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Abstract

The quickest path problem is to 'nd a path to send a given amount of data from the source to the destination
with minimum transmission time. To 'nd the quickest path, existing algorithms enumerate non-dominated
paths with distinct capacity, and then determine a quickest path by comparing their transmission time. In this
paper, we propose a label-setting algorithm for 'nding a quickest path by transforming a network to another
network where an important property holds that each subpath of a quickest path is also a quickest path.
The proposed algorithm avoids enumerating non-dominated paths whose transmission time is greater than the
minimum transmission time. Although the computational complexity of the proposed algorithm is the same
as that of existing algorithms, experimental results show that our algorithm is e3cient when a network has
two or more non-dominated paths.
? 2003 Published by Elsevier Ltd.
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1. Introduction

The quickest path problem (QPP) is to 'nd a path to send a given amount of data from the
source to the destination with minimum transmission time in a network where each arc has a lead
time and capacity. The transmission time of a path depends on both its lead time and capacity. In
that respect, the quickest path can be regarded as a bicriterion path problem of which objectives are
to minimize the length of paths and to maximize the capacity of paths between the origin and the
destination.

Let G=(N; E) be a directed network where N and E denote the set of nodes and arcs, respectively.
For each arc (i; j) ∈A, nodes i and j are called the head and tail of the arc, respectively. We assume
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without loss of generality that G has no parallel arcs, that is, no two arcs have the same tail and
head nodes because any directed network with parallel arcs can be easily transformed into another
network without parallel arcs. For an arc (i; j); l(i; j)¿ 0 and c(i; j)¿ 0 denote the lead time and
capacity of (i; j). A sequence of distinct nodes, p = (u = u1; u2; : : : ; v = uk) with k¿ 2, is called a
path from u to v or a u–v path if it satis'es the condition that (ui; ui+1) ∈A for each 16 i6 k − 1.
The lead time of path p is de'ned as

l(p) =
k−1∑

i=1

l(ui; ui+1)

and the capacity of path p is de'ned as

c(p) = min
16i6k−1

c(ui; ui+1): (1)

Then, the transmission time required to send � units of data through path p is de'ned as

t(p) = l(p) +
�

c(p)
:

Although QPP has wide range of applications for routing in communication and transportation net-
works, it had not received much attention until Chen and Chin [1] suggested their algorithm. In
fact, QPP was originally suggested by Moore [2], who also proposed an algorithm whose time
complexity is actually O(hm + hn log n) where |N | = n; |E| = m, and h is a parameter that never
exceeds the number of distinct capacities greater than the capacity of the shortest path, with respect
to lead time, in the original network. Chen and Chin [1] proposed an algorithm with time complexity
O(rm + rn logm) and additional space requirement of O(rm) for a given value of � where r(6m)
denotes the number of distinct capacity values in the network G. In Chen and Chin’s algorithm,
the original network is transformed into another network by creating r copies for each node and
arc in G. In the transformed network, we consider only the lead time of each arc because the ca-
pacity of any path can be automatically calculated from the nodes which it passes through. Rosen
et al. [3] developed an alternative algorithm for QPP with time complexity O(rm + rn logm) and
additional space requirement of O(n). Martins and Santos [4] regarded QPP as a bicriterion path
problem, and proposed an algorithm which is similar to Rosen et al.’s algorithm. As further studies
on extended problems of QPP, Chen and Hung [5] presented an O(mn2) time algorithm that 'nds
all-pairs quickest paths, and Chen [6] presented an O(kmn3 + kmn log k) algorithm that 'nds the
'rst k quickest simple paths for a given pair of nodes. Kagaris et al. [7] considered the minimum
transmission time problem, a generalization of QPP where data can be transmitted through more than
one path, and showed that the problem is NP-complete. Xue et al. [8] showed that the minimum
transmission time problem with integer capacities and integer delays is equivalent to the maximal
dynamic Kow problem. In addition, Lin [9] proposed a variation of QPP where the capacity of each
arc is stochastic, not deterministic.

In this paper, we are concerned with two drawbacks of existing algorithms. First, to 'nd a quickest
path, the existing algorithms enumerate non-dominated paths with distinct capacity where a path p
is said to be non-dominated if there exists no path p′ such that l(p′)¡l(p) and c(p′)¿ c(p), or
l(p′) = l(p) and c(p′)¿c(p). One of the non-dominated paths is selected as a quickest path by
comparing their transmission time required to send a given � units of data. This approach seems
to be e3cient for 'nding quickest paths for all values of �, but not for the case where � is 'xed
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because unnecessary non-dominated paths, which are not quickest, have to be enumerated. On the
other hand, Chen and Chin [1] showed that a Dijkstra-like labeling algorithm might fail to solve
QPP because QPP does not satisfy the property that the subpath of a quickest path is also a quickest
path.

In this paper, we propose a label-setting algorithm, like Dijkstra’s algorithm, that can solve QPP
without enumerating non-dominated paths. The main idea of the proposed algorithm is that a simple
modi'cation of Chen and Chin [1] method leads to another transformed network which has the nice
property that the subpath of a quickest path is also a quickest path. By applying the label-setting
algorithm to QPP in the transformed network, the enumeration of unnecessary non-dominated paths
can be avoided. In addition, to reduce the amount of storage space required, we propose an e3cient
implementation algorithm which can solve QPP by performing the transformation of the original
network implicitly.

The organization of this paper is as follows: In Section 2, we propose a simple label-setting
algorithm for QPP which can be applied to transformed networks. In Section 3, we present an
e3cient implementation of the label-setting algorithm by performing the transformation of the original
network implicitly and provide an example which illustrates how the proposed algorithm works. In
Section 4, we present experimental results that show the e3ciency of the proposed algorithm. Finally,
some concluding remarks are given in Section 5.

2. A simple label-setting algorithm for QPP

We begin with an example in Fig. 1 that illustrates how existing algorithms 'nd a quickest path.
The source and destination are node 1 and 7, respectively.

In Fig. 1, there are four non-dominated paths from node 1 to node 7 as shown in Table 1. Path
1 → 3 → 6 → 7 is the quickest one, but its subpath, 1 → 3 → 6, is not the quickest path from node
1 to node 6, which makes a Dijkstra-like labeling algorithm fail to solve QPP. On the other hand,
Chen and Chin’s algorithm (CCA) [1] enumerates four non-dominated paths presented in Table 1,
although it searches them in the transformed network instead of the network in Fig. 1. Rosen et al.’s
algorithm [3] and Martins and Santos’ algorithm (MSA) [4] enumerate the 'rst three non-dominated
paths except the last path in Table 1.

Fig. 1. An example for the quickest path problem.
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Table 1
The non-dominated paths found by existing algorithms

Non-dominated path Lead time Capacity Transmission time

1 → 5 → 6 → 7 15 6 55
1 → 4 → 6 → 7 16 8 46
1 → 3 → 6 → 7 17 15 33
1 → 2 → 6 → 7 24 20 36

Fig. 2. Transformation procedure.

The existing algorithms have a common point that they neither calculate the transmission time
of paths nor make use of this information until all non-dominated paths are found. By using the
transmission time of paths, however, it is possible to avoid enumerating unnecessary non-dominated
paths that have the transmission time greater than the minimum transmission time. For example, the
transmission time of path 1 → 4 is 40, which is greater than the minimum transmission time, 33, of
the quickest path. Also, the transmission time of path 1 → 5 is 49. The non-nominated paths which
include the subpaths, such as 1 → 4 and 1 → 5, cannot be a quickest one, and consequently need
not be enumerated.

We already know that a direct application of label-setting approach to QPP might fail to 'nd a
quickest path. However, it can be successfully applied to QPP in a transformed network. We explain
how to construct the transformed network from a given network. Let {c1; c2; : : : ; cr} be the set of
distinct capacity values in G. We assume without loss of generality that c1 ¡c2 ¡ · · ·¡cr . The
procedure for constructing the transformed network G′ = (N ′; E′) from G = (N; E) is presented in
Fig. 2.

The origin and destination in the transformed network are scr and (n+ 1), respectively. Note that
Step 1 in Fig. 2 is similar to Chen and Chin’s transformation procedure [1], but Step 1 sets each
arc’s capacity explicitly. For example, consider a network that is identical to the network presented
in Fig. 1 except that node 5 and its incident arcs are removed for the sake of simplicity. Then, it is
transformed into the network in Fig. 3 by the transformation procedure.
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Fig. 3. An example of the transformation procedure.

Recall that for all (xci ; ycj) ∈E′, c(xci ; ycj) is set to min{ci; cj} by the transformation procedure
in Fig. 2. This rule, together with the de'nition of E′, makes the transformed network have the
property that the capacity of any path in the transformed network is determined by its last arc’s
capacity. In addition, the transformed network has another important property that “any subpath of
a quickest path is also a quickest path”, which is shown in Theorem 1.

Theorem 1. Let p be a quickest path of G′. Each subpath of p is also a quickest path of G′.

Proof.

(i) In case that the last node of p is not node (n + 1).
Let p=(x

ci0
0 ; x

ci1
1 ; : : : ; x

cik
k ). Let q be an arbitrary subpath of p such that q=(xciuu ; x

ciu+1
u+1 ; : : : ; x

civ
v )

and 06 u¡v6 k. Suppose that q is not a quickest path. Let q′ be a quickest path from
xciuu to xcivv in G′. Since the destinations of q and q′ are the same, c(q) = c(q′) = civ . Hence,
l(q)¿l(q′). After replacing the subpath q of p by q′, we can obtain another path p′ such
that l(p)¿l(p′) and c(p) = c(p′), which implies that t(p)¿t(p′). This is contradictory to
the assumption. Therefore, each subpath of p is also a quickest path of G′.

(ii) In case that the last node of p is node (n + 1).
Let p = (x

ci0
0 ; x

ci1
1 ; : : : ; x

cik
k ; n + 1). For any subpath q which does not pass through the last arc

(x
cik
k ; n + 1), we can show by a similar argument as (i) that q is also a quickest path. Let q

be a subpath of p such that q = (xciuu ; x
ciu+1
u+1 ; : : : ; x

cik
k ; n + 1) and 06 u6 k. Suppose q is not a

quickest path. Let q′ be a quickest path from xciuu to (n + 1) in G′.
(a) If q′ goes through node x

cik
k , then c(q) = c(q′) and l(q)¿l(q′). By the same argument

as used in (i), we can obtain another path p′ such that l(p)¿l(p′); c(p) = c(p′), and
t(p)¿t(p′). This is contradictory to the assumption. Therefore, q is also a quickest path
of G′.
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Fig. 4. A simple label-setting algorithm for QPP.

(b) If q′ doesn’t go through node x
cik
k , it is possible that the capacity of q′ does not equal that

of q. By the assumption, we have

t(q) = l(q) +
�

c(q)
¿l(q′) +

�
c(q′)

= t(q′): (2)

Let p′ be a path which is obtained by replacing the subpath q of p by q′. Recall that
c(p) = c(q) and c(p′) = c(q′), since q and q′ go through the last arcs of p and p′,
respectively. Adding l(p) − l(q) to both sides of inequality (2), we obtain

(l(p) − l(q)) + l(q) +
�

c(q)
¿ (l(p) − l(q)) + l(q′) +

�
c(q′)

⇔ t(p)¿t(p′);

which contradicts the assumption that p is a quickest path. Therefore, q is also a quickest
path.

Using Theorem 1, we can develop a Dijkstra-like label-setting algorithm for 'nding a quickest
path in the transformed network as presented in Fig. 4. Let AG′(x) denote the set of arcs emanating
from x in G′, i.e., AG′(x) = {(x; y)|(x; y) ∈E′}. We de'ne c(0; x) = ∞ for an arbitrary node x, and
�=∞ is de'ned to be 0. A label d(x) represents the transmission time required to send data from
the source to x through the path p which is the quickest among the paths found until each iteration.
Path p can be constructed recursively by pred(x).

We can show the correctness of SLSA by the same argument that is used by Hu [10] for the
proof of the correctness of Dijkstra algorithm. Hu’s argument is based only on the property that
each subpath of a shortest path must be also a shortest path. Hence, the correctness of SLSA can
be directly shown using Theorem 1 and Hu’s argument.

The transformed network has (rn + 1) nodes and (rm + r) arcs. Since the running time of the
best polynomial time algorithm for solving the shortest path problem in G = (N; E) is known to be
O(m+ n log n) [11], the computational complexity of SLSA is O(rm+ rn log rn), which is the same
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as that of Chen and Chin’s algorithm (CCA). However, SLSA has two advantages in respect of the
average performance: First, it can 'nd a quickest path without enumerating non-dominated paths.
While CCA has to 'nd a shortest path from scr to tci for each i = 1; : : : ; r, SLSA 'nds only one
non-dominated path which is also a quickest path. This situation is similar to the case of the shortest
path problem where 'nding a shortest path from the source to one destination is more e3ciently
solved than 'nding shortest paths from the source to the other nodes, but both the problems have
the same computational complexity. The other advantage is that SLSA calculates the transmission
time of each path from the source to other nodes, and makes use of this information to prevent paths
with too great transmission time from being searched. This feature will reduce the running time of
SLSA signi'cantly.

3. An e�cient implementation of the simple label-setting algorithm for QPP

Although SLSA has two advantages in respect of performance, it has two problems to be resolved
for its e3cient implementation. First, SLSA can be applied only after the original network is trans-
formed using the procedure given in Fig. 2. The transformation may seem some tedious work. The
other problem is that the amount of storage space for SLSA is O(rm + rn). However, as shown in
Fig. 3, some nodes and arcs in the transformed network need not be generated. For example, nodes
330; 320; 430; 420 and their incident arcs can be removed without impairing the correctness of SLSA.

The problems above can be resolved by developing an e3cient implementation of SLSA which
runs without transforming network explicitly. The basic idea is that each node is allowed to have
multiple labels and each label is created only when a path to the node is found. Each label of a node
keeps the transmission time required to send data from the source to the node through a certain path
with distinct capacity. Therefore, the number of labels that a node x can have at a particular iteration
of the new algorithm equals the number of s–x paths which have been found until the iteration and
have distinct capacity.

A label-setting algorithm without generating the transformed network explicitly, which will be
referred to as LSA, is presented in Fig. 5. SLSA 'nds paths in the transformed network, but LSA
'nds paths in the original network. In LSA, a label d(x; c) represents the transmission time required to
send data from the source to x through a path whose capacity is c. A quickest path can be constructed
recursively by the last (x∗; c∗) to be selected in LSA and pred(x∗; c∗), where pred(x∗; c∗) represents
the node previous to x∗ in the quickest path. Also, ;ag(x; c) = 1 means that at least one s–x path
whose capacity is c has been found. On the contrary, ;ag(x; c) = 0 means that no s–x path whose
capacity is c has yet been found. H represents a heap to store labels, and AG(x) denotes the set of
arcs emanating from x in G, i.e., AG(x) = {(x; y)|(x; y) ∈E}.

The following heap operations are used in LSA (For details, see [11].):

create-heap(H): creates an empty heap.
insert(label, H): inserts a new label into H .
'nd-min(H): 'nds and returns a label with minimum value in H .
decrease-key(value; label; H): reduces the value of a label from its current

value to a new value.
delete-min(label, H): deletes a label with minimum value.
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Fig. 5. A label setting algorithm for QPP.

In LSA, lines 8 and 6 mean that LSA terminates if a quickest path is found or there remains no
label in H , which implies that there exists no path from s to t. Note that s is selected as x∗ at the
'rst iteration, and then the transmission time from s to each node in AG(s) is calculated at line 14.
At later iterations, transmission time to any node is calculated at line 15. If a new path from s to x
is found and its capacity is not equal to any capacity value of the previously found paths from s to
x, then a new label storing the transmission time of the new path will be created and inserted into
the heap H (lines 22–25). Otherwise, the transmission time of the newly found path is compared
with that of the previously found path with the same capacity. If the former is less than the latter,
the corresponding label is set to an improved value(lines 17–21).

Let us return to the example in Fig. 1. We illustrate how LSA solves the problem as follows in
Table 2:

In Table 2, the second column(d(x∗; c∗)) represents the label obtained by 'nd-min(H) function at
each iteration of LSA. The last column represents the labels contained in H at each iteration after
updating the labels of nodes reached by one of arcs in AG(x∗). The labels in H are presented in
non-decreasing order for the sake of convenience.

To understand how LSA can resolve the shortcomings of SLSA, consider node 6 in Fig. 1. Since
there are 've distinct values in G, the transformation procedure makes 've copies of node 6 in
the transformed network. However, as shown in Table 2, LSA keeps only two labels which are
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Table 2
An example illustrating LSA

Iteration d(x∗; c∗) S H

Initialization — ∅ {d(1; 30)} = {0}
{d(2; 30); d(3; 15); d(4; 8); d(5; 6)}

1 d(1; 30) {(1; 30)} ={18; 24; 40; 49}
{d(3; 15); d(6; 30); d(4; 8); d(5; 6)}

2 d(2; 30) {(1; 30); (2; 30)} ={24; 28; 40; 49}
{d(6; 30); d(6; 15); d(4; 8); d(5; 6)}

3 d(3; 15) {(1; 30); (2; 30); (3; 15)} ={28; 29; 40; 49}
{d(6; 15); d(7; 20); d(4; 8); d(5; 6)}

4 d(6; 30) {(1; 30); (2; 30); (3; 15); (6; 30)} ={29; 36; 40; 49}
{d(7; 15); d(7; 20); d(4; 8); d(5; 6)}

5 d(6; 15) {(1; 30); (2; 30); (3; 15); (6; 30); (6; 15)} ={33; 36; 40; 49}
6 d(7; 15) Stop —

associated with node 6: d(6; 30) for path 1 → 2 → 6 and d(6; 15) for path 1 → 3 → 6. In fact,
there exist four paths from node 1 to node 6. The labels for path 1 → 2 → 6 and path 1 → 3 → 6
are created by LSA, but the labels for path 1 → 4 → 6 and path 1 → 5 → 6 are not created by
LSA because they will not be searched until a quickest path is found. In this way, LSA can save
the amount of required storage space.

4. Experimental results

We implemented LSA and compared its performance with MSA which has been known to be
the most e3cient [4]. For the shortest path algorithm which is repeatedly executed in MSA, we
use Dijkstra’s algorithm implemented with double bucket data structure. LSA was also implemented
using double bucket data structure.

The generation of experimental data consists of two steps: First, we generated 20 capacitated
minimum cost Kow networks by running NETGEN [12]. The cost and capacity of an arc of generated
networks correspond to the lead time and capacity of the arc of QPPs, respectively. Some input
parameters of NETGEN need to be set before generating capacitated minimum cost Kow networks.
We were concerned with six parameters, and the other parameters were set to arbitrary values. The
number of nodes and the number of arcs were set to values ranging from 5,000 to 60,000 and from
80,000 and 500,000, respectively. The minimum cost and maximum cost of arcs were assigned to
values ranging from 10 to 10,000. Finally, the minimum capacity and maximum capacity of arcs
were also set to values ranging from 10 to 10,000.

Next, we generated six QPPs from each capacitated minimum cost Kow network by resetting its
arcs’ capacity so that the number of distinct capacity values in QPPs is 10, 20, 40, 60, 80 or 100.
To reset arcs’ capacity, distinct capacity values in a generated network are sorted in non-decreasing
order, and then distinct capacity values are divided into the prede'ned number of groups. The number
of groups was set to 10, 20, 40, 60, 80 or 100. Finally, the capacity of each arc of one group was
reset to the maximum capacity value of the group.
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Fig. 6. Average time ratio of LSA to MSA.

Experimental results are given in Table 3. The 'rst column(problem), the second column(nodes),
and the third column(arcs) in Table 3 represent problem number, the number of nodes, the number of
arcs, respectively. The fourth column(sp time) represents the computation time that the shortest path
algorithm takes to 'nd a shortest path in each network data. The 'fth column through the last column
present the performance results of LSA and MSA when the number of distinct capacity values in
experimental networks is 10, 20, 40, 60, 80 or 100. The 'fth column is the computation time that
LSA takes to 'nd a quickest path, and the sixth one (|S|) is the number of labels popped from the
heap H . The seventh one (|H |) represents the number of labels remaining in the heap H just before
LSA terminated. The eighth column(time) is the time that MSA takes to 'nd a quickest path, and
the ninth one (nd paths) is the number of non-dominated paths found by MSA algorithm. Note that
the execution time of LSA and MSA excludes the preprocessing time which is spent on initializing
and setting up data structure. In addition, sp time is always less than the execution time of MSA
even when network data have only one non-dominated path. The reason is that even when there
exists only one path from the source to the destination, MSA executes the shortest path algorithm
twice: At the 'rst time, MSA 'nds one non-dominated path and removes some arcs whose capacity
values are less than the capacity of the non-dominated path. At the second time, MSA terminates
the shortest path algorithm without reaching the destination, which implies that there exists no other
path between the origin and the destination.

As shown in Table 3, LSA takes less time than MSA except for some data which have only one
non-dominated path. When network data have two or more non-dominated paths, LSA seems far
faster than MSA. As the number of non-dominated paths becomes greater, MSA tends to take more
time because the number of shortest path problems to be solved during the execution of MSA is
proportional to the number of nondominated paths. Fig. 6 shows how the time ratio of LSA to MSA
changes as the number of non-dominated paths increases.

The time ratio was calculated by classifying the experimental results in Table 3 according to
their number of non-dominated paths and averaging the ratio of LSA’s execution time to MSA’s
execution time of data of each group. For example, when the number of non-dominated paths is
four, the time ratio is 0.18, which implies that LSA is on the average about 've and a half times
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Table 3
The experimental results
Problem Nodes Arcs sp time No. of distinct capacity = 10 No. of distinct capacity = 20 No. of distinct capacity = 40

LSA MSA LSA MSA LSA MSA

Time |S| |H | Time nd paths Time |S| |H | Time nd path Time |S| |H | Time nd path

1 5000 80,000 0.01 0.03 741 8517 0.04 5 0.01 1043 12,099 0.06 6 0.04 1359 16,048 0.10 7
2 5000 100,000 0.00 0.03 355 5187 0.14 7 0.03 714 10,311 0.12 7 0.04 891 12,933 0.10 8
3 15,000 300,000 0.04 0.22 14,712 39,049 0.26 2 0.15 11,228 32,700 0.34 2 0.18 11,587 36,456 0.29 2
4 20,000 140,000 0.02 0.11 14,782 43,909 0.42 6 0.08 8188 36,851 0.43 9 0.06 6885 35,383 0.50 12
5 25,000 120,000 0.01 0.02 2113 7533 0.19 4 0.03 2384 8652 0.20 6 0.03 4744 16,203 0.22 7
6 30,000 300,000 0.06 0.17 20,312 41,559 0.25 2 0.18 20,455 42,940 0.25 2 0.20 20,748 45,342 0.24 2
7 30,000 500,000 0.11 0.17 10,362 59,832 0.17 1 0.20 10,357 59,785 0.17 1 0.16 10,354 59,728 0.18 1
8 40,000 400,000 0.03 0.33 37,292 54,461 0.25 2 0.33 38,289 61,808 0.24 2 0.37 39,351 69,644 0.24 2
9 40,000 400,000 0.02 0.06 4195 14,791 0.05 2 0.03 3496 12,464 0.05 2 0.04 3637 13,029 0.05 2

10 40,000 400,000 0.04 0.31 26,510 138,167 0.95 7 0.47 49,327 245,855 1.40 12 0.82 82,203 420,489 1.72 17
11 45,000 500,000 0.03 0.04 2081 19,670 0.59 5 0.03 1908 18,740 0.73 7 0.02 2060 20,270 1.02 10
12 50,000 500,000 0.01 0.04 1095 9039 0.43 3 0.04 1095 9039 0.38 4 0.03 1095 9046 0.79 5
13 50,000 500,000 0.11 0.31 28,905 87,605 1.64 7 0.34 32,689 115,834 2.62 11 0.39 38,373 160,604 2.77 14
14 50,000 500,000 0.10 0.39 44,844 144,937 1.40 8 0.44 47,925 189,450 1.98 13 0.41 47,034 214,110 2.34 16
15 55,000 450,000 0.09 0.26 34,291 60,041 0.34 2 0.28 34,513 61,887 0.34 2 0.31 34,855 64,220 0.33 2
16 60,000 300,000 0.04 0.08 9291 29,439 0.20 3 0.08 9878 31,896 0.20 3 0.08 10,238 33,339 0.19 3
17 60,000 350,000 0.13 0.25 35,879 119,267 0.72 3 0.42 52,110 176,013 0.85 5 0.59 81,093 246,114 0.87 5
18 60,000 400,000 0.06 0.28 36,388 90,143 0.34 2 0.32 37,198 94,999 0.34 2 0.30 38,200 99,337 0.35 2
19 60,000 400,000 0.09 0.18 21,624 55,799 0.54 2 0.21 21,637 55,877 0.54 2 0.18 21,676 56,155 0.88 3
20 60,000 500,000 0.12 0.23 22,789 117,850 0.68 4 0.26 23,239 135,940 0.91 6 0.24 23,321 145,232 1.11 6
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Table 3 (Continued).

Problem No. of distinct capacity = 60 No. of distinct capacity = 80 No. of distinct capacity = 100

LSA MSA LSA MSA LSA MSA

Time |S| |H | Time nd paths Time |S| |H | Time nd paths Time |S| |H | Time nd paths

1 0.05 1610 19,073 0.08 8 0.05 1732 20,395 0.09 8 0.03 1857 22,063 0.08 8
2 0.03 820 12,234 0.10 8 0.04 845 12,586 0.09 8 0.04 859 12,874 0.08 8
3 0.18 12,125 40,336 0.25 2 0.19 12,413 42,734 0.26 2 0.21 12,665 44,426 0.25 2
4 0.08 7707 40,405 0.56 12 0.09 7384 39,364 0.55 12 0.10 7503 40,646 0.44 12
5 0.04 7312 23,782 0.22 7 0.06 12,407 33,345 0.23 7 0.07 9909 26,602 0.21 7
6 0.22 20,955 47,092 0.25 2 0.23 21,068 48,006 0.24 2 0.23 21,147 48,561 0.24 2
7 0.21 10,354 59,729 0.18 1 0.20 10,354 59,728 0.17 1 0.23 10,354 59,728 0.17 1
8 0.40 39,962 73,767 0.24 2 0.38 40,275 75,842 0.24 2 0.45 40,496 77,363 0.24 2
9 0.04 3735 13,432 0.05 2 0.04 3821 13,741 0.05 2 0.07 3879 13,957 0.05 2

10 0.19 16,417 129,288 2.21 19 0.24 18,597 146,688 2.32 21 0.21 20,229 160,235 2.30 24
11 0.06 2132 21,235 1.17 11 0.06 2105 20,957 1.55 12 0.09 2121 21,222 1.59 12
12 0.04 1097 9072 1.63 6 0.02 1098 9091 1.63 6 0.06 1108 9210 1.66 7
13 0.38 35,220 130,152 3.36 18 0.26 24,486 90,483 2.80 17 0.46 40,485 146,373 2.83 18
14 0.44 46,867 222,577 2.43 17 0.49 46,971 226,955 2.72 18 0.47 47,109 229,746 2.59 19
15 0.33 35,136 65,942 0.34 2 0.32 35,303 67,011 0.33 2 0.35 35,411 67,670 0.33 2
16 0.11 10,360 33,799 0.20 3 0.12 10,450 34,099 0.19 3 0.11 10,535 34,477 0.21 3
17 0.97 103,866 284,328 1.02 5 1.47 116,037 302,646 1.00 6 1.23 129,429 305,521 1.26 7
18 0.33 38,790 101,769 0.33 2 0.35 39,187 103,409 0.35 2 0.39 39,480 104,575 0.34 2
19 0.22 21,688 56,237 0.87 3 0.19 21,691 56,245 0.83 3 0.20 21,695 56,301 0.69 3
20 0.37 23,633 151,195 1.01 7 0.28 23,847 154,156 1.17 7 0.33 24,568 159,986 1.08 6
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faster than MSA. In Fig. 6, we 'nd that as the number of non-dominated paths increases, the time
ratio tends to decrease.

In addition, |S| is relatively small compared to the number of |H |. This indicates that only a small
portion of labels are permanently labelled. The total number of labels, (|S| + |H |), appeared far less
than the worst-case number of labels, rn. This implies that the storage space requirement of LSA is
not too restrictive.

5. Conclusion

In this paper, we proposed a label-setting algorithm for 'nding a quickest path when the amount
of data to be transmitted is given. The proposed algorithm is based on the important property, that
each subpath of a quickest path is also a quickest path, which holds in a transformed network. The
proposed algorithm calculates the transmission time from the origin to intermediate nodes, which is
utilized to avoid enumerating non-dominated paths whose transmission time is far greater than the
minimum transmission time. Although the computational complexity of the proposed algorithm is
the same as that of existing algorithms, experimental results showed that it is more e3cient than
existing algorithms when a network has two or more non-dominated paths.
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