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Abstract

We consider an uncertain variant of the knapsack problem in which
the weight of the items is not exactly known in advance, but belongs to
a given interval, and an upper bound is imposed on the number of items
whose weight differs from the expected one. For this problem, we provide a
dynamic programming algorithm and present techniques aimed at reduc-
ing its space and time complexities. Finally, we computationally compare
the performances of the proposed algorithm with those of different ex-
act algorithms presented so far in the literature for robust optimization
problems.

keywords: knapsack problem, robust optimization, dynamic programming.

1. Introduction

The classical Knapsack Problem (KP) can be described as follows. We are given
a set N = {1, . . . , n} of items, each of them with positive profit pj and positive
weight wj , and a knapsack capacity c. The problem asks for a subset of items
whose total weight does not exceed the knapsack capacity, and whose profit is
a maximum. It can be formulated as the follow Integer Linear Program (ILP):

(KP ) max
∑
j∈N

pj xj (1)

∑
j∈N

wj xj ≤ c (2)

xj ∈ {0, 1}, j ∈ N. (3)

Each variable xj takes value 1 if and only if item j is inserted in the knapsack.
This problem is NP-hard, although in practice fairly large instances can be

solved to optimality within reasonable running time. Furthermore, dynamic
programming algorithms with pseudopolynomial running time are available. A
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comprehensive survey on all aspects of (KP) was given by Kellerer, Pferschy
and Pisinger [10].

In this paper we consider the following variant of (KP), aimed at modeling
uncertainties in the data, in particular in the weights: for each item j the weight
may deviate from its given nominal value wj and attain an arbitrary value in
some known interval [wj − wj , wj + wj ]. A feasible solution must obey the
capacity constraint (2) no matter what the actual weight of each item turns out
to be. However, uncertainty is bounded by an integer parameter Γ indicating
that at most Γ items in the solution can change from their nominal value wj

to an arbitrary value in the interval. Clearly a diminution of a weight below
the nominal value does not affect feasibility and in the worst case all changed
weights reach their upper limit. Hence a feasible solution consists of a subset of
items J ⊆ N such that∑

j∈J
wj +

∑
j∈Ĵ

wj ≤ c ∀ Ĵ ⊆ J, |Ĵ | ≤ Γ. (4)

We call this problem the Robust Knapsack Problem (RKP). It was recently
considered by Monaci and Pferschy [14] who studied the worst-case ratio be-
tween the optimal solution value of (KP) and that of (RKP), as well as the ratio
between the associated fractional relaxations. A similar setting with the restric-
tion that wj = δ wj for all j for some given constant δ > 0 was introduced by
Bertsimas and Sim [3]. Clearly this is a particular case of the model considered
in this paper.

In the following we assume, without loss of generality, that all input data
are integer and items are sorted according to non-increasing wj values. For
notational simplicity we define the increased weights by ŵj = wj +wj for all j.
In addition, for any given set S of items, we will denote by p(S) =

∑
j∈S pj and

w(S) =
∑

j∈S wj the total profit and weight, respectively, of the items in S.
In this paper we review exact solution algorithms for (RKP). Although it is

an NP-hard problem, exact solutions can be found in reasonable time even for
large instances (see in Section 6 the computing times for instances up to 5,000
items). Hence it is adequate to look for exact methods in solving (RKP) and it
is interesting to compare the behavior of different algorithms. The algorithms
proposed in the literature up-to-date present quite distinct features, although
two of them can be shown to be very tightly intertwined.

In Section 2 we present a dynamic programming algorithm. The algorithm
mimics the well known algorithm for the standard knapsack problem, but is able
to take care of the upper weights once the items are sorted according to non-
increasing wj values. This algorithm, developed by the authors, is investigated
in detail. In Section 2 we show its correctness, and, as in the usual knapsack
algorithm, we show that a similar version obtained by exchanging the roles of
weights and values can be also formulated thus paving the way to approximation
schemes.

In Section 3 we address the delicate issue of implementing the algorithm
with a reduced amount of memory, since, with a large number of items and
large data coefficients, space requirements can constitute a problem.
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Other exact approaches are presented in Section 4. In particular we review
the integer programming model by Bertsimas and Sim [3] (Section 4.1), the
iterative approach by Bertsimas and Sim [2] which requires solving n+ 1 knap-
sack instances (Section 4.2) and the Branch-and-Cut algorithm by Fischetti and
Monaci [7] in which the robustness requirements is modeled by cutting inequal-
ities (Section 4.3).

The problem we investigate is a special combinatorial optimization problem
that has been motivated by a particular modeling of the problem uncertainties.
By and large this is the model which has received most attention in the litera-
ture, although a lot of research has been done to face problems with uncertain
data (see, e.g., the recent survey by Bertsimas, Brown and Caramanis [1]). As
to uncertainty in knapsack problems, few contributions were proposed. (RKP)
was first introduced by Bertsimas and Sim [2], while Klopfenstein and Nace [11]
defined a robust chance-constrained variant of the knapsack problem and stud-
ied the relation between feasible solutions of this problems an those of (RKP).
A polyhedral study of (RKP) was conducted by the same authors in [12], where
some computational experiments with small instances (up to 20 items) were
given. Recently, Büsing, Koster and Kutschka [4, 5] addressed the robust knap-
sack problem within the so-called recoverable robustness context in which one
is required to produce a solution that is not necessarily feasible under uncer-
tainty, but whose feasibility can be recovered by means of some legal moves.
In [4, 5], legal moves correspond to the removal of at most K items from the
solution, so as to model a telecommunication network problem. For this prob-
lem, the authors gave different ILP formulations, cut separation procedures and
computational experiments.

2. A dynamic programming algorithm

In this section we present an exact dynamic programming algorithm for (RKP).
Note that the same problem was considered by Klopfenstein and Nace [11]
who sketched a related dynamic programming recursion in their Theorem 3.
While the brief description of the algorithm in [11] relies on a modification of
a dynamic program for the nominal knapsack problem, we present a detailed
algorithm explicitly designed for (RKP) which allows for an improvement of the
complexities.

Our approach is based on the following two dynamic programming arrays:
Let z(d, s, j) be the highest profit for a feasible solution with total weight d in
which only items in {1, . . . , j} ⊆ N are considered and exactly s of them are
included, all with their upper weight bound ŵj . Let z(d, j) be the highest profit
for a feasible solution with total weight d in which only items in {1, . . . , j} ⊆ N
are considered and Γ of them change from their nominal weight to their upper
bound. Clearly, d = 0, 1, . . . , c, s = 0, 1, . . . ,Γ, and j = 0, 1, . . . , n.

A crucial property for the correctness of our approach is the assumption
that items are sorted by non-increasing weight increases wj . This implies the
following lemma. For a subset of items J ⊆ N denote by jΓ the index of the
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Γ-th item in J if |J | ≥ Γ, otherwise jΓ is the index of the last item in J .

Lemma 1 A subset J ⊆ N is feasible if and only if∑
j∈J,j≤jΓ

ŵj +
∑

j∈J,j>jΓ

wj ≤ c

Proof. The largest increase of w(J) caused by items attaining their upper
weight is due to the subset of items for which the increase wj is largest. If J is
feasible with respect to this subset, it is feasible for any other subset of J . �

Now we can compute all array entries by the following dynamic programming
recursions:

z(d, s, j) = max{z(d, s, j − 1), z(d− ŵj , s− 1, j − 1) + pj}
for d = 0, . . . , c, s = 1, . . . ,Γ, j = 1, . . . , n,

z(d, j) = max{z(d, j − 1), z(d− wj , j − 1) + pj}
for d = 0, . . . , c, j = Γ + 1, . . . , n

(5)

The initialization values are z(d, s, 0) = −∞ for d = 0, . . . , c and s = 0, . . . ,Γ.
Then we set z(0, 0, 0) = 0. The two arrays are linked together by initializing
z(d,Γ) = z(d,Γ,Γ) for all d.

Obviously, all entries with d < ŵj (resp. d < wj) are not used in definition
of z (resp. z) in recursion (5). The optimal solution value of the robust knapsack
problem can be found as

z∗ = max

{
max{z(d, n) | d = 1, . . . , c}
max{z(d, s, n) | d = 1, . . . , c, s = 1, . . . ,Γ− 1}

and consumes a total capacity c∗ ≤ c.
Intuitively, the dynamic programming algorithm operates in two phases:

first, it determines the best solution consisting of (at most) Γ items with in-
creased weight. Then, this solution is possibly extended with additional items
at their nominal weight. This separation into two phases is possible because
the sorting by non-increasing wj guarantees that in any solution the items with
smallest indices, i.e. those that were packed into the knapsack earlier, are those
that will attain their increased weight (see Lemma 1).

Theorem 2 The dynamic programming recursion (5) yields an optimal solution
of (RKP).

Proof. We build an acyclic directed graph and show that the recursion corre-
sponds to a longest path in the graph. The nodes are labeled as (d, s, j), with
d = 0, . . . , c, j = 0, . . . , n, s = 0, . . . ,Γ. The node (0, 0, 0) is the source and an
additional node, labeled t, is the destination.

The arcs are defined as follows: within each group of nodes with the same
label s (let us denote them as a “stage”) there are arcs (d, s, j−1)→ (d, s, j) with
value 0. Let us denote these arcs as “empty”. Using an empty arc corresponds
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Figure 1: Directed graph model for the dynamic programming recursion.

to never inserting item j. Moreover, there are other empty arcs with value 0
from each node (d, s, n) to the destination t to model situations in which the
solution includes less than Γ items.

From stage s− 1 to stage s there are arcs (d− ŵj , s− 1, j − 1)→ (d, s, j), if
d ≥ ŵj , with value pj . Let us denote these arcs as “heavy”. Using a heavy arc
corresponds to inserting item j and assuming it will take the upper weight ŵj .

Finally, within stage s = Γ there are arcs (d − wj ,Γ, j − 1) → (d,Γ, j), if
d ≥ wj , with value pj . Let us denote these arcs as “light”. Using a light arc
corresponds to inserting item j and assuming it will take its nominal weight.

Figure 1 shows an example of the graph associated with an instance with
n = 4, w = (1, 1, 3, 1), ŵ = (5, 3, 4, 2), c = 8 and Γ = 2. The source and the
destination are the larger white nodes. The nodes in gray are non reachable
and their arcs are not shown.

We claim that there is a one-to-one correspondence between paths from
source to destination and feasible solutions.

Consider any path from node (0, 0, 0) to node t. Note that this path moves
from a stage to the next one only by heavy arcs. In particular, it will reach
the final stage only after using exactly Γ heavy arcs. Note also that each path
visits the nodes in increasing order of indices j. By construction, the indices of
the light arcs (if any) are greater than the indices of the heavy arcs. Hence, by
Lemma 1, the solution given by the path is feasible. Of course, this is true also
in case a light arc is used to go from a node (d, s, n) to the destination t; indeed,
in this case, only s ≤ Γ are inserted in the solution, all of them with increased
weight ŵj .

As to the reverse, take any feasible solution J , and let Ĵ be its first Γ items
if |J | > Γ, otherwise Ĵ = J . As before jΓ is the last index in Ĵ . We build the
path as follows: for each index j ≤ jΓ we choose an empty arc if j /∈ J and a
heavy arc if j ∈ J , until we reach the node (

∑
j∈Ĵ ŵj , |Ĵ |, jΓ). If |J | ≤ Γ we use

an empty arc from this node till the destination node t. If |J | > Γ, then the
node (

∑
j∈Ĵ ŵj , |Ĵ |, jΓ) is actually (

∑
j∈Ĵ ŵj ,Γ, jΓ), i.e., from this node we use
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Solve RKP(N,Γ, c)
begin
initialization

1. for d := 0 to c do
2. for s = 1 to Γ do
3. z(d, s) = −∞
4. z(0, 0) = 0;
5. for j := 1 to |N | do

possibly pack item j with nominal weight (if Γ items have already been inserted)

6. for d := c down to wj do
7. if z(d− wj ,Γ) + pj > z(d,Γ) then
8. z(d,Γ) = z(d− wj ,Γ) + pj ;

possibly pack item j with robust weight

9. for s := Γ down to 1 do
10. for d := c down to ŵj do
11. if z(d− ŵj , s− 1) + pj > z(d, s) then
12. z(d, s) = z(d− ŵj , s− 1) + pj ;
13. z∗ = max{z(d, s) | d = 1, . . . , c; s = 1, . . . ,Γ}
end

Figure 2: Dynamic programming algorithm for (RKP).

arcs within stage Γ for all j > jΓ, in particular empty arcs if j /∈ J and light
arcs if j ∈ J , until we reach the node (

∑
j∈Ĵ ŵj +

∑
j∈J\Ĵ wj ,Γ, n) and from

this node we go to the destination.
Now the recursions (5) are exactly the optimality conditions for a longest

path in the graph. �

3. Time and space complexity

In this section we analyze the time and space complexity of the dynamic pro-
gramming algorithm resulting from (5). In many practical applications the
space requirements are the main obstacle for using a dynamic programming
algorithm. Hence, we will pay special attention to this issue.

A straightforward evaluation of the recursion (5) starts with array z. In
principle, we go through all items j from 1 to n in an outer loop. For each j, all
cardinalities s ≤ Γ of a solution are considered, and in the inner-most loop all
capacity values d from 0 to c are evaluated. Then array z is initialized with the
outcome of z for s = Γ. Again, an outer loop goes over all items and an inner
loop over all capacities. This would yield a pseudopolynomial running time of
O(Γn c) for computing the optimal solution value.

For the above recursion, at each iteration j only values from the previous
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iteration j− 1 are required. Thus we can construct a more refined implementa-
tion for computing z∗ as given by procedure Solve RKP in Figure 2. The above
procedure applies a better utilization of the dynamic programming array and
avoids copying array entries from one iteration to the next, yielding a space
requirement O(n + Γ c) and a time complexity O(Γn c). However, in this case
it would not be possible to reconstruct the optimal solution set, but only the
optimal solution value.

To obtain also the optimal solution set there are two straightforward possi-
bilities. On one hand, one could store the dynamic programming arrays for all
values of j, which allows a reconstruction of the solution set by backtracking;
however, this procedure increases the space requirement by a factor n. On the
other hand, one could store the current solution set for each entry of the dy-
namic programming array. An efficient approach would use a bit representation
of the at most n items of each solution which yields a total space requirement
of O(n + Γ c log n). But in this case it should be noted that the computation
of a new entry of the dynamic programming array requires copying a solution
set from a previous entry. Such a transfer of n bits cannot be done in constant
time but induces an increased running time of O(Γn c log n).

We will now present a more involved approach based on a recursive parti-
tioning scheme. It is related to the general framework given in Pferschy [15]
(see also Kellerer, Pferschy and Pisinger [10, Sec. 3.3]) but requires special con-
siderations since the conditions for directly applying the framework of [15] are
not met by (RKP).

The main idea is a bipartitioning of the item set N = N1 ∪ N2 with
N1 = {1, . . . , n/2} and N2 = {n/2 + 1, . . . , n} (assuming n to be even). Af-
ter computing the optimal solution value for the whole set N we reconstruct
the optimal solution set recursively for each set Ni.

We use the above recursion in a dynamic programming procedure
Solve RKP(c,Γ, N) which returns the optimal solution value of the robust knap-
sack problem for every capacity value d = 1, . . . , c. In addition we also store
for each array entry a counter k(d,Γ) which indicates how many items in the
corresponding solution set were taken from the first half of items, i.e. from N1.
It is trivial to update this counter whenever an item from N1 is inserted during
the dynamic programming recursion. Note that items are never removed from
a solution set. The counter value associated to the optimal solution value z∗

will be denoted by k∗.
In the recursion we will also use two non-robust variants of the knapsack

problem. On one hand we will use the standard knapsack problem (KP) in-
troduced above. It is well known that the optimal solution set of (KP) can be
computed in O(n c) time and O(n+ c) space by dynamic programming (see e.g.
Kellerer, Pferschy and Pisinger [10]). On the other hand we will use a cardinal-
ity constrained knapsack problem (E-kKP), where a strict cardinality bound k
is added to (KP) such that ∑

j∈N
xj = k. (6)

7



It was shown by Caprara et al. [6] that the optimal solution set of (E-kKP) can
be computed in O(k n c) time and O(n + k c) space by dynamic programming.
Note that both of these algorithms also makes use of the recursive partitioning
scheme from Pferschy [15]. Moreover, they both compute the respective optimal
solution values for all capacity values d = 1, . . . , c.

Our partitioning argument is based on the following observation.

Lemma 3 If k∗ ≥ Γ, then the optimal solution consists of the solutions of a
robust knapsack problem with parameter Γ for N1 and of an instance of (KP)
for N2 with nominal weights.

Otherwise, if k∗ < Γ, then the optimal solution consists of the solutions of
an instance of (E-kKP) with parameter k∗ and increased weights ŵj for N1 and
a robust knapsack problem with parameter Γ− k∗ for N2.

Proof. It was pointed out in Lemma 1 that in any feasible solution, and thus
also in an optimal solution, the Γ items with lowest index, i.e. indices up to jΓ,
are those which contribute an increased weight to the capacity; all remaining
items with higher indices contribute their nominal weight.

If k∗ ≥ Γ, then jΓ ∈ N1 and all items in the optimal solution belonging to N2

(if any) contribute only their nominal weight. If k∗ < Γ, then jΓ ∈ N2 and all k∗

items in the optimal solution belonging to N1 contribute their increased weight.
The remaining at most Γ− k∗ weight increases are contributed by items in N2.
Note that this second case includes the possibility that the optimal solution
contains less than Γ items. �

Based on Lemma 3 an algorithm for the robust knapsack problem is pre-
sented in Figure 3.

Theorem 4 The recursive partitioning algorithm of Figure 3 to compute an
optimal solution of (RKP) can be performed in O(Γn c) time and O(n + Γc)
space.

Proof. Using the dynamic programming scheme described above each call
to Solve RKP(c,Γ, N) requires O(Γn c) time and O(n + Γ c) space. More-
over, summarizing the above discussion we can also perform each call to
recursion(z∗, k∗, c∗,Γ, N) in O(Γ |N | c∗) time: Indeed, the main effort in the re-

cursion for k∗ ≥ Γ is the execution of Solve RKP(c∗,Γ, N1) requiring O(Γ |N |2 c∗)
time and the solution of an instance of (KP) with item set N2 which requires

only O( |N |2 c∗) time. For k∗ < Γ we have to solve an instance of (E-kKP) in

O(Γ |N |2 c∗) time and execute Solve RKP(c∗,Γ− k∗, N2) also in O(Γ |N |2 c∗) time.
To report the solutions sets for (KP) resp. (E-kKP) we have to rerun the re-
spective algorithms with capacity c1 resp. c2 since they compute the optimal
solution sets only for the given capacity value c∗ but not for all capacity values.
For both cases finding the combination c1 + c2 = c∗ can be done by a simple
pass through the dynamic programming arrays.
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begin
1. call Solve RKP(c,Γ, N) and determine z∗, c∗ and k∗;
2. call recursion(z∗, k∗, c∗,Γ, N);
end

recursion(z∗, k∗, c∗,Γ, N)
begin
0. if |N | = 1 then output trivial solution.
1. partition N into N1 = {1, . . . , d|N |/2e} and N2 = {d|N |/2e+ 1, . . . , |N |};
2. if k∗ ≥ Γ then
3. call Solve RKP(c∗,Γ, N1) returning z1(c∗);
4. solve (KP) with N2, c∗ and weights wj returning z2(c∗);
5. find a combination c1 + c2 = c∗ such that z1(c1) + z2(c2) = z∗;
6. output the solution set of (KP) for z2(c2);
7. let k∗1 be the counter associated to z1(c1);
8. recursion(z1(c1), k∗1 , c1,Γ, N1)
9. else
10. solve (E-kKP) with parameter k∗, N1, c∗ and

weights ŵj returning z1(c∗);
11. call Solve RKP(c∗,Γ− k∗, N2) returning z2(c∗);
12. find a combination c1 + c2 = c∗ such that z1(c1) + z2(c2) = z∗;
13. output the solution set of (E-kKP) for z1(c1);
14. let k∗2 be the counter associated to z2(c2);
15. recursion(z2(c2), k∗2 , c2,Γ− k∗, N2)
16. endif
end.

Figure 3: Recursive partitioning algorithm to find the optimal solution set of
(RKP).

Summing up the running time over all recursion levels we get a total running
time of

Γn c+

log n∑
i=0

Γn/2i c ≤ 3 Γn c

which proves the claimed time complexity.
The space requirements are trivially bounded by O(|N | + Γ c). Note that

before each call to recursion all previously used space can be set free and thus
reused in the next recursion level. �

Note that the results by Bertsimas and Sim [2, 3] (see also Section 4.2) ensure
that (RKP) can also be solved to optimality by solving n+ 1 nominal knapsack
problems (KP), see Section 4.2. Since (KP) can be solved in O(n c) time and
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O(n + c) space this approach would require only O(n + c) space, but O(n2 c)
time.

4. Other exact approaches to (RKP)

In this section we review some other algorithms for the optimal solution of
(RKP).

4.1 A compact MILP-formulation

The robust counterpart of an uncertain ILP was formulated by Bertsimas and
Sim [3] as a Mixed ILP (MILP) by adding a polynomial number of variables
and constraints. For the special case of (KP), the associated robust counterpart
looks as follows:

max
∑
j∈N

pj xj∑
j∈N

wj xj +
∑
j∈N

πj + Γρ ≤ 1

− wj xj + πj + ρ ≥ 0 j ∈ N
xj ∈ {0, 1}, πj ≥ 0, ρ ≥ 0 j ∈ N.

(7)

The resulting model, referred to as BSMILP in the following, involves n
binary and n+1 continuous variables, and n+1 constraints. Hence, from a the-
oretical point of view, enforcing robustness does not increase the computational
complexity of the problem.

4.2 Iterative solution of the nominal problem

A different approach for a special class of ILPs was presented again by Bertsimas
and Sim [2]. This algorithm applies to those problems in which all variables
are binary and only the coefficients in the objective function are subject to
uncertainty.

In this case, it is enough to observe that an optimal solution exists in which
variable ρ takes a value from a set of at most n+1 candidates; once ρ is fixed, the
resulting problem is a nominal problem in which some coefficients are changed.
Hence, one can guess the “correct” value of ρ, solve n+1 nominal problems and
take the best of the associated solutions as the optimal robust solution. It is
easy to see that, if one swaps the role of the objective function with that of the
uncertain constraint, (RKP) immediately fits within these settings, which allows
to adopt the scheme above. By solving n+ 1 nominal (KP) instances, obtained
by suitably changing the items’ weights, one yields the optimal solution of a
given (RKP) instance. The algorithm above requires O(nT ) time, where O(T )
denotes the computing time for solving the nominal (KP).
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4.3 Branch-and-cut algorithm

Fischetti and Monaci [7] noted that robustness, defined according to the defi-
nition of Bertsimas and Sim [2], can

be enforced with no need of introducing additional variables, by working on
the space of the original xj variables. To do this, one has to separate some
robustness cuts, that, for the knapsack problem, have the following structure∑

j∈N
wj xj +

∑
j∈S

wj xj ≤ c, ∀S ⊆ N : |S| ≤ Γ. (8)

For a general MILP, given the current solution x∗, the separation of robustness
cuts associated with a given row requires O(n) if the x∗ is integer; otherwise
separation can be carried out in O(n log n) time.

Note that the formulation of Section 4.1 and this Branch-and-Cut model
have the same lower bounds given by the LP relaxations as can be seen from
[3].

5. FPTAS and Robust Knapsack

Approximation algorithms are an obvious alternative to the computation of
exact solutions. In particular, the construction of a fully polynomial approxi-
mation scheme (FPTAS) for (RKP) is an interesting issue.

Note that the recursion (5) could be alternatively stated by exchanging the
roles of profit and weights. Without lengthy explanations we briefly state the
resulting recursion. Let y(p, s, j) be the smallest weight for a feasible solution
with total profit p in which only items in {1, . . . , j} ⊆ N are considered and
exactly s of them are included, all with their upper weight bound ŵj . Let y(p, j)
be the smallest weight for a feasible solution with total profit p in which only
items in {1, . . . , j} ⊆ N are considered and Γ of them change from their nominal
weight to their upper bound.

The entries of the dynamic programming array can be computed in analogy
to (5).

y(p, s, j) = min{y(p, s, j − 1), y(p− pj , s− 1, j − 1) + ŵj}
for p = 0, . . . , p(N), s = 1, . . . ,Γ, j = 1, . . . , n,

y(p, j) = min{y(p, j − 1), y(p− pj , j − 1) + wj}
for p = 0, . . . , p(N), j = Γ + 1, . . . , n

(9)

with the obvious initializations. Then the optimal solution value is given by
max{p | y(p, n) ≤ c}. The straightforward running time of this approach would
be O(Γn

∑
j∈N pj).

Since the running time is now pseudopolynomial in the sum of profits,
one can apply a standard scaling argument (cf. [10, Sec. 2.6]) to obtain an
FPTAS from our dynamic programming scheme. Indeed, using scaled profits
p̃j := b pj n/ (ε pmax)c, where pmax is the largest profit of an item, one obtains

11



an FPTAS for (RKP) with running time O(Γn3/ε) (neglecting the details of
retrieving the corresponding solution set, cf. Section 3).

However, one could also use the iterative method from Section 4.2 to reach
an FPTAS. Indeed, the iterative method can be applied also with any ap-
proximation algorithm for (KP). Again, n + 1 iterations yield a feasible so-
lution for (RKP) and preserve the approximation ratio of the algorithm for
the nominal problem. Therefore, one can take advantage of the highly tuned
FPTAS for (KP) (see Kellerer and Pferschy [8, 9]) with a running time com-
plexity of O(n log n + 1/ε3 log2(1/ε)) and obtain an FPTAS for (RKP) with
O(n2 log n + n · 1/ε3 log2(1/ε)) running time. This will dominate the above
approach for most reasonable parameter settings.

Of course, it would be possible to apply some of the technical features of
[8, 9] to speed up the FPTAS arising directly from the dynamic program for
(RKP). However, it seems that this is a futile exercise with little hope for an
overall improved running time complexity.

6. Computational experiments

In this section we computationally evaluate, on a large set of instances, the
dynamic programming algorithm of Section 2 and the other exact algorithms
for (RKP) described in Section 4. To the best of our knowledge, no (RKP)
instances were proposed so far in the literature, but those used by Klopfenstein
and Nace [12]; as already mentioned, these are however quite small instances
(up to 20 items) that cannot be used to compare dynamic programming with
the algorithms of Section 4.

Thus, we randomly generated the problems in our testbed in the following
way.

Test instances
In order to produce hard (RKP) instances, we first generated hard (KP)

instances and then defined the robust weight of each item accordingly. Ac-
cording to Pisinger [16], hard (KP) instances were obtained by taking profits
and weights as independent uniformly distributed values in a given interval; in
particular, the following 5 classes of (KP) instances were generated:

• UN, uncorrelated instances: pj and wj are integer values

randomly chosen in [1, c];

• WC, weakly correlated instances: wj values are integer values

randomly generated in [1, c], and each pj is chosen among the integers in

[max{1, wj − c/10}, wj + c/10];

• SC, strongly correlated instances: each weight wj is an integer value

randomly chosen in [1, c] and the associated profit is pj = wj + c/10;

12



• IC, inverse strongly correlated instances: each profit pj is an integer value

randomly chosen in [1, c] and the associated weight is wj = min{c, pj +
c/10};

• SS, subset sum instances: weights wj are integer values

randomly generated in [1, c] and pj = wj .

To test the performances of the algorithms with problems of different sizes,
we generated instances with c = 100 and n ∈ {100, 500, 1000, 5000}, and in-
stances with n = 5000 and c ∈ {1000, 5000}. For each combination of the
parameters, 10 instances were generated; thus our testbed includes 300 (KP)
instances.

As to uncertainty, in all the instances the robust weight wj of each item j
was randomly generated in [wj , c]. Finally, we considered different values of Γ,
namely Γ ∈ {1, 10, 50}.

All instances (and the corresponding solutions) are available at
http://www.or.deis.unibo.it/research.html.

Algorithms
We compared the following exact approaches for (RKP):

• BSMILP , i.e., the compact formulation (7) for (RKP) as proposed by
Bertsimas and Sim [3].

• BS2, i.e., the approach proposed by Bertsimas and Sim [2] consisting in
the iterative solution of nominal (KP) instances. To solve nominal (KP)
instances, we run as a black box the publicly available routine combo by
Martello, Pisinger and Toth [13], which is actually considered the state-
of-the-art for the exact solution of (KP) problems.

• BC, i.e., the branch-and-cut algorithm to robust optimization recently
proposed by Fischetti and Monaci [7]; in our implementation, separation
is carried out at each node of the enumerative tree.

• DP , i.e., the dynamic programming algorithm Solve RKP presented in
Section 3, but without the recursive scheme for space reduction.

All algorithms were coded in C language and run on a PC Intel Q6600
CPU@2.40GHz with 4GB RAM. For solving both MILP (7) and all LPs during
enumerative algorithm BC, the commercial solver IBM-ILOG Cplex 11.2 was
used. For each instance, a time limit of 300 CPU seconds was given to each
algorithm. For some classes of instances the CPU times are very small; thus,
in order to obtain a reliable estimate, it was necessary to compute, for each
instance, the CPU time spent while solving it 100 times and correspondingly
divide the total time.
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Results
Table 1 reports the outcome of our experiments on the 300 instances of our

testbed for the 3 different values of Γ. In particular, each line in the table refers
to a set of 10 instances, characterized by number of items n, capacity c and
type t ∈ {UN,WC, SC, IC, SS}, and reports, for each value of Γ, the average
computing time (arithmetic mean, in seconds) required by each algorithm (for
unsolved instances, we counted a computing time equal to the time limit).

Computational results show that our dynamic programming algorithm is
very effective in solving (RKP) instances where a small number of coefficients
change, as its complexity grows linearly with Γ. For larger values of Γ the
iterative solution of (KP) instances, as proposed by Bertsimas and Sim [2],
turns out to be the best algorithmic approach. However, the computing time
of BS2 may vary in a substantial way when solving instances of different type
– although of the same size – which is not the case for algorithm DP , whose
computing time is more stable. This is particularly evident when instances with
c = 5000 are considered.

The two algorithms above outperform the remaining two algorithms,
BSMILP and BC. This is not surprising, as the latter are based on the use
of a general purpose ILP solver, which is usually less efficient than ad hoc al-
gorithms for knapsack problems. In addition, cutting planes are not the best
suitable way to enforce robustness when problems with integer variables are
considered, as noted by Fischetti and Monaci [7], which leads to a number of
unsolved instances in our testbed.

7. Conclusions

In this paper we considered the robust knapsack problem, i.e., the uncertain
variant of the well-known knapsack problem in which robustness is enforced ac-
cording to the Bertsimas-Sim definition (see, [3]). For this problem we presented
a dynamic programming algorithm and studied its time and space complexities,
as well as techniques aimed at reducing the space complexity. We then compu-
tationally tested this algorithm on a large set of randomly generated instances,
and compared the performances of the algorithm with those of other exact ap-
proaches proposed in the literature for (RKP). Computational results showed
that dynamic programming is a viable way for solving (RKP) even for large-sized
instances.
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