Hochbaum and Shmoys [16], Dell�Amico and Martello [5]) and Pj# 6 kjCmax

(Dell�Amico and Martello [6]).
In this paper we study upper and lower bounds for ki-PP, either obtained by generalizing algorithms

from the literature so as to handle the cardinality constraints, or originally developed for the considered
problem. In Section 2 we present lower bounds and reduction criteria. In Section 3 we examine generaliza-
tions of heuristic algorithms and of a scatter search approach. In Section 4 we propose a lower bound based
on a column generation approach, that makes use of the above mentioned relations with BPP. The effec-
tiveness of the proposed approaches is computationally analyzed in Section 5 through extensive computa-
tional experiments on randomly generated data sets.

Without loss of generality, we will assume in the following that items Ij are sorted by non-increasing wj

value, and subsets Si by non-decreasing ki value.
2. Lower bounds and reduction criteria

By introducing binary variables xij (i = 1 , . . . ,m; j = 1 , . . . ,n) taking the value 1 iff item Ij is assigned to
subset Si, an ILP model of ki-PP can be written as
min z ð1ÞXn
j¼1

wjxij 6 z ði ¼ 1; . . . ;mÞ; ð2Þ

Xm
i¼1

xij ¼ 1 ðj ¼ 1; . . . ; nÞ; ð3Þ

Xn
j¼1

xij 6 ki ði ¼ 1; . . . ;mÞ; ð4Þ

xij 2 f0; 1g ði ¼ 1; . . . ;m; j ¼ 1; . . . ; nÞ; ð5Þ
where variable z represents the maximum weight of a subset.
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In the following we will denote by
free ¼
Xm
i¼1

ki � n ð6Þ
the total number of unused feasible assignments to the subsets (with respect to the cardinality constraints)
in any solution. Given a complete or partial solution x to (1)–(5),
W i ¼
Xn
j¼1

wjxij ði ¼ 1; . . . ;mÞ; ð7Þ

cardi ¼
Xn
j¼1

xij ði ¼ 1; . . . ;mÞ ð8Þ
will denote, respectively, the total weight of the items currently assigned to subset Si, and their number. In
the next section we present lower bounds and reduction algorithms based on the combinatorial structure of
the problem. In our approach these computations, together with those of the heuristics of Section 3.1, are
performed at the beginning of the scatter search approach described in Section 3.2. If an optimal solution is
not obtained, the bound is improved through a computationally heavier approach, based on column gen-
eration, described later in Section 4.
2.1. Combinatorial lower bounds

Since Pj# 6 kjCmax is a special case of ki-PP, any lower bound for the former problem with k set to km
(the largest cardinality limit) is also valid for the latter. We will denote by
Lj#6kmj ¼ maxðLk
3; LBKK; LHSÞ ð9Þ
the best among three bounds from the literature, used in Dell�Amico et al. [4] for Pj# 6 kjCmax. These
bounds will not be described here for the sake of conciseness: The complete description can be found in
[4] and in Dell�Amico and Martello [6], Babel et al. [1] and Hochbaum and Schmoys [16].

The following lower bounds explicitly take into account cardinality constraints (4).

Theorem 1. Given any instance of ki-PP, the value
L1 ¼ w1 þ
Xn

j¼n�k1þfreeþ2

wj ð10Þ
is a valid lower bound on the optimal solution value.

Proof. Assume by simplicity that k1 � free > 1, and consider the item with maximum weight w1. By (6), in
any feasible solution such item will be assigned to a subset containing no less than k1 � free � 1 other
items. The thesis follows, since in (10) it is assumed that the other items in such subset are the smallest ones.
(If k1 � free 6 1, note that a summation

Pb
j¼awj is considered to produce the value zero if b < a.) h

Theorem 2. Given any instance of ki-PP, the value
L2 ¼ max
‘¼1;...;m

Xn
j¼n�kð‘Þþfreeþ1

wj=‘

& ’( )
; ð11Þ
where kð‘Þ ¼
Pm

i¼m�‘þ1ki, is a valid lower bound on the optimal solution value.
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Proof. Let ‘ be any integer between 1 and m, and consider the last ‘ subsets. Assume by simplicity that free
is strictly smaller than k(‘), the sum of the cardinality limits for such subsets. This implies that, even if the
other subsets contain the maximum possible number of items, the last ‘ subsets will contain, in total, no less
than k(‘) � free items. In the best case: (i) These items will be the smallest ones, and (ii) they will be par-
titioned, among the last ‘ subsets, so as to produce identical total weights. Hence d

Pn
j¼n�kð‘Þþfreeþ1wj=‘e is a

valid lower bound for any ‘ value, and the validity of (11) follows. h

If the summation in (10) has zero value, L1 gives the obvious PkCmax bound w1. Another immediate lower
bound that comes from PkCmax (hence, does not take into account the cardinality constraints) but is not
dominated by L1 nor by L2 is
L3 ¼ max wm þ wmþ1;
Xn
j¼1

wj=m

& ’ !
: ð12Þ
Our overall combinatorial bound is thus
LC ¼ maxðLj#6kmj; L1; L2; L3Þ: ð13Þ
2.2. Reduction criteria

Remind that the items are sorted by non-increasing wj value, and the subsets by non-decreasing ki value,
and observe that, if k1 = 1, there exists an optimal solution in which S1 = {I1}. This reduction process can
be iterated, as shown in Fig. 1.

Reduction1 can be performed before any other computation. Once a lower bound L (e.g., LC, see (13))
has been computed, a more powerful reduction can be obtained, based on the following considerations.
First observe that if the total weight of the largest k1 items does not exceed L, then there exists an optimal
solution in which S1 ¼ fI1; . . . ; Ik1g. This consideration can be extended to the first ~m, say, subsets and the
first

P~m
i¼1ki items: If we can obtain a feasible partial solution of value not exceeding L, then these items can

be assigned to these subsets as in the solution found, and both subsets and items can be removed from the
instance. Again, the process can be iterated, as shown in Fig. 2.

In our implementation the stopping condition is (~z > L and lastI P n/2). When the sub-instance includes
just one subset, it can be trivially solved. The solution of sub-instances with more than one subset is ob-
tained through the heuristics of the next section. Whenever Reduction2 manages to reduce the current in-
stance, the lower bound is re-computed: If it increases, the procedure is re-executed.
3. Heuristic algorithms

Problem PkCmax has been attacked with several constructive approximation algorithms and with some
metaheuristic approaches (see, e.g., the surveys by Lawler et al. [20], Hoogeveen et al. [17] and Mokotoff
[24]). The constructive heuristics can be subdivided into the following three main classes.
Fig. 1. Reduction1.
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• List scheduler: After sorting the jobs according to a given rule, the algorithm considers one job at a
time and assigns it to the machine Mi with minimum current load, without introducing idle times. For
PkCmax one of the more effective sorting rules is the so called Longest Processing Time (LPT) introduced
by Graham [15], that orders the jobs by non-increasing processing times. The probabilistic analysis in Coff-
man et al. [3] shows that, under certain conditions, the solution produced by LPT is asymptotically optimal.

• Dual algorithms: These methods exploit the ‘‘duality’’ with BPP outlined in Section 1, using two pos-
sible strategies. Both strategies start with a tentative solution value ~c and solve the corresponding BPP in-
stance with bin capacity ~c, by means of some heuristic. If the solution uses more that m bins then: (i) The
first strategy re-assigns to bins 1 , . . . ,m the items assigned to bins m + 1, m + 2 , . . . using some greedy
method; (ii) the second strategy finds, through binary search, the smallest ~c value for which the induced
BPP instance uses no more than m bins. An example of dual approach implementing the first strategy is
the Multi Subset (MS) method by Dell�Amico and Martello [5], while methods using the second strategy
are the Multi Fit algorithm (MF) proposed by Coffman et al. [2], and the �-dual method by Hochbaum
and Shmoys [16].

• Mixed algorithms: The main idea of these methods is to combine two or more solution techniques, by
switching from one to another during the construction of the solution. The rationale behind these methods
is to try and catch the best of each basic algorithm. For example, it is well known that LPT is able to con-
struct partial solutions with values of the machine loads very close to each other, but it fails in this attempt
when assigning the last jobs. A mixed algorithm tries to overcome this problem by using LPT for assigning
the first, say, n̂ < n jobs, then completes the solution using another rule (see, e.g., Mokotoff et al. [25]).

The solution obtained with one of the methods above can be improved through re-optimization and
local search. It is quite surprising that several metaheuristic approaches can be found in the literature
for variants of PkCmax arising, e.g., when there are sequence depending setups, or the objective function
is the sum of the completion times of the last job of each machine, but very few algorithms have been pro-
posed for the pure PkCmax problem. Finn and Horowitz [9] introduced a polynomial improvement
algorithm called 0/1 interchange. Hübscher and Glover [18] proposed a tabu search algorithm, Fatemi-
Ghomi and Jolai-Ghazvini [7] a local search approach based on 2-exchanges. Mendes et al. [23] compared
a tabu search approach with a memetic algorithm, while Frangioni et al. [8] presented a local search
algorithm based on multiple exchanges within large neighborhoods.

For Pj# 6 kjCmax, the only metaheuristic in the literature is, to our knowledge, the scatter search
algorithm proposed by Dell�Amico et al. [4].
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In the next sections we describe constructive heuristics and a scatter search algorithm for ki-PP, that were
obtained by generalizing constructive heuristics for PkCmax and the scatter search algorithm for
Pj# 6 kjCmax. For the constructive heuristics the modifications are aimed to handle the cardinality con-
straints, while for the scatter search they consist in generalizing the simpler cardinality constraints of
Pj# 6 kjCmax to our case. We give in the following a synthetical description of the resulting ki-PP
algorithms.
3.1. Constructive heuristics

We obtained heuristics for ki-PP by generalizing methods for PkCmax. The following algorithms were
obtained (see (7) and (8) for the definitions of Wi and cardi).

LPT-ki: This is an implementation of the LPT list scheduler, with an additional condition imposing that
no more than ki items are assigned to subset Si. The items are initially sorted by non-increasing wj values.
At each iteration, the next item is assigned to the subset Si with minimum total weight Wi among those
satisfying cardi < ki (breaking ties by lower ki value).

GH-ki: This is an iterative mixed approach derived from the Gap Heuristics by Mokotoff et al. [25] for
PkCmax. At each iteration, a procedure that builds up a complete solution is executed with different values
of a parameter k. This procedure starts by assigning the items to the m subsets with the LPT-ki method but,
as soon as the minimum weight of a subset reaches k, it switches to a different rule: Assign the current item
to the subset Si, among those with cardi < ki, for which the resulting total weight Wi is as close as possible
to lower bound LC. The best solution obtained is finally selected.

MS1-ki: The method is obtained from the dual algorithm MS by Dell�Amico and Martello [5]. In the first
phase, this algorithm approximately solves the associated BPP instance by filling one bin at a time through
the solution of an associated Subset Sum Problem (SSP): Given n positive integers and a single bin of capac-
ity c, find the subset of integers whose sum is closest to, without exceeding, c. To adapt MS to ki-PP it is
then enough to modify the procedure used to define each subset Si (bin) so that it only produces solutions
satisfying jSij 6 ki. The procedure used in our implementation was approximation algorithm G2 by Mar-
tello and Toth [21], that builds up an SSP solution by selecting one item at a time: It is then easy to modify
it so as to handle the additional constraint. In the second phase, MS uses a greedy method to re-assign the
items (if any) not inserted in the first m bins, and again the cardinality constraint is easily embedded.

MS2-ki: It differs from MS1-ki only in the method used to solve the SSP instances, that is here the
simpler and faster algorithm G1 in [21].

MS3-ki: This is a hybrid branch-and-bound/MS method. We start with a branch-decision tree truncated
at level ‘. At each level l 6 ‘ we assign item Il, in turn, to all already initialized subsets, and (possibly) to a
new one, provided the corresponding cardinality constraints are not violated: Each node has then an asso-
ciated partial solution consisting of the first l items. We consider all the partial solutions of level ‘: Each of
them is completed by applying MS1-ki and MS2-ki to the remaining n � ‘ unassigned items, and the best
solution is finally selected. In our implementation we set ‘ = 5.

MS-ki: Execute MS1-ki, MS2-ki and MS3-ki, and select the best result.
3.2. Scatter search

Scatter search is a metaheuristic technique whose founding ideas go back to the seminal works of Glover
[10,11] in the early 1960s. Apparently these ideas were neglected for more than 20 years and resumed in
Glover [12], where scatter search was presented for the first time. In 1980s and 1990s the method was suc-
cessfully applied to solve a large set of problems. The basic idea (see Glover [13]) can be outlined in the
following three steps:
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1. generate a starting set of solutions (the reference set), possibly using problem dependent heuristics;
2. create new solutions through combinations of subsets of the current reference solutions;
3. extract a collection of the best solutions created in Step 2 and iterate on Step 2, unless a stopping crite-

rion holds.

This basic procedure has been improved in several ways. First of all, the reference set is usually divided
into two subsets: The first one containing solutions with a high ‘‘quality’’, the second one containing solu-
tions very ‘‘diverse’’ from the others. A second refinement consists in applying some re-optimization algo-
rithm to each solution before deciding if it has to be stored in the reference set. Other improvements
concern the methods used to generate the starting solutions, to combine the solutions and to update the
reference set. We based our implementation on a classical template (see Laguna [19], Glover et al. [14]) that
was already used in Dell�Amico et al. [4] for Pj# 6 kjCmax, summarized in Fig. 3.

On the basis of the outcome of extensive computational experiments, we set the size of the initial set T to
100, while the reference set R has size r = q + d = 18 (with q = 10 and d = 8). In the reference set we main-
tain separated the high-quality solutions (first q solutions) and the high-diversity solutions (last d solutions).
Solutions 1, . . .,q are ordered by decreasing quality, while solutions q + 1 , . . . , r are ordered by increasing
diversity (i.e., the best solution is the first one and the most diverse is the last one).

In the following we give some details on the implementation of fitness calculation, diversity evaluation,
intensification, subset generation, combination method, reference set update and stopping criteria.

Fitness. Let z(s) be the value of a solution s. The corresponding fitness is defined as f(s) = z(s)/(z(s) � L),
where L denotes the best lower bound value obtained so far. We have chosen this function instead of the
pure solution value in order to obtain a less flat search space in which differences are highlighted, so the
search can be directed towards more promising areas.

Diversity. Given two solutions, s and t, and an item, Ij, we compute
djðs; tÞ ¼
1 if Ij is assigned to the same subset in solutions s and t

0 otherwise

�
ð14Þ
and establish the diversity of s from the solutions in R as the minimum ‘‘distance’’ of s from a solution of
the set, defined as
Fig. 3. Scatter search.



732 M. Dell’Amico et al. / European Journal of Operational Research 171 (2006) 725–742
dðsÞ ¼ min
t2R

Xs
j¼1

djðs; tÞ
( )

ð15Þ
with s ¼ minð2m; nÞ, i.e., only the items with largest weight are relevant in this evaluation.

Intensification. Given a solution s, we apply a sequence of re-optimization procedures obtained by
generalizing those introduced in Dell�Amico et al. [4] for Pj# 6 kjCmax.

Procedure MOVE considers one subset Si at a time and tries to move large items from Si to other sub-
sets. It starts with the largest item, say Ij, currently assigned to Si and looks for the first subset Sh (h5i) such
that cardh < kh and Wh + wj < Wi. If such Sh exists, item Ij is moved to Sh and the procedure is restarted;
otherwise the next largest item of Si is selected and the search is iterated.

Procedure EXCHANGE works as MOVE, with just one difference: The selected large item Ij 2 Si is not
just moved to Sh but exchanged with an item Ig 2 Sh, provided that wg < wj and Wh � wg + wj < Wi.

In the special case n ¼
Pm

i¼1ki, two additional re-optimization procedures, MIX1 and MIX2, are applied.
MIX1 builds a new partial solution by initially assigning the first �n (�n < n) items as in the given solution,
and then considering the subsets according to non-increasing Wi values. For each Si, the quantity
gapi = ki � cardi (number of items that can be still assigned to Si) is evaluated: if gapi > �k (for a given
parameter �k), then the (gapi � �k) smallest items are assigned to Si. In any case, Si is completed with the addi-
tion of minfgapi; �kg items that are selected, through complete enumeration, in such a way that the resulting
Wi value is as close as possible to L. Procedure MIX2 differs from MIX1 only in the construction of the
initial partial solution: Given a prefixed parameter ~k, each subset Si is initialized with the first (largest)
minf~k; kig items as in the original solution. The values of the parameters were experimentally determined
as: �k ¼ 3, �n ¼ maxðm; n� 3mÞ and ~k ¼ maxf0; ðkm � 3Þg.

Subset generation. We adopted the classical multiple solution method (see, e.g., Glover et al. [14]), that
generates, in sequence, all 2-element subsets, the 3-element subsets that are obtained by augmenting each
2-element subset to include the best solution not already belonging to it, the 4-element subsets that are
obtained by augmenting each 3-element subset to include the best solution not already belonging to it
and the i-element subsets (for i = 5 , . . . , r) consisting of the best i elements.

Combination. Given a number of distinct solutions s1, s2 , . . . , we define an m · n fitness matrix F
with Fij ¼

P
a2Aij

f ðsaÞ, where Aij is the index set of the solutions where item Ij is assigned to subset
Si. We first construct c solutions (c being a given parameter) through a random process that, for
j* = 1 , . . . ,n, assigns item I j� to subset Si� with probability Fði�; j�Þ=

Pm
i¼1Fði; j�Þ. If the resulting subset

Si� has ki� items assigned, then we set F(i�, j) = 0 for j = 1 , . . . ,n (so Si� is not selected at the next iter-
ations). If for the current item I�j we have

Pm
i¼1Fði; j�Þ ¼ 0, then the item is assigned to the subset with

minimum weight Wi among those that have not reached the cardinality limit. We finally select the best-
quality solution among the c solutions generated. In our implementation we set c = 3 for n < 100 and
c = 1 for n P 100.

Reference set update. The dynamic reference set update (see, e.g., Glover et al. [14]) has been introduced
to update the reference set by maintaining a good level of quality and diversity. A solution enters R if its
fitness is better than that of the qth best solution (the worst of the high-quality solutions maintained in R),
or its diversity (computed through (14) and (15)) is higher than that of the (q + 1)th solution (the less
diverse solution of R).

Stopping criteria. We terminate the search if: (i) The current best solution has value equal to lower bound
L; or (ii) no reference set update occurs at Step 4; or (iii) Step 4 has been executed b times, with b = (10,5,1),
for n < 100, 100 6 n 6 400 and n > 400, respectively.
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4. Column generation lower bound

In this section we introduce a lower bound obtained by iteratively solving, through column generation,
the LP relaxation of the following variant of multiple subset-sum problem:

SSPK(c): Given the input of an instance of ki-PP and a threshold value c, assign items to the subsets so that
no subset has a total weight exceeding c or a total number of items exceeding its cardinality limit, and the
number of unassigned items is a minimum.

Let U be the value of the best heuristic solution produced by the algorithms of Section 3, and L the best
lower bound value obtained so far. A possible approach for solving ki-PP could attempt a ‘‘dual’’ strategy
consisting of a specialized binary search between L and U: At each iteration one considers a threshold value
c = b(L + U)/2c, and solves SSPK(c). If the optimal solution has value zero, a solution of value c to ki-PP
has been found, so it is possible to set U = c and iterate with a new (smaller) value of c. If instead the opti-
mal solution value is greater than zero, we know that no feasible solution of value c exists for ki-PP, so it is
possible to set L = c + 1 and iterate with a new (higher) value of c. The search stops with an optimal solu-
tion when L = U.

In the next section we give an ILP model for SSPK(c), derived from the set covering formulation
of BPP. The model will be used in Section 4.2 to obtain a lower bound for ki-PP through column
generation.
4.1. An ILP model for SSPK(c)

Let K ¼ fj1; . . . ; j�mg be the set of distinct ki values (sorted by increasing ji values), and assume that
j0 = 0. For each value jr 2 K let
Gr ¼ fSi : ki P jrg ð16Þ
be the family of those subsets that can contain jr or more items, and
PrðcÞ ¼ P � fI1; . . . ; Ing : jr�1 <j P j6 jr and
X
Ij2P

wj 6 c

( )
ð17Þ
be a family of item sets (patterns) that can be feasibly assigned to a member of Gr but not to a member of
Gr�1 n Gr. Observe that, by (17), fP1ðcÞ; . . . ;P�mðcÞg is a partition of all patterns that have total weight not
greater than c. For any jr 2 K and j 2 {1, . . . ,n}, let Pr

jðcÞ � PrðcÞ be the set of those patterns of Pr(c) that
contain item Ij.

Let us introduce binary variables
xP ¼
1 if pattern P is selected

0 otherwise

(
ðP 2 PrðcÞ; jr 2 KÞ ð18Þ
and
yj ¼
1 if item Ij is not assigned to any subset

0 otherwise

(
ðj ¼ 1; . . . ; nÞ: ð19Þ
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We obtain the ILP model
SSPKðcÞ min
Xn
j¼1

yj; ð20Þ
X
jr2K

X
P2Pr

jðcÞ
xP þ yj ¼ 1 ðj ¼ 1; . . . ; nÞ; ð21Þ

X
iPr

X
P2PiðcÞ

xP 6j Gr j ðjr 2 KÞ; ð22Þ

yj 2 f0; 1g ðj ¼ 1; . . . ; nÞ; ð23Þ
xP 2 f0; 1g ðP 2 PrðcÞ; jr 2 KÞ: ð24Þ
Constraints (21) impose that each item Ij is assigned to exactly one subset, or not assigned at all. Con-
straints (22) impose, for each jr 2 K, the selection of at most j Gr j patterns (see (16)) among those contain-
ing jr items or more. Objective function (20) minimizes the number of unassigned items.

As we are just interested in computing a lower bound LCG on the optimal ki-PP solution, instead of opti-
mally solving each SSPK (c) instance we solve its continuous relaxation through the column generation ap-
proach described in the next section. In this case, the binary search outlined above has to be modified as
follows. If the optimal LP solution to SSPK(c) has value greater than zero, it is still possible to set
L = c + 1 and iterate with the higher value of c. If instead the optimal LP solution to SSPK(c) has value
zero, two possibilities arise: (i) if the solution is integer (i.e., also optimal for SSPK (c)), it is still possible to
set U = c and iterate with the smaller value of c; (ii) otherwise no further improvement is possible, so the
search stops with the current L value as LCG. Further observe that in case (i) the incumbent solution value
can be possibly improved.

4.2. Column generation

In this section we discuss methods for handling the LP relaxation of SSPK (c) when the number of pat-
terns is too large to explicitly include all the corresponding variables into the model. The LP relaxation of
SSPK(c) (master problem) is given by (20)–(22) and
yj P 0 ðj ¼ 1; . . . ; nÞ; ð25Þ

xP P 0 ðP 2 PrðcÞ; jr 2 KÞ: ð26Þ

(Note that constraints yj 6 1 and xP 6 1 would be redundant.) By associating dual variables pj and rr to
constraints (21) and (22), respectively, we obtain the dual:
max
Xn
j¼1

pj �
X
jr2K

j Gr j rr; ð27Þ

Xn
j2P

pj �
X
i6r

ri 6 0 ðP 2 PrðcÞ; jr 2 KÞ; ð28Þ

pj 6 1 ðj ¼ 1; . . . ; nÞ; ð29Þ
rr P 0 ðjr 2 KÞ: ð30Þ
A column generation approach starts by solving a restriction of the LP relaxation of SSPK(c), obtained by
only considering a small subset of variables xP (restricted master). The iterative phase consists in checking if
the solution (p*, r*) of the dual of the current restricted master satisfies all constraints (28): If this is the
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case, the current solution value provides a valid lower bound for SSPK(c). Otherwise primal variables cor-
responding to a subset of violated constraints (28) are added to the restricted master (column generation),
and the process is iterated.

The check is performed by looking for primal variables (if any) with negative reduced cost. If each item Ij
is assigned a profit p�

j , this corresponds to looking for a pattern having an overall profit greater than
P

i6rr
�
i

for some jr 2 K. Thus, for a given value jr 2 K, our slave problem can be formulated as
max
Xn
j¼1

p�
jnj; ð31Þ

Xn
j¼1

wjnj 6 c; ð32Þ

Xn
j¼1

nj 6 jr; ð33Þ

nj 2 f0; 1g ðj ¼ 1; . . . ; nÞ; ð34Þ

whose optimal solution identifies the pattern P 2 PrðcÞ with maximum profit, namely P = {Ij: nj = 1}.
Problem (31)–(34) is a 0–1 Knapsack Problem ((31), (32), (34)) with an additional cardinality constraint.
Since the wj values are positive, we can reduce any instance by removing items with non-positive profit.
The reduced problem can then be solved to optimality through the algorithm recently presented by
Martello and Toth [22] for the Two-Constraint 0-1 Knapsack Problem.

In our implementation we start with no variable xP in the restricted master. At each iteration we add to
the restricted master, for each jr 2 K, the pattern of PrðcÞ with maximum profit, provided the correspond-
ing constraint (28) is violated.
5. Computational experiments

The overall algorithm introduced in the previous sections,

Step 1. lower bounds, reduction, constructive heuristics (Sections 2 and 3.1);
Step 2. scatter search (Section 3.2);
Step 3. column generation (Section 4),

was coded in C and experimentally tested on a large set of randomly generated instances. The computa-
tional experiments were performed on a Pentium III at 1133Mhz running under a Windows operating sys-
tem. The LP relaxations produced by the column generation approach for the computation of LCG were
solved through CPLEX 7.0.

We generated 81 classes of test problems by combining in all possible ways 9 weight classes and 9
cardinality classes. The weight classes have been derived from those used by Dell�Amico and Martello
[6], and are as follows (see Table 1 for the parameters� values):

Classes w1, w2 and w3: weights wj uniformly random in [Umin,Umax];
Classes w4, w5 and w6: weights wj drawn from an exponential distribution of average value l, by disregard-
ing non-positive values;
Classes w7, w8 and w9: weights wj drawn from a normal distribution of average value and standard devi-
ation r, by disregarding non-positive values.



Table 2
Parameters used for the cardinality classes

Class kmin kmax Class kmin kmax Class d

k1 dn/me � 1 dn/me k4 dn/me dn/me + 1 k7 1
k2 dn/me � 1 dn/me + 1 k5 dn/me dn/me + 2 k8 3/2
k3 dn/me � 2 dn/me + 2 k6 dn/me dn/me + 3 k9 2

Table 1
Parameters used for the weight classes

Uniform Exponential Normal

Class Umin Umax Class l Class l r

w1 10 1000 w4 25 w7 100 33
w2 200 1000 w5 50 w8 100 66
w3 500 1000 w6 100 w9 100 100
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The cardinality classes are as follows (see Table 2 for the parameters� values):

Classes k1 , . . . ,k6: cardinalities ki uniformly random in [kmin, kmax];
Classes, k7, k8 and k9: given a parameter d P 1, ki values satisfying

Pm
i¼1ki ¼ bdnc and ki P 2 "i are gen-

erated through the procedure given in Fig. 4.

For each generated instance we tested whether conditions n 6
Pm

i¼1ki and ki P 2 "i were satisfied: If not,
a new instance was generated in order to avoid infeasible or easily reducible instances. Note that the ki val-
ues of Classes k1–k6 lay in small ranges, so the corresponding instances usually have a number of subsets
with the same cardinality limit. On the contrary, the ki values of classes k7–k9 are usually very sparse. Fur-
ther observe that instances of Class k7 have n ¼

Pm
i¼1ki, so each subset Si must be assigned exactly ki items.

The same may occur with some instances of Classes k1–k6, in particular with the first three classes.
The algorithms have been tested on random instances with n in {10, 25, 50, 100, 200, 400} and m in {3, 4,

5, 10, 20, 40, 50}. In order to avoid trivial instances, we considered only (n, m) pairs satisfying n > 2m, thus
obtaining a grand total of 31 pairs. For each quadruple (n, m, wj class, ki class) 10 feasible instances were
generated, producing 25,110 test problems in total.
Fig. 4. Data generation for Classes k7–k9.
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Tables 3 and 4 present the overall performance of lower bounds and heuristic algorithms. Since it turned
out that the results within each triple of classes (w1–w3, w4–w6, w7–w9, k1–k3, k4–k6, k7–k9) were very
similar to each other, we only report in the tables the overall results for the ‘‘middle’’ class of each triple.
In Table 3 the entries give, for the selected weight classes, the average performance over all cardinality clas-
ses, while in Table 4 they give, for the selected cardinality classes, the average performance over all weight
classes. Both Tables 3 and 4 report the behavior of lower bounds Lj#6kmj, LC (see Section 2) and LCG (see
Section 4), of constructive heuristics LPT-ki, GH-ki and MS-ki (see Section 3.1), and of the scatter search
algorithm of Section 3.2. The last column gives the performance of the overall heuristic, including the pos-
sible improvements produced by the column generation computation. The scatter search was executed by
receiving in input the best solution found by the constructive heuristics. The tables provide the following
information. Let vL be the value produced by a lower bounding procedure L, and vH the solution value
found by a heuristic algorithm H. Let v�L and v�H denote the best lower bound and heuristic solution
value obtained, respectively. For each lower bound L (resp. heuristic algorithm H) the tables give, for each
class,
Table 3
Overall performance of lower bounds and heuristics on selected weight classes

Class Lj#6kmj LC LCG LPT-ki GH-ki MS-ki Scatter Overall

w2 #best 2605 2615 2790 100 225 1741 2760 2790
#opt 2393 2402 2509 100 225 1709 2482 2509
%gap 0.05 0.04 0.01 3.21 1.14 0.57 0.01 0.01

w5 #best 2618 2625 2790 132 253 1780 2766 2790
#opt 2399 2406 2501 132 252 1742 2478 2501
%gap 0.05 0.04 0.01 3.17 1.13 0.56 0.01 0.01

w8 #best 2605 2614 2790 111 224 1711 2767 2790
#opt 2393 2400 2496 111 224 1674 2477 2496
%gap 0.05 0.04 0.01 3.21 1.15 0.60 0.01 0.01

Average w1–w9 #best 2609.2 2617.2 2790.0 115.1 230.3 1745.3 2764.4 2790.0
#opt 2396.3 2403.5 2503.4 115.1 230.0 1707.0 2480.8 2503.4
%gap 0.05 0.04 0.01 3.17 1.12 0.58 0.01 0.01

Table 4
Overall performance of lower bounds and heuristics on selected cardinality classes

Class Lj#6kmj LC LCG LPT-ki GH-ki MS-ki Scatter Overall

k2 #best 2643 2643 2790 57 122 802 2762 2790
#opt 2351 2351 2439 57 122 800 2414 2439
%gap 0.04 0.04 0.01 1.70 1.31 0.96 0.01 0.01

k5 #best 2650 2650 2790 117 213 2154 2766 2790
#opt 2415 2415 2487 117 213 2057 2470 2487
%gap 0.04 0.04 0.01 1.19 0.74 0.19 0.01 0.01

k8 #best 2650 2628 2790 156 420 2227 2778 2790
#opt 2412 2431 2519 156 420 2216 2510 2519
%gap 0.05 0.03 0.01 5.23 0.64 0.34 0.01 0.01

Average k1–k9 #best 2609.2 2617.2 2790.0 115.1 230.3 1745.3 2764.4 2790.0
#opt 2396.3 2403.5 2503.4 115.1 230.0 1707.0 2480.8 2503.4
%gap 0.05 0.04 0.01 3.17 1.12 0.58 0.01 0.01
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• #best = number of times in which vL ¼ v�L (resp. vH ¼ v�H );
• #opt = number of times in which vL ¼ v�L (resp. vH ¼ v�H ) and v�L ¼ v�H , i.e., a proved optimal value was

obtained;
• %gap = average percentage gap. For each instance, the gap was computed as 100ðv�L � vLÞ=v�L (resp.

100ðvH � v�H Þ=v�L).

The execution time was negligible for the combinatorial lower bounds and the constructive heuristics.
The column generation algorithm that produces LCG had a time limit of 60 seconds. (The computing times
of the complete algorithm, including scatter search and column generation, are reported below, in Tables 6
and 7.)

Before discussing the results provided by the tables we recall that lower bound Lj#6kmj is incorporated in
bound LC (see (13)) and that the binary search used to compute LCG starts from the best bound previously
obtained, namely LC. Hence LCG dominates LC which, in turn, dominates Lj#6kmj. This can be clearly
observed by looking at the columns of Tables 3 and 4 devoted to the lower bounds. All bounds, however,
produce values very close to the optimum (see rows %gap): In particular, for both weight classes and
cardinality classes, Lj#6kmj has average gaps around 5 · 10�4, LC around 4 · 10�4 and LCG around
1 · 10�4.

Concerning the heuristic algorithms, we recall that the scatter search starts from the best solution ob-
tained by the constructive heuristics, although the computational experiments showed that its behavior
does not worsen significantly when started from randomly generated solutions. Looking at the last columns
of Tables 3 and 4, in rows #best and %gap, we see that LPT-ki and GH-ki are outperformed by MS-ki
which, in turn, produces solutions largely worse than those of the scatter search. Further improvements
are produced by the feasible solutions detected by the column generation algorithm. The best
constructive heuristic, MS-ki, produced solutions with gaps around 6 · 10�3 with a maximum of
1.3 · 10�2 for Class k3 (not shown in Table 4), whereas the scatter search always had solutions as close
to the lower bound as 1 · 10�4. On the other hand, the scatter search may require consistently higher
computing times.

Heuristic LPT-ki has average gaps close to 3 · 102 for all weight classes. For cardinality classes k1–k6
its performance improves, while it worsens for k7–k9. Algorithm GH-ki roughly has twice the num-
ber of best solutions with respect to LPT-ki. The average gaps also improve, from around 3 · 10�2 to
around 1 · 10�2. Heuristic MS-ki has very good performances for almost all classes. Finally, the
scatter search algorithm is very robust and its performance is excellent on all classes: Its percentage gap
is in practice 1 · 10�4 on all instances. We additionally notice that the best solution for about 1% of the
instances was determined during the computation of the column generation lower bound LCG (see columns
Scatter and Overall, row #opt), which increased by about 200 units the number of instances solved to
optimality.

In Table 5 we give the performance of procedure Reduction2. (As already observed, procedure Reduc-
tionl cannot operate on our data sets.) For each weight class (resp. cardinality class) the table provides the
following information, computed over all cardinality classes (resp. weight classes):

• %act = average percentage of instances where some reduction was obtained;
• %n-red = overall percentage of items reduction;
• %m-red = overall percentage of subsets reduction;
• time = average CPU time.

If we consider the results grouped by weight class we do not see considerable differences, while the results
grouped by cardinality class show very small reductions for classes k1–k3, no reduction at all for classes k4–



Table 5
Performance of the reduction procedure

Class %act %n-red %m-red Time Class %act %n-red %m-red Time

w1 20.68 4.33 9.37 1.41 k1 0.07 0.01 0.02 0.01
w2 19.96 4.26 9.17 1.85 k2 0.04 0.01 0.01 0.08
w3 20.22 4.27 9.27 1.42 k3 15.13 1.46 3.26 13.85
w4 21.25 4.47 9.62 1.47 k4 0.00 0.00 0.00 0.04
w5 20.36 4.30 9.33 1.50 k5 0.00 0.00 0.00 0.04
w6 20.18 4.32 9.34 1.76 k6 0.00 0.00 0.00 0.03
w7 20.47 4.19 9.11 1.70 k7 66.95 18.12 36.79 0.13
w8 19.89 4.30 9.30 1.74 k8 53.98 10.78 24.33 0.07
w9 20.54 4.34 9.41 1.50 k9 47.38 8.40 19.50 0.11
Average 20.39 4.31 9.32 1.60 Average 20.39 4.31 9.32 1.60
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k6 and good behavior for classes k7–k9. For the latter classes, both the reduction of the number of items
and of the number of subsets have relevant impact on the final dimension of the instance to be solved, prob-
ably due to the fact that these instances are characterized by ki values with relatively high variance. The
reduction phase proved to be an important tool for solving a number of instances to optimality. The
corresponding computational effort was, however, not negligible: By comparing the average CPU times
in Table 5 with those in Tables 6 and 7, one can see that the fraction of time taken by the reduction process
was about 18% of the total time.

Tables 6 and 7 give more detailed results on the performance of the scatter search algorithm for the se-
lected classes considered in Tables 3 and 4. For each feasible pair (n, m), the entries in Table 6 (resp. Table
7) give the values, computed over the 90 instances generated for each cardinality class (resp. weight class),
of:

• %opt = average percentage of proved optimal solutions;
• %gap = average percentage gap, computed as for Tables 3 and 4;
• t1�2 = average computing time for Steps 1 and 2 (inizialization and scatter search);
• t = average total computing time;
• tmax = maximum total computing time.

The results in these tables confirm the robustness and stability of the algorithm, with respect to both
variations of weight and cardinality. Instances with up to 400 items and 10 subsets are almost systematically
solved to optimality. This behavior worsens for larger instances, but the overall performance remains sat-
isfactory: The percentage gap never exceeds 1.04 within reasonable CPU times, that are at most around
12minutes on an average speed computer. It is interesting to observe that instances with 25–50 items are
often more difficult to solve than larger instances. This is probably due to the fact that a higher number
of items, allowing a much higher number of weight combinations, makes it easier to obtain solutions of
value close to that of the lower bound.

We finally examined the impact of scatter search over the performance of the complete algorithm.
To this end, the algorithm was also run on our test bed of 25,110 instances without scatter search, by dou-
bling the time limit assigned to the column generation phase, in order to compensate for a worse initial
solution. It turned out that scatter search is an essential tool for the solution of these problems: Without
it, the percentage of instances solved to optimality decreased from 89.7 to 64.1, the average percentage
gap increased from 0.01 to 0.47 and the average CPU time increased from about 9 seconds to about
22 seconds.



Table 6
Results for selected weight classes

w2 w5 w8

n m %opt %gap t1�2 t tmax %opt %gap t1�2 t tmax %opt %gap t1�2 t tmax

10 3 100.00 0.00 0.03 0.04 0.28 100.00 0.00 0.02 0.03 0.23 100.00 0.00 0.02 0.03 0.28
25 3 98.89 0.00 0.01 0.02 1.04 98.89 0.00 0.01 0.06 2.58 98.89 0.00 0.01 0.06 2.03
50 3 100.00 0.00 0.00 0.00 0.06 100.00 0.00 0.00 0.00 0.05 98.89 0.00 0.01 0.05 4.39
100 3 98.89 0.00 0.03 0.69 60.80 100.00 0.00 0.02 0.02 0.39 100.00 0.00 0.01 0.01 0.06
200 3 100.00 0.00 0.04 0.04 1.26 100.00 0.00 0.03 0.03 0.50 100.00 0.00 0.03 0.03 0.11
400 3 100.00 0.00 0.10 0.10 0.27 100.00 0.00 0.08 0.08 0.28 100.00 0.00 0.11 0.11 0.50

10 4 100.00 0.00 0.02 0.02 0.22 100.00 0.00 0.02 0.02 0.27 100.00 0.00 0.01 0.01 0.06
25 4 98.89 0.00 0.06 0.08 0.99 97.78 0.00 0.04 0.06 1.21 98.89 0.00 0.03 0.04 0.88
50 4 98.89 0.00 0.02 0.07 5.49 97.78 0.00 0.02 0.08 4.01 98.89 0.00 0.02 0.05 3.02
100 4 100.00 0.00 0.02 0.02 0.28 100.00 0.00 0.02 0.02 0.17 100.00 0.00 0.03 0.03 0.44
200 4 100.00 0.00 0.05 0.05 1.81 100.00 0.00 0.04 0.04 0.33 100.00 0.00 0.04 0.04 0.22
400 4 100.00 0.00 0.10 0.10 1.32 100.00 0.00 0.08 0.08 0.55 100.00 0.00 0.08 0.08 0.50

25 5 78.89 0.02 0.27 0.31 1.26 82.22 0.01 0.37 0.41 1.59 85.56 0.01 0.23 0.26 1.11
50 5 98.89 0.00 0.03 0.07 4.34 97.78 0.00 0.04 0.14 6.75 100.00 0.00 0.03 0.03 0.33
100 5 100.00 0.00 0.03 0.03 0.55 98.89 0.00 0.10 0.28 20.65 100.00 0.00 0.05 0.05 0.70
200 5 100.00 0.00 0.08 0.08 1.43 100.00 0.00 0.09 0.09 2.63 100.00 0.00 0.05 0.05 0.17
400 5 100.00 0.00 0.12 0.12 0.77 100.00 0.00 0.12 0.12 0.60 100.00 0.00 0.12 0.12 0.77

25 10 100.00 0.00 0.52 0.53 3.02 100.00 0.00 0.36 0.36 3.07 100.00 0.00 0.45 0.46 2.63
50 10 58.89 0.02 2.12 2.39 7.25 60.00 0.02 2.36 2.78 9.72 71.11 0.01 1.76 2.01 9.94
100 10 100.00 0.00 0.30 0.30 6.15 100.00 0.00 0.32 0.32 4.62 96.67 0.00 0.54 0.92 17.47
200 10 100.00 0.00 0.38 0.38 11.09 100.00 0.00 0.25 0.25 12.14 100.00 0.00 0.10 0.10 0.81
400 10 100.00 0.00 0.99 0.99 70.14 100.00 0.00 0.23 0.23 0.88 100.00 0.00 0.21 0.21 0.98

50 20 92.22 0.01 9.27 9.34 22.19 88.89 0.02 11.12 11.21 71.84 86.67 0.02 11.52 11.61 26.42
100 20 53.33 0.02 8.68 11.80 55.75 55.56 0.02 7.83 12.75 74.70 47.78 0.02 10.27 13.71 74.25
200 20 96.67 0.00 2.07 3.61 96.78 90.00 0.00 3.65 7.53 99.86 92.22 0.00 3.57 7.01 98.42
400 20 100.00 0.00 2.31 2.31 172.30 100.00 0.00 2.35 2.35 173.18 100.00 0.00 2.45 2.45 180.44

100 40 36.67 0.17 66.11 66.80 289.68 37.78 0.17 61.86 62.57 249.19 26.67 0.19 70.65 71.50 223.22
200 40 55.56 0.02 28.93 48.28 159.23 61.11 0.02 27.91 43.46 219.38 58.89 0.02 30.67 50.04 216.41
400 40 94.44 0.00 7.27 10.63 167.20 94.44 0.00 12.43 16.22 603.68 94.44 0.00 17.39 21.78 506.64

200 50 36.67 0.04 55.59 78.27 352.07 27.78 0.05 59.57 84.71 398.87 25.56 0.05 64.81 91.68 408.48
400 50 90.00 0.00 23.18 30.04 474.94 90.00 0.00 18.45 25.04 484.34 92.22 0.00 12.69 17.53 197.80
Summary 89.93 0.01 6.73 8.63 474.94 89.64 0.01 6.77 8.75 603.68 89.46 0.01 7.35 9.42 506.64
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Table 7
Results for selected cardinality classes

k2 k5 k8

n m %opt %gap t1�2 t tmax %opt %gap t1�2 t tmax %opt %gap t1�2 t tmax

10 3 100.00 0.00 0.01 0.02 0.22 100.00 0.00 0.02 0.02 0.06 100.00 0.00 0.02 0.02 0.06
25 3 100.00 0.00 0.00 0.00 0.06 100.00 0.00 0.00 0.00 0.00 100.00 0.00 0.01 0.03 0.88
50 3 100.00 0.00 0.01 0.01 0.06 100.00 0.00 0.00 0.00 0.06 100.00 0.00 0.00 0.00 0.00
100 3 100.00 0.00 0.02 0.02 0.06 100.00 0.00 0.01 0.01 0.06 100.00 0.00 0.00 0.00 0.00
200 3 100.00 0.00 0.03 0.03 0.11 100.00 0.00 0.03 0.03 0.11 100.00 0.00 0.00 0.00 0.06
400 3 100.00 0.00 0.13 0.13 0.34 100.00 0.00 0.10 0.10 0.28 100.00 0.00 0.00 0.00 0.11

10 4 100.00 0.00 0.02 0.02 0.27 100.00 0.00 0.01 0.01 0.06 100.00 0.00 0.01 0.01 0.06
25 4 98.89 0.00 0.02 0.02 0.55 100.00 0.00 0.00 0.00 0.11 100.00 0.00 0.05 0.07 0.82
50 4 100.00 0.00 0.01 0.01 0.11 100.00 0.00 0.00 0.00 0.06 98.89 0.00 0.03 0.10 8.90
100 4 100.00 0.00 0.04 0.04 0.44 100.00 0.00 0.02 0.02 0.06 100.00 0.00 0.00 0.00 0.00
200 4 100.00 0.00 0.06 0.06 0.22 100.00 0.00 0.03 0.03 0.11 100.00 0.00 0.00 0.00 0.00
400 4 100.00 0.00 0.17 0.17 0.39 100.00 0.00 0.04 0.04 0.16 100.00 0.00 0.01 0.01 0.22

25 5 87.78 0.02 0.24 0.26 1.14 82.22 0.01 0.23 0.24 1.11 80.00 0.01 0.24 0.26 1.15
50 5 100.00 0.00 0.06 0.06 0.49 100.00 0.00 0.01 0.01 0.33 100.00 0.00 0.00 0.00 0.06
100 5 100.00 0.00 0.09 0.09 0.72 100.00 0.00 0.03 0.03 0.06 100.00 0.00 0.00 0.00 0.05
200 5 100.00 0.00 0.09 0.09 0.66 100.00 0.00 0.04 0.04 0.22 100.00 0.00 0.00 0.00 0.11
400 5 100.00 0.00 0.23 0.23 0.55 100.00 0.00 0.06 0.06 0.28 100.00 0.00 0.02 0.02 0.28

25 10 100.00 0.00 0.35 0.35 2.08 100.00 0.00 0.44 0.45 2.69 100.00 0.00 0.33 0.33 2.52
50 10 45.56 0.02 2.85 3.14 7.36 67.78 0.01 1.87 1.95 6.98 46.67 0.02 2.74 2.98 8.62
100 10 97.78 0.00 1.11 1.38 34.94 98.89 0.00 0.52 0.66 23.52 97.78 0.00 0.16 0.41 17.14
200 10 100.00 0.00 0.54 0.54 10.93 100.00 0.00 0.09 0.09 0.33 100.00 0.00 0.01 0.01 0.17
400 10 100.00 0.00 1.41 1.41 41.96 100.00 0.00 0.14 0.14 0.66 100.00 0.00 0.03 0.03 0.78

50 20 92.22 0.01 10.07 10.15 71.84 92.22 0.01 9.92 9.98 22.97 93.33 0.01 9.24 9.32 18.95
100 20 37.78 0.03 14.82 19.57 83.05 52.22 0.02 10.21 11.26 28.39 51.11 0.02 7.64 13.39 42.13
200 20 86.67 0.00 8.87 14.19 99.86 90.00 0.00 3.61 7.85 89.75 100.00 0.00 0.01 0.01 0.50
400 20 100.00 0.00 12.70 12.70 180.44 100.00 0.00 0.38 0.38 2.30 100.00 0.00 0.02 0.02 0.55

100 40 41.11 0.15 53.52 54.09 93.76 30.00 0.19 63.25 63.86 111.34 32.22 0.18 53.90 54.83 91.83
200 40 28.89 0.03 53.02 90.78 178.30 34.44 0.03 44.71 62.76 132.03 95.56 0.00 3.66 6.39 216.41
400 40 92.22 0.00 20.72 26.16 603.68 86.67 0.00 17.08 25.43 206.31 100.00 0.00 0.01 0.01 0.06

200 50 15.56 0.05 71.55 109.25 176.26 47.78 0.03 35.44 41.32 110.13 3.33 0.07 56.05 103.53 180.38
400 50 85.56 0.00 67.45 78.27 734.56 81.11 0.00 23.58 35.26 195.32 100.00 0.00 0.02 0.02 0.22
Summary 87.42 0.01 10.33 13.65 734.56 89.14 0.01 6.83 8.45 206.31 90.29 0.18 4.33 6.19 216.41
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