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The quadratic assignment problem (QAP) is a challenging combinatorial problem. The problem is NP-hard
and in addition, it is considered practically intractable to solve large QAP instances, to proven optimality,
within reasonable time limits. In this paper we present an attractive mixed integer linear programming
(MILP) formulation of the QAP. We first introduce a useful non-linear formulation of the problem and then
a method of how to reformulate it to a new exact, compact discrete linear model. This reformulation is effi-
cient for QAP instances with few unique elements in the flow or distance matrices. Finally, we present
optimal results, obtained with the discrete linear reformulation, for some previously unsolved instances
(with the size n = 32 and 64), from the quadratic assignment problem library, QAPLIB.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The quadratic assignment problem was introduced by
Koopmans and Beckmann (1957) in the basic form:

min
Xn

i¼1

Xn

j¼1

Xn

k¼1

Xn

l¼1

aijbkl � xikxjl ð1Þ

subject to

Xn

i¼1

xij ¼ 1; j ¼ 1; . . . ;n; ð2Þ

Xn

j¼1

xij ¼ 1; i ¼ 1; . . . ;n; ð3Þ

xij 2 f0;1g; i; j ¼ 1; . . . ;n; ð4Þ

aij are given distances between locations and bkl flows between facil-
ities defined in the matrices, A and B. The QAP is an NP-hard problem
and many different formulations and methods for this problem have
been suggested. These include heuristics (Taillard, 1991), linear
reformulation techniques (Adams et al., 2007) and convex quadratic
programming (Anstreicher and Brixius, 2001) to name a few. Com-
puting lower bounds for QAPs using SDP relaxations has recently
also been widely studied (Peng et al., 2010). In fact over one hundred
papers have been published in the subject since 1999 according to
Loiola et al. (2007). However, to this date only a few QAPs of size
n P 30 from QAPLIB (Burkard et al., 1997; Hahn and Anjos, 2002)
ll rights reserved.

esterl@abo.fi (T. Westerlund).
have been solved to proven optimality including the famous
nug30 and the kra instances (Anstreicher et al., 2002). Most of these
instances have been solved using computers connected in parallel
and the CPU times required to solve the models, calculated for a
single computer, are immense. It should however be mentioned
that in addition to the instances in the QAPLIB Drezner et al.
(2005) reported solutions of some special classes of QAPs as big as
n = 75.1

This paper presents a compact exact discrete linear reformula-
tion (DLR) of the QAP that can be solved using general MILP solvers.
This formulation gives promising results on instances where one of
the matrices has few unique elements per row. Various different
MILP formulations have been presented through the years. The
model with the smallest amount of variables and constraints, is
to our knowledge, the model presented by Kaufman and Broeckx
(1978). Their model contains n2 binary variables, n2 real variables
and 2n + n2 constraints. The formulation gives, however, very poor
lower bounds and the tightening of the formulation has recently
been studied by Zhang et al. (2010). The MILP model in this paper
contains a � n2 binary variables, b � n2 real variables and c � n + d � n2

constraints, where a, b, c and d are problem specific parameters. In
the worst case, our formulation has n2 binary variables, n3 real
variables and 2n + n3 constraints. However, this is almost never
the case. Values for these parameters for some instances in
the QAPLIB are found in Sections 3–4. With respect to the nota-
tions, vectors and matrices are written in bold face throughout
the paper.
1 In addition, after the submission of this paper, Fischetti, Monaci and Salvagin
reported the solution of the instance esc128 in QAPLIB with n = 128.
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2. QAP-reformulations

Consider two permutation vectors p and ~p where pi = k if facility
i is at location k and ~pi ¼ k if facility k is at location i. The objective
function in Eq. (1), can then be written as:Xn

i¼1

Xn

j¼1

apipj
bij ¼

Xn

i¼1

Xn

j¼1

aijb~pi ~pj
: ð5Þ

In matrix form Eqs. (2) and (3) can be written as Xe = XTe = e where
e is a vector with all elements equal to 1 and X is the so-called per-
mutation matrix containing the binary variables, xij. The permuta-
tion vectors p and ~p are given by p = Xq and ~p ¼ XT q where
qT = (1,2, . . .,n). Using the properties of the permutation vectors,
Eq. (5) can be rewritten in the form:Xn

i¼1

Xn

j¼1

apijbi~pj
¼
Xn

i¼1

Xn

j¼1

a0ijb
0
ij; ð6Þ

where a0ij and b0ij are given by:

a0ij ¼
Xn

k¼1

akjxik 8 i; j; ð7Þ

b0ij ¼
Xn

k¼1

bikxkj 8 i; j: ð8Þ

The row sum and the column sum of the binary variables x are equal
to 1 according to Eqs. (2) and (3).

Using more compact matrix notation, Eqs. (6)–(8) can also be
written as XA�BX where �stands for the scalar product of the
matrices, defined as the sum of the product of the corresponding
elements. This representation is considered later on in Section 3.
From Eq. (6) we find that the objective function is a sum of bilinear
terms, a0ijb

0
ij, of discrete variables, where each variable can obtain, at

most, n different numerical values, defined by the elements of cor-
responding columns and rows of the matrices A and B respectively.
We can formulate a linear relaxation, wij, of the bilinear term a0ijb

0
ij

by considering the discrete nature of the variable b0ij as follows:

wij P
XMi

m¼1

Bm
i zm

ij ð9Þ

XMi

m¼1

zm
ij ¼ a0ij ð10Þ

zm
ij 6 Aj

X
k2Km

i

xkj 8 m ¼ 1; . . . ;Mi ð11Þ

Bm
i are the constant unique values of the elements bij in row i of the

matrix B and Mi the number of unique elements in the row, where
Mi 6 n. zm

ij are nonnegative variables of which one will be equal to a0ij
while the others will be zero. Aj ¼maxiaij (i.e. the largest element in
column j of the matrix A). The index sets Km

i are connected to the
unique values of the elements (with corresponding binary vari-
ables) of row i in the B matrix and are defined as follows:

Km
i ¼ jjbij ¼ Bm

i

� �
8 j ^m ¼ 1; . . . ;Mi: ð12Þ

Since both a0ij and b0ij are nonnegative variables and the objective is
to minimize a sum of such bilinear terms we will get an exact dis-
crete linear relaxed reformulation of the QAP by including the con-
straints in Eqs. (10) and (11) and by replacing the bilinear terms
a0ijb

0
ij in the objective function with the corresponding variables

wij. The complete formulation is given in the next section.

2.1. A simple example

To conclude this section we will illustrate the exact relaxation
of one bilinear term as given in Eqs. (9)–(12). We consider the fol-
lowing QAP with n = 5 where:
A ¼

0 3 5 9 6

3 0 2 6 9

5 2 0 8 10

9 6 8 0 2

6 9 10 2 0

266666664

377777775 and B ¼

0 4 3 7 7

4 0 4 10 4

3 4 0 2 3

7 10 2 0 4

7 4 3 4 0

266666664

377777775
Now, as an illustrative example, consider the relaxation of the bilin-
ear term a0ijb

0
ij, with i = 2 and j = 3, i.e. a023b023. According to Eqs. (7)

and (8) a023 and b023 are given by:

a023 ¼ 5x21 þ 2x22 þ 0x23 þ 8x24 þ 10x25;

b023 ¼ 4x13 þ 0x23 þ 4x33 þ 10x43 þ 4x53;

where according to Eqs. (2) and (3):

x13 þ x23 þ x33 þ x43 þ x53 ¼ 1;
x21 þ x22 þ x23 þ x24 þ x25 ¼ 1:

Since row two (i = 2) in the matrix B has three unique values,
namely 0, 4 and 10 and Eq. (2) holds, (i.e. x13 + x23 + x33 +
x43 + x53 = 1), we get b023 2 f0;4;10g ¼ B1

2;B
2
2; B

3
2

n o
and M2 = 3. Thus

according to Eq. (9):

w23 P 0z1
23 þ 4z2

23 þ 10z3
23:

Furthermore, according to Eq. (10):

z1
23 þ z2

23 þ z3
23 ¼ 5x21 þ 2x22 þ 0x23 þ 8x24 þ 10x25;

where the RHS is equal to a023. The index sets Km
2 (connected to the

unique values of the elements of row two in the B matrix) are,
according to Eq. (12), in this case K1

2 ¼ f2g; K2
2 ¼ f1;3;5gandK3

2 ¼
f4g. Furthermore, A3 ¼ 10 (i.e. the largest value in column three
of the A matrix). From Eq. (11) we, thus, obtain:

z1
23 6 10x23;

z2
23 6 10ðx13 þ x33 þ x53Þ;

z3
23 6 10x43:

Since only one of the binary variables above will be equal to 1 and
the others equal to 0 only one of the zm

23 variables can be nonzero
and, thus, according to Eq. (10) equal to a023. Furthermore, observe
that the binary variables above are connected to the parameters
Bm

2 , i.e. the unique values of b023.
As we minimize w23, the inequality as in Eq. (9) will be active

and we obtain:

w23 ¼ 0z1
23 þ 4z2

23 þ 10z3
23;

which result in an exact discrete linear relaxation of the bilinear
term. In a similar way bilinear terms for all i, j in the QAP can be
handled. Since, in a QAP, both a0ij and b0ij are discrete variables, we
can do the discretization in either a0ij or b0ij. In Fig. 1 both discretiza-
tions are illustrated. The left figure correspond to the example
above. From the figures we observe that the representation is a
relaxation of the bilinear term for continuous values of the variables
a0ij and b0ij but an exact reformulation of it if one of the variables is a
discrete variable. A similar type of relaxation for continuous vari-
ables in pooling problems, using piecewise linear expressions, is gi-
ven in Gounaris et al. (2009).

3. The discrete linear QAP reformulation

Now we reformulate every bilinear term in the QAP using the
method described in Section 2. Thus we get an exact discrete linear
reformulation (DLR) of the QAP. The discretization can be done in
either a0ij or b0ij, as mentioned before. In the below reformulation,
the discretization is done in the variables b0ij.



Fig. 1. Bilinear term a023b023 discretized in b023 (to the left) and in a023 (to the right).

Table 1
Parameters a, b, c and d as well as solution times in seconds, when discretizing in A or
B

Instance in A in B

a b c d time (s) a b c d time (s)

chr12a 1 2.83 2 3.83 10 1 11.33 2 12.33 2
esc16a 1 3.12 2 2.75 33 1 2.5 2 3.12 11
nug12 1 6.17 2 5.17 59 1 5.33 2 6.33 1186
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min
Xn

i¼1

Xn

j¼1

XMi

m¼1

Bm
i zm

ij ð13Þ

subject toXn

i¼1

xij ¼ 1 8 j; ð14Þ

Xn

j¼1

xij ¼ 1 8 i; ð15Þ

zm
ij 6 Aj

P
k2Km

i

xkj m ¼ 1; . . . ;Mi;

PMi

m¼1
zm

ij ¼
Pn
k¼1

akjxik

9>>>=>>>; 8 i; j; ð16Þ

xij 2 f0;1g zm
ij 2 ½0;Aj� 8 i; j ^m ¼ 1; . . . ;Mi; ð17Þ

where

Aj ¼max
i

aij 8 j; ð18Þ

Km
i ¼ jjbij ¼ Bm

i

� �
8 i; j ^m ¼ 1; . . . ;Mi; ð19Þ

bij 2 B1
i ;B

2
i ; . . . ;BMi

i

n o
8 i; j: ð20Þ

The values of aij and bij are defined in the matrices A and B. The
amount of variables and constraints in the model is dependent on
the number of unique values in the rows or columns of the matrices
(depending on which one is discretized). The number of binary vari-
ables is a � n2 and the number of real variables b � n2 while the num-
ber of constraints is c � n + d � n2. In Table 1 the values of a, b, c and d
are given for certain instances from QAPLIB when reformulated in
this manner. In Table 1 the solution times when solving the in-
stances to optimality in the different discretized forms are also
given. As can be noted, fewer constraints and variables do not
always result in shorter CPU times. Furthermore, it can be observed
that the two discretization directions will result in highly different
solution times. When the problem size increases, the choice of the
direction will have a crucial importance on whether the problem
can be solved or not. This can already be seen at the root node, since
the value of the lower bound differs greatly depending on which
way the model has been discretized.

Remark. The two optional discretization directions can algorith-
mically be implemented in different ways. In case the implemen-
tation is simply done by switching the matrices in the objective
function, XA�BX, it should, however, be noted that the permuta-
tion matrix X must then be considered as its transpose as well (and
the permutation vector p would be ~p) since XA�BX = BX�XA =
XTBX�A = XTB�AXT.

From the formulation in Eqs. (13)–(20) it may, further, be ob-
served that if Aj ¼ 0 then the corresponding variables, zm

ij 8 i;m will
be equal to zero. This reduces the number of variables, constraints
in Eq. (16) and corresponding terms in the objective function Eq.
(13). On the other hand if Bm

i ¼ 0 it only reduces corresponding
terms in the objective function, but does not affect the number
of variables and constraints.

4. Special structures of the QAP

Many of the instances in the QAPLIB (e.g. esc32a-esc32h) have
matrices where all elements in a row and the corresponding col-
umn are equal to zero. It is important to consider such special
structures of QAP since they result in multiple equal solutions.
We therefore, introduce a way to exclude such solutions in the
DLR model. By first considering the B matrix and partitioning the
matrices in the objective function (Eq. (6), written in matrix form)
we obtain,

When B2, B3, B4 = 0 we obtain:



Table 3
Variables, (a + b)n2, and constraints, c n + dn2, in the model discretized in B with and
without compression.

Instance No compression Compressed (n � nB)!

a b c d a b c d

esc32a 1 3.91 2 4.69 0.78 3.91 1.8 4.68 7!
esc32b 1 3.75 2 4.50 0.75 3.75 1.8 4.49 8!
esc32c 1 2.97 2 3.56 0.59 2.97 1.6 3.55 13!
esc32d 1 2.81 2 3.38 0.56 2.81 1.6 3.36 14!
esc32e 1 1.41 2 1.69 0.28 1.41 1.3 1.67 23!
esc32g 1 1.09 2 1.31 0.22 1.09 1.2 1.29 25!
esc32h 1 2.97 2 3.56 0.59 2.97 1.6 3.55 13!
esc64a 1 2.06 2 2.41 0.34 2.06 1.3 2.40 42!
esc128 1 1.70 2 1.94 0.24 1.70 1.2 1.93 97!
tai64c 1 3.05 2 3.25 0.20 3.05 1.2 3.24 51!
tai256c 1 15.09 2 15.45 0.36 15.09 1.4 15.45 164!

Table 4
Solution times (in seconds) for solving some instances to optimality utilizing
symmetry (S) and compression (C) (when possible). DLR indicate the solution time
when solving without S and C.

Instance Disc in DLR S C C + S

nug12 A 59 20
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If the number of remaining rows and columns in the B matrix is nB

then n � nB rows of the permutation matrix have been removed.
The original QAP contains n! permutations, but since (n � nB) rows
of the permutation matrix have been eliminated, (n � nB)! permuta-
tions have as well. The number of permutations in the reduced
problem is thus n!/(n � nB)!. In Table 2 and 3 examples of the influ-
ence of the compression is illustrated by some instances from
QAPLIB.

As we apply this method to certain instances in QAPLIB we can
decrease the number of binary variables and constraints. The dif-
ference in the formulation after the removal of the unnecessary
binary variables is that the index i should be summed up to only
nB and Eq. (14) should now be written as an inequality constraint,XnB

i¼1

xij 6 1; j ¼ 1; . . . ;n; ð21Þ

However, in Eq. (21) all binary variables may be equal to zero and
forcing all other variables in Eq. (16) to be equal to zero as well.
Then the equality constraint in Eq. (16) would not hold. Therefore,
an additional variable, z0

ij, with a corresponding relaxation con-
straint must be added. This constraint is given by:

z0
ij 6 Aj 1�

XnB

k¼1

xkj

 !
8 i; j: ð22Þ

The variable, z0
ij, is then added to the equality constraint in Eq. (16)

by starting the summation in the LHS from m = 0. Also, in a similar
way, rows and corresponding columns with all elements zero in A
can be utilized to reduce the number of columns in the permutation
matrix. In the latter case the index j should be summed up to only
nA and Eq. (15) must be written as an inequality constraint:XnA

j¼1

xij 6 1; i ¼ 1; . . . ;n; ð23Þ

where nA is the number of remaining rows and columns in the A
matrix. No additional relaxation constraints connected to the
inequality constraint Eq. (23) need be added in this case, as long
as we have discretized in B. On the other hand, if we discretize in
A an additional variable and a corresponding relaxation constraint
should be connected to Eq. (23) as well.

Additional remarks. If both the matrices A and B have rows (and
columns) with all elements equal to zero we obtain:

XA � BX ¼ XBA � B1XB ¼ XAA1 � BXA ¼ eXA1 � B1
eX;

where
Table 2
Variables, (a + b)n2, and constraints, c n + dn2, in the model discretized in A with and
without compression.

Instance No compression Compressed (n � nB)!

a b c d a b c d

esc32a 1 2.94 2 3.72 0.78 2.72 1.8 3.49 7!
esc32b 1 2.50 2 3.25 0.75 2.25 1.8 2.99 8!
esc32c 1 2.72 2 3.31 0.59 2.31 1.6 2.89 13!
esc32d 1 2.06 2 2.62 0.56 1.62 1.6 2.17 14!
esc32e 1 1.34 2 1.62 0.28 0.62 1.3 0.88 23!
esc32g 1 1.41 2 1.62 0.22 0.62 1.2 0.82 25!
esc32h 1 2.62 2 3.22 0.59 2.22 1.6 2.80 13!
esc64a 1 1.39 2 1.73 0.34 0.73 1.3 1.07 42!
esc128 1 1.26 2 1.50 0.24 0.50 1.2 0.74 97!
tai64c 1 1.20 2 1.41 0.20 0.41 1.2 0.60 51!
tai256c 1 1.36 2 1.72 0.36 0.72 1.4 1.08 164!
and

eX; A1 and B1 are nB � nA, nA � nA and nB � nB matrices respectively.
If both A and B are compressed an additional constraint to Eqs.
(21)–(23) is needed to ensure the remaining number of permuta-
tions. This constraint is written as follows:

XnB

i¼1

XnA

j¼1

xij P nB þ nA � n: ð24Þ

The permutations eliminated after compressing in both A and B are:

min
n!ðn� nBÞ!

nA!
;
n!ðn� nAÞ!

nB!

� �
ð25Þ

while the number of permutations left is:

max
nA!

ðn� nBÞ!
;

nB!

ðn� nAÞ!

� �
: ð26Þ

From Eq. (26) we find that only one permutation remains when
nB + nA � n = 0. In this case the optimal value of the QAP is 0 and
all xij = 0 in the compressed model. nB + nA � n = 0 when nB ¼ nA ¼ n

2.
Symmetries In addition to compressing the matrices, optional

symmetry strategies can be utilized. Considering the objective func-
tion written as XA�BX we observe that when both A and B are
scr12 B 9.6 3.6
chr12a B 1.6 0.8
tai12a A 246 157
rou12 B 1187 216
esc16a B 11.4 10.0 9.9 7.1
esc16b B 158 >1200 71 >1200
esc16c B 286 264 168 250

Table 5
Solution results when solving the instances esc32a, esc32c, esc32d, esc64a and tai64c
from the QAPLIB

Instance BKS old LB DLR Nodes Time (s)

esc32a 130 103 130 110365472 1618580
esc32c 642 616 642 1473284 24365
esc32d 200 191 200 2922791 36256
esc64a 116 98 116 62365 16370
tai64c 1855928 1855928 1855928 385103 182983



Fig. 2. Solution progress for the instance esc32c.

Table 6
Optimal permutation vectors obtained with the DLR model for the instances esc32a, esc32b, esc32c, esc32d, esc64a and tai64c in the QAPLIB.

Instance

esc32a 11, 3, 7, 23, 19, 27, ⁄, 14, 20, 17, 28, 9, 12, 4, 8, 2, 26, 24, 32, ⁄, 22, 25, 6, 18, 29, 10, 30, ⁄, ⁄, ⁄, ⁄, ⁄ S2 {1,5,13,15,16,21,31}
esc32c 15, 12, ⁄, 13, 22, 8, 24, 23, 20, 19, 4, 2, 1, 7, 6, 3, 5, 18, 17, 21, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄ S2 {9,10,11,14, 16,25,26,27,28,29,30,31,32}
esc32d 18, 29, 10, 2, 25, 32, 22, 20, 24, 17, 30, 9, 1, 26, 31, 21, 19, 23,⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄ S2 {3,4,5,6,7,8,11,12,13,14,15,16,27,28}
esc64a 18, 29, 10, 2, 25, 32, 22, 20, 24, 17, 30, 9, 1, 26, 31, 21, 19, 23,⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄, ⁄ S2 {3,4,5,6,7,8,11,12,13,14,15,16,27,28}
tai64c 1, 15, 32, 35, 61, 41, 29, 18, 12, 45, 63, 59, 47, ⁄,. . .,⁄ S 2 {2,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,22, 23,24,25,26,27,28,30,31,33,34,

36,37,38,39,40,42,43,44,46,48,49,50,51,52, 53,54,55,56,57,58,60,62,64}

2 The instance tai64c is a so-called grey pattern problem having a simplified QAP
ructure. The problem has previously been solved to proven optimality by Drezner
006), using a special purpose algorithm utilizing the simpler structure. The problem
included in Table 5, since we have solved it in the QAP form and it was reported as

unsolved in the QAPLIB.

318 A. Nyberg, T. Westerlund / European Journal of Operational Research 220 (2012) 314–319
symmetric we can write either XA � BX ¼ A � XT BX ¼ eA � XT BX or
XA � BX ¼ B � XAXT ¼ eB � XAXT where eA ¼ 2 � UA � DA and eB ¼
2 � UB � DB. UB and UA are the upper (or lower) triangular parts
and DA and DB the diagonal parts of the corresponding matrices. This
reduces the number of variables and constraints. In Table 4 solution
times for solving some smaller instances from the QAPLIB to opti-
mality utilizing symmetry as well as compression (when possible)
are given. When the symmetry option has been used it has been
applied to the matrix not being discretized. Only the A matrix in
the three last instances can be compressed. Table 4 shows that uti-
lizing symmetry and compression reduces the solution time in
many cases.

Some of the QAPLIB instances have persymmetric (symmetric
w.r.t. the counter diagonal), centrosymmetric (symmetric w.r.t.
the matrix center) or bisymmetric (symmetric and centrosymmet-
ric) matrices. These properties can be utilized as well. For example,
a centrosymmetric matrix A has the property MA = AM, where M is
a counter-diagonal matrix, with elements equal to one in the coun-
ter diagonal and all entries off the counter-diagonal equal to zero.
In this case two permutation vectors, p1 = Xq and p2 = XMq result
in the same value of the objective function. In order to break this
symmetry the first row of the permutation matrix can be parti-
tioned to a left and a right half, (xLjxR). Letting xL = 0 the symmetry
will be broken and only one of the solutions will remain valid. In a
similar way if the B matrix is centrosymmetric, a permutation vec-
tor p3 = MXq result in the same value of the objective function as
with p1. This symmetry can be broken, for example, by including
zero elements in the upper half of the first column in the permuta-
tion matrix. Breaking the centrosymmetry eliminates multiple
solutions. There are several other symmetry options as well and
several of them have been introduced in the literature
(Anstreicher, 2003; de Klerk and Sotirov, 2010). However, we
conclude this section only by stating that symmetries in the matri-
ces have not been considered in greater detail in this paper, but we
will introduce some alternative options for special structures of the
A and B matrices in a forthcoming paper.
5. Results

By using the model formulation presented in this paper we have
solved some previously unsolved instances from the QAPLIB to
proven optimality. In Table 5 the results obtained with the DLR
model are given. The first two columns show the best known solu-
tions and the best lower bounds for the instances, reported in the
QAPLIB.2 The verified optimal solution obtained with the discrete
linear reformulated MIP model, the total number of nodes visited
and the solution time in seconds, as reported by Gurobi, are given
in the last three columns. All instances in Table 5 have been discret-
ized in B and compression was utilized in the n = 64 instances. All in-
stances have been solved on a single PC with an Intel i7 4-core
2.8 GigaHertz processor and 6 GigaByte RAM, except for the esc64a
instance where a PC with an Intel i7 6-core 3.2 GigaHertz processor
was used. As a MILP solver Gurobi (4.0.1) with default parameter set-
tings was used. The node files were stored on the hard drive, thus
reducing the amount of RAM needed to solve the models. In Fig. 2,
to the left, the best integer and best node solutions versus the solu-
tion time are illustrated when solving the instance esc32c. To the
right, in the same figure, the number of nodes explored and nodes
remaining versus the solution time are shown. The permutation vec-
tors for the problems solved to optimality are given in Table 6, in the
Appendix. Surprisingly the esc64a instance was solved in about
4.5 hours and tai64c in about 51 hours. Even though the problems
with n = 64 are huge we were still able to solve them to proven opti-
mality. This is both because of the efficiency of the discrete reformu-
lation as well as the reduction of the permutation matrix by using
compression. When solving the esc32a, esc32c and esc32d instances
compression did, however, not result in a shorter solution time.
st
(2
is
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Table 5 indicates that the solution times are quite moderate when
comparing them to previously solved instances of n P 30
(Anstreicher et al., 2002; Adams et al., 2007). A good branching
strategy is crucial for any large MILP problem as indicated in
Achterberg et al. (2005). In all the test runs we, however, used
default settings for Gurobi. A drawback with some recent methods
is the amount of RAM required as indicated in (Adams et al., 2007;
Hahn et al., 2008). With the DLR-model presented in this paper the
amount of RAM is, on the other hand, not a crucial issue. Even on
the largest problem from the QAPLIB, tai256c, the DLR can be written
as a MILP model with 0.36n2 binary and 0.72n2 continuous variables
as well as 1.4n + 1.08n2 constraints.

Having the opportunity to test the efficiency of new solution ap-
proaches on instances from the QAPLIB is a great resource. Results
obtained with several different solvers on the same instances can
easily be found in the QAPLIB from well documented references,
thanks to the maintainers Hahn and Anjos (2002). The unsolved
and recently solved problems in the library are however very chal-
lenging. This restricts the possibilities of doing comprehensive
numerical comparisons, because of the CPU-time required to solve
these problems. Already the CPU-time for a single instance might
end up lasting weeks, even when solving it using parallel compu-
tation (Anstreicher et al., 2002). This practical limitation has also,
in our case, limited the amount of comparisons done in this paper.

6. Conclusions

The exact discrete linear reformulation, DLR, presented in this
paper is shown to be compact and from numerical experiments
we have found that it gives very good results, especially on sparse
instances with few unique elements per row. We have presented
solutions to never before solved instances in the QAPLIB. The run
times for problems solved with the DLR-model are reasonably
short (taking into account the combinatorial complexity of the in-
stances) and the RAM memory required is not a crucial issue with
this model. However, we do not think that any QAP can be solved
more efficiently with the given reformulation than with some
other approach but we are of course happy that some of the in-
stances in the QAPLIB that had never been solved to optimality be-
fore could be solved with this formulation. Default settings in the
MILP solver Gurobi were used when conducting the experiments,
whilst the node files were stored on a hard drive. A good branching
strategy could probably still speed up the solution times. Symme-
try options were not considered in greater detail in this paper, but
will be considered in a forthcoming paper.
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Appendix A. Optimal permutations

Below are the optimal permutation vectors for the instances
esc32a, esc32b, esc32c, esc32d, esc64a and tai64c obtained with
the DLR QAP formulation. For each instance, the elements indi-
cated by ⁄ can be replaced with any permutation of the elements
in the corresponding set S.
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