
Algorithmica (1997) 18:3-20 Algorithmica
O 1997 Sprmger-Verlag New York Inc.

Primal-Dual Approximation Algorithms for Integral
Flow and Multicut in Trees

N. Garg, j V. V. Vazirani, l and M. Yannakakis 2

Abstract. We study the maximum integral multicommodity flow problem and the minimum multicut prob-
lem restricted to trees. This restriction is quite rich and contains as special cases classical optimization problems
such as matching and vertex cover for general graphs. It is shown that both the maximum integral multicom-
modity flow and the minimum multicut problem are NP-hard and MAX SNP-hard on trees, although the
maximum integral flow can be computed in polynomial time if the edges have unit capacity. We present an ef-
ficient algorithm that computes a multicut and integral flow such that the weight of the multicut is at most twice
the value of the flow. This gives a 2-approximation algorithm for minimum muhicut and a �89
algorithm for maximum integral multicommodity flow in trees.

Key Words. Integral multicommcxlity flow, Multicut, Approximation algorithm. MAX SNP-hard.

1. I n t r o d u c t i o n . The Mul t icut problem is defined as follows: Given a graph G =
(V, E) with a positive weight (or capacity) c(e) on every edge e E E, and a list of vertex
pairs, (si, ti), 1 < i < k, find a m i n i m u m weight set of edges separating each pair of
vertices in the list. We call such a set of edges a multicut. In this paper we deal with
undirected graphs. The mult icut problem was posed as early as 1969 by Hu [17]. For
k ---- 1, the problem coincides with the ordinary s - t m i n i m u m cut problem. The problem
is also po lynomia l - t ime solvable when k ---- 2, by using two applications of a m i n i m u m
s - t cut algorithm [31].

The mult icut problem includes as a special case the mult iway (or mult i terminal) cut
problem]8], where instead of a list of pairs of vertices we are given a set of vertices
(called terminals) and we wish to find a m i n i m u m weight set of edges whose removal
separates every pair of terminals. Clearly, the mul t iway cut problem can be encoded as
a mul t icut problem by including in the list of vertex pairs all distinct pairs of terminals.
It was shown in [8] that the mul t iway cut problem is NP-hard and M A X SNP-hard for
any fixed number k > 3 of terminals; hence the same is true of the mult icut problem.

In this paper we address the special case of f inding a m i n i m u m mult icut when the
input graph is a tree (the problem is dealt with in full generali ty in [12]). The m i n i m u m
mult iway cut in trees can be found in polynomial time using a straightforward dynamic
programming approach [7]. However, for multicuts, NP-hardness sets in much earlier;
we show that comput ing the m i n i m u m mult icut is NP-hard and M A X SNP-hard even
on unweighted trees of height 1.

J Department of Computer Science and Engineering, Indian Institute of Technology. New Delhi, India.
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.

Received November i5, 1994; revised October 2, 1995. Communicated by M. X. Goemans.

4 N. Garg, V. V. Vazirani, and M. Yannakakis

We approach this intractability of the minimum multicut problem by considering a
multicommodity flow problem; the formulation we deal with associates a commodity
with each vertex pair and requires maximizing the sum of the flows routed subject to
capacity and flow conservation requirements. Clearly, the maximum multicommodity
flow is bounded from above by the minimum multicut; the question is whether equality
holds. Consider a tree of height 1 with three leaves. Each pair of leaf vertices form the
source-sink pair of a commodity. All edges have unit capacity. The maximum flow in
the tree is 3 whereas the minimum multicut has weight 2.

In this situation the best that can be hoped for is an approximate max-flow min-multicut
theorem. Such an approximate theorem for general graphs was shown in [12], stating
that the maximum flow and the minimum multicut are within a multiplicative factor
O(log k) of each other (improving an earlier O (log 3 n) bound of [19]). Furthermore, the
gap is tight up to a constant factor, i.e., there are instances in which the ratio between
the minimum multicut and the maximum flow is g2 (log k) [12]. (There is also another
version of multicommodity flows and cuts that has been studied in the literature [22],
[19], in which the commodities have associated demands and we wish to find a two-way
cut that minimizes the ratio of the capacity over the demand across the cut. It is easy to
see that this min-ratio cut problem is trivial on trees, so we do not discuss this version
in this paper.)

We prove here that a tighter relationship between the maximum flow and the minimum
multicut holds for trees. Furthermore, the relative simplicity of this setting (input graph a
tree) allows us to consider a stronger version of flow, namely, integral flow; a commodity
can now be routed only in integral units. Clearly, the maximum integral flow cannot
exceed the maximum flow. Our main result is an approximate maximum-integral-flow
minimum-multicut theorem.

THEOREM 1.1 (Approximate Max-Integral-Flow Min-Multicut Theorem). For trees,

maximum integral f low < minimum multicut < 2 �9 maximum integral flow.

Our proof of this theorem is an efficient algorithm for computing a multicut and an
integral flow such that the weight of the multicut is at most twice the value of the flow. This
also gives us a 2-approximation algorithm for the minimum multicut problem in trees and
a �89 algorithm for the maximum integral flow problem in trees (we show
that this problem is NP-hard and MAX SNP-hard). The MAX SNP-hardness [25] of
the multicut and integral flow problems implies that no polynomial-time approximation
scheme exists unless P = NP [1].

A specially interesting aspect of the algorithm is the methodology used in design-
ing it--it is based on a primal-dual approach. The primal-dual method has been used
extensively in the past for solving problems in E The recent work of Goemans and
Williamson [14] and Williamson et al. [30] demonstrates, conclusively, the effective-
ness of this method in the context of approximation algorithms for NP-hard optimization
problems.

The maximum integral flow problem has been extensively studied; see e.g., [10] and
[27]. For a k ---- 1 commodity it coincides with the ordinary maximum flow problem, but
for k _> 2 commodities it becomes NP-hard [9]. In the case of unit edge capacities, the

Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees 5

problem of finding the maximum integral flow is the same as that of finding a maximum
cardinality set of edge-disjoint paths between the specified source-sink pairs; in this case
the problem can be solved in polynomial time for fixed k by the results of Robertson and
Seymour 126], and becomes NP-hard for general k. We do not know of approximation
algorithms for any other NP-hard cases of the maximum integral flow problem besides
ours. Variants of the problem where the commodities have specified demands that have
to be (approximately) satisfied are studied in [20] and [28]. We show by means of an
example that even for grid graphs, the ratio of the maximum (fractional) flow to the
maximum integral flow (and also of the minimum multicut to the maximum integral
flow) is f2 (k), thus indicating that these upper bounds cannot be of any help in obtaining
good approximation algorithms for this problem.

Although the restricted setting of trees may seem very simple at first, we show that
it captures a surprisingly rich collection of problems. When restricted to trees of height
1 and unit edge capacities, minimum multicut is the same as minimum vertex cover
for general graphs; if the capacities are arbitrary (and the height 1), it is equivalent to
minimum weight vertex cover for graphs with weights on the vertices. The best approx-
imation factor known for vertex cover is 2 for both the unweighted and the weighted
case (see e.g., [2]) and has not been improved in a long time, indicating that improv-
ing our result would be quite difficult. Regarding maximum integral flow, we note that
in the case of trees of height 1 and unit edge capacities, it is equivalent to maximum
matching in general graphs; if the trees are of height 1 and edge capacities are arbitrary,
it corresponds to maximum b-matching in general graphs. On the other hand, if the edge
capacities are unity and the trees are of arbitrary height, integral flow corresponds to a
generalization of matching, which we call cross-free-cut matching. This generalization
inherits many nice combinatorial properties of matching. We give a polynomial-time
algorithm for maximum integral flow in trees with unit edge capacities and hence for
finding a maximum cross-free-cut matching.

Finally, we also show that the multicut problem in trees is equivalent to the set cover
problem for a special class of set systems, which we call tree-representable set systems.
Interestingly enough, the problem of recognizing this class in polynomial time has been
extensively studied in a different context [29] (it is the same as testing if a given binary
matroid is graphic), and efficient algorithms have been discovered [5]. Hence, we also
get a 2-approximation algorithm for the tree-representable set cover problem. The best
aproximation factor known for the set cover problem is O (log n), where n is the number
of elements being covered and this is the best possible (modulo constant factors) unless
NP C TlME(nl~176 n) 1231, [3].

2. Preliminaries. Given a tree T = (V, E), a capacity function c: E --~ Z +, and k
pairs of vertices (si, ti), 1 < i < k, we associate a commodity i with the pair (si, ti) and
designate si as the source and ti as the sink for this commodity.

A multicommodityflow is a way of simultaneously routing commodities from their
sources to the respective sinks while ensuring that the flow of each commodity is con-
served at each vertex (except the source and sink vertex for that commodity) and that the
sum of the flows of all commodities through an edge does not exceed the capacity of the
edge. A multicommodity flow in which the sum of the flows over all the commodities

6 N. Garg, V. V. Vazirani. and M. Yannakakis

is maximized is called a maximum (multiconlmodity) flow. A flow is integral if each
commodity has an integral flow through each edge. The maximum integralflow problem
is to find an integral multicommodity flow that is maximum.

A multicut is defined as a set of edges whose removal disconnects each source-sink
pair. The capacity (weight) of a multicut is the sum of the capacities of the edges in it.
The minimum multicut problem is to find a multicut of minimum weight.

The maximum multicommodity flow problem can be solved in polynomial time using
linear programming. In the case of trees the linear program (LP) has a particularly simple
structure. Let Pi denote the unique path from si to ti in the tree, and let fi be a variable for
the flow along this path. Since the flow along any path is nonnegative, f/ > 0. Further.
the total flow through an edge cannot exceed the capacity of the edge, i.e.,

)-~ .~ _< c~, e ~ E .
I :eE p~

The flow would be maximum when)--~-~=1 .~ is maximized. Hence the linear program
for a maximum multicommodity flow is

k

maximize Z fi
i-:1

subject to Z .l) < c~, e c E,
t : eE p ,

f/ > 0, 1 < i < k .

The additional constraint, fi 6 Z ~, yields a program for the maximum integral flow
problem.

The dual of this linear program is

minimize Z dece
e ~ E

subject to Z de > 1, 1 < i < k.
e~p~

d e > 0 , e c E ,

and can be viewed as an assignment of nonnegative distance labels, de, to edges e 6 E,
so as to minimize ~ , ~ , d~c~, subject to the constraint that cach pair, (s~, t~), be at least
a unit distance apart.

The optimal integral solution to the dual program is a 0/1 assignment of distance
labels to the edges such that. for every commodity, the path in the tree corresponding to
the commodity contains an edge with distance label 1. Thus the edges with d,, = 1 form
a multicut of weight equal to)-~-,.~ E d,c,,. Conversely, the minimum multicut corresponds
to an integral solution to the dual program of value equal to the weight of the multicut.
Thus the optimal integral solution to the dual LP is the minimum multicut and hence
the value of the optimal (fractional) solution, which by the Duality Theorem is equal to
the maximum multicommodity flow, is a lower bound on the weight of the minimum
mu]ticut.

A similar approach to formulating the multiway cut problem (in general graphs) leads
to an integer program whose linear-programming relaxation has an an optimal solution

Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees 7

S 5 , S 3 $5"\\.,

"" / 1/3 1/3~'\ "2/3

/ ~ 1/3." " . . ~
j , .

t s 4 / .

s2 t2 tS's 2 t2 s'

Fig. 1. Example to show that the minimum (fractional) multicut is not half-integral.

that is half-integral, i.e., every variable has value 0, 1 5, or 1 [13]. This is not the case with
the multicut problem, even for trees. All edges of the tree in Figure 1 have unit capacities.
The figure shows a mult icommodity flow of value 2 -~ and a fractional multicut of the 3
same weight. Therefore this is the pair of optimal solutions to the primal and dual linear
programs.

3. Finding the Minimum Mult icut . The minimum multicut problem for trees can be
solved in polynomial time for fixed k [31]. This is because the multicut contains at most
k edges; one can in time O(n k) enumerate all subsets of edges of cardinality at most k
and pick one that is a multicut and has the minimum weight. However. for arbitrary k
the problem is NP-hard.

The demand graph H corresponding to a mult icommodity flow or multicut instance
is the graph whose vertices are the sources and sinks, and which contains an edge for
each source-sink pair (si, ti).

PROPOSITION 3.1. For trees o f height 1 and unit edge capacities, the minimum multicut
problem is equivalent to the minimum vertex cover problem on general graphs. For trees
o f height 1 and arbitrar 3, edge capacities, the minimum multicut problem is equivalent
to the minimum weight vertex cover problem on general graphs.

PROOF. Consider an instance of the multicut problem on a tree T of height 1 with
root v and leaves Vl, v2 Yd. If the root v and a leaf vi form a source-sink pair in
the multicut instance, then clearly we must remove the edge (v, vi). By removing all
these forced edges we can assume without loss of generality that the given list of pairs
in the multicut instance contains only leaves. Let the edge ei = (V, Vi) have capacity
ci. Consider the (weighted) vertex cover problem on the demand graph H, where the
weight of a vertex vi is ci. If the edges eft, ei2 ei~, form a multicut in T, then the
vertices vi,, vi, vii, form a vertex cover in the demand graph, H, and vice versa.

8 N. Garg, V. V. Vazirani, and M. Yannakakis

Thus, finding the minimum multicut in T is equivalent to finding a minimum weight
vertex cover in H.

Conversely, given an instance of the (weighted) vertex cover problem on a graph H,
we can construct a tree T of height 1 that has one leaf vi for every vertex of H and one
commodity for every every edge of H. []

Since the vertex cover problem is NP-hard and MAX SNP-hard [25] we have:

THEOREM 3.1. The minimum multicut problem is NP-hard and MAX SNP-hard even
for trees of height 1 and unit capacities.

4. Finding the M a x i m u m Integral Flow. The problem of finding the maximum in-
tegral flow is the same as that of finding a maximum cardinality set of edge-disjoint
paths between the specified source-sink pairs. For the case when the demand graph is
a complete subgraph, there exists under certain conditions (e.g., for Eulerian graphs) a
rain-max theorem relating the maximum number of edge-disjoint paths to the weight of
the minimum multiway cut [21], [6], [24]. In this section we relate the problem of finding
the maximum integral flow in a tree to other combinatorial optimization problems and
establish its complexity.

4.1. Unit Height Trees. Let T be a unit height tree with root v and leaves vi , u2, . . . , V d.
Let the edge ei =- (1J, Vi) have capacity ci.

PROPOSITION 4.1. For trees of height 1 and unit edge capacities, finding the maximum
integral flow is equivalent to the maximum matching problem on general graphs.

PROOF. Consider an instance of the maximum integral flow problem on a tree T of
height 1 and unit edge capacities. If the root v and a leaf vi form a source--sink pair, then
we can route flow along the edge (v, vi) without losing optimality. Thus, after routing
these root-leaf flows we may assume, without any loss of generality, that the sources and
sinks of all commodities are leaves of T. Consider the maximum matching problem on
the demand graph H. Routing a unit of flow from vi to l) j corresponds to picking edge
(vi, vj) in H. Since all edges of T have unit capacity, an integral flow in T is a matching
in H of the same size. The converse is also true; a matching in H of size f corresponds
to an integral flow of f units in T. Thus computing the maximum integral flow in T is
equivalent to finding a maximum matching in H.

Conversely, given an instance of the maximum matching problem on a graph H, we
can construct a tree T of height 1 and unit edge capacities that has one leaf vi for every
vertex of H and one commodity for every edge of H. []

A well-studied generalization of matching is the b-matching problem. Given a graph
G = (V, E) and a function b: V ~ Z +, a b-matching is a set of edges, E ' ___ E with as-
sociated multiplicities m: E ' ~ Z +, such that each vertex, v c V, has at most b (v) edges
incident at it (i.e., the sum of the multiplicities of the edges incident to v is at most b(v)).

Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees 9

PROPOSITION 4.2. For trees of height 1 and unit edge capacities, finding the maximum
integral flow is equivalent to the maximum b-matching problem on general graphs.

PROOF. Given an instance of the multicut problem on a tree T of height 1, we can first
saturate all edges (v, vi) such that the root v and leaf vi are the source and sink of a
commodity, and hence we can assume, without any loss of generality, that the source-
sink of each commodity is a leaf of T. Consider the b-matching problem on the demand
graph H, where we let b(vi) be the capacity of the edge ei = (V , V i) . Sending fij units
of flow between the source-sink pair (vi, vj) corresponds to picking the edge (vi, vj)
with multiplicity fij in the b-matching of H. Thus, computing a maximum integral flow
in T now corresponds to finding a maximum b-matching in H.

Conversely, given an instance (H, b) of the b-matching problem we can define an
instance of the maximum integral flow problem on a tree of height one as in the proof
of Proposition 4.1. The edge e i -~- (1), /)i) is now assigned a capacity b(v~). []

We remark that the variant of the b-matching problem, where edges can be picked
only with multiplicity one (see e.g., [41), or more generally there are upper bounds on
the allowed multiplicities, can be translated to the b-matching problem as defined above
(unbounded multiplicities); see e.g., p. 258 of [161.

Since the b-matching problem can be solved in polynomial time (see, for example,
[11]), it follows that the maximum integral flow problem on trees of height 1 can be also
solved in polynomial time.

4.2. Trees with Unit Capaci~ Edges. If S is a proper subset of the set of V of vertices,
we use S to denote its complement V - S, and denote the partition of V into the two
sets S and S and the corresponding cut by (S, S). Following standard terminology, two
cuts (S, S) and (Q, Q) are said to be crossing iff S N Q, S n Q, S n Q, and S n Q are
all nonempty. A family of cuts is noncrossing if no two cuts in the family are crossing.

Given a graph G -- (V, E) and a family, U, of noncrossing cuts, define an U-matching
(a cross-free-cut matching) as a set of edges, E ' ___ E, such that E ' contains at most one
edge from each cut in .T'. If.T" is the set of all singleton cuts, (v, V - v), v ~_- V, then a cross-
free-cut matching is simply a matching in G (note that this family of cuts is noncrossing).
Thus a cross-free-cut matching generalizes the notion of a matching. In general, a family
.T may not include some of the singleton cuts, in which case an .T-matching may have
two or more edges incident to some nodes; that is, a cross-free-cut matching is not
necessarily a matching, depending on the given family .T. The maximum cross-free-cut
matching problem is to find a cross-free-cut matching of maximum cardinality for a
given graph G and noncrossing family .Y" of cuts.

We now extend Proposition 4.1 to trees of arbitrary height.

PROPOSITION 4.3. The maximum integralflowproblem on trees with unit capacity edges
is equivalent to the maximum cross-free-cut matching problem.

PROOF. Consider an instance of the maximum integral flow problem consisting of a
tree T with unit capacities and a list of pairs of vertices (si, ti). Define an instance of

10 N. Garg, V. V. Vazirani, and M. Yannakakis

the maximum cross-free-cut matching problem on the demand graph H with a family of
cuts f T that includes one cut (Se, Se) for every edge e of T. Note that removing an edge
e from the tree T separates T into two components; this induces a partition (Se, Se) of the
vertices of H according to which component of T - e they belong to. A feasible integral
flow in T is a set of edge-disjoint source-sink paths, which by construction corresponds
to a cross-free-cut matching in H, and vice versa.

Conversely, let H be a graph and let 3 v be a family of noncrossing cuts. Clearly, if an
edge of H does not belong to any of the cuts in .Y" we can include it in the cross-free-cut
matching. After removing these edges from H we may assume without loss of generality
that every edge of the graph H belongs to some cut of.7-.

We define an instance of the maximum integral flow problem on a tree T, so that
there is a correspondence between integral flows in T and cross-free-cut matchings in
H. Every vertex of H is assigned to a unique vertex of T (not necessarily one-to-one),
and for every edge (u, v) of H there is one commodity whose source and sink are the
vertices of T that are assigned u and v. There is a one-to-one correspondence between
edges of T and cuts in .Y'. We define T by induction on the size of 7.. If the family 7. is
empty, then H has no edges, and we let T be the tree with one vertex, which is assigned
all the vertices of H. I f 7 . is nonempty, let (S, S) be a cut in .Y'. We define two families
of noncrossing cuts, a family)vl on S t3 {al }, and a family 7"2 on S t3 {a2}, where a l , a2
are new elements, as follows. Since 7. is noncrossing, for every other cut (Q, (~), one of
the two sets in the partition, say Q, has an empty intersection with either S or ,~. If S n Q
is empty, then we include (Q, S - Q t3 {a,}) in .7"2; if S fq Q is empty, then we include
(Q, S - Q t_) {al}) in 5rl. Construct inductively a tree Tl for f l , which is assigned all
the vertices in S and a~, and a tree T2 for 9%, which is assigned all the vertices in S and
a2. Add an edge joining the vertex of Tj that is assigned al with the vertex of T2 that is
assigned a2 to form the tree T.

An integral flow in T is a set of edge-disjoint source-sink paths and corresponds to
a set of edges of H. It is easy to show inductively that every edge of T corresponds to a
cut in f , and that the partition of the vertices of H induced by removing an edge from
T corresponds to a cut in F . Hence an integral flow obeys the capacity constraints iff
the corresponding set of edges of H is a cross-free-cut matching. []

THEOREM 4.1. There is a polynomial-time algor#hm for finding a maximum integral
flow on trees with unit capacity edges, and hence for the maximum cross-free-cut match-
ing problem.

PROOF. Since all edge capacities are unity, and we want an integral flow, at most one
commodity can flow through an edge. As shown in Proposition 4.1, for a tree of height
1, this is simply a maximum matching problem.

Our algorithm starts by rooting the tree at an arbitrary vertex. It then does two passes
over the tree, level by leve l - -an upward pass followed by a downward pass. Consider a
tree of height 2 and let v be a vertex at level 1 and let T~ be the subtree rooted at v. Consider
the commodit ies that have both their source and sink in T,.. As in Proposition 3.1, we can
define a graph G,, whose vertices are the children of v, and solve a maximum matching
problem on G~ to route the maximum flow in T~.. However, it may also be advantageous
to route a commodity that exits T,., i.e.. that has one endpoint in Tv and the other outside.

Primal-Dual Approximation Algorithms for InTegral Flow and Multicut in Trees l 1

Such a commodity must flow along the edge from v to the root, r, and hence we can
only route at most one unit of one such commodity. This will be strictly advantageous
only if we can still route the maximum amount of flow in 7",,.

We determine the commodit ies for which we get a strict advantage as follows. Suppose
that one endpoint of commodity, i , say si, is in T~, and the other outside. If si = v, then
clearly we can still route the maximum flow within T,,. If si is a child of v, then it
is advantageous to route commodity i only if there is a maximum matching in G~, in
which si is free (unmatched). It is easy to compute these vertices once we have found
a maximum matching Mr of G,,: a vertex si is free in some maximum matching if and
only if there is an alternating path, with respect to M~, from a free vertex to si. Once a
maximum matching is found, it is well known that the vertices that are reachable from the
free vertices by some alternating path can be computed in linear time. In this way we can
compute those commodit ies exiting Tr routing which might be strictly advantageous.
Vertex v can now be considered the source or sink of these commodities. This is done
for all vertices at level 1. Then a height 1 problem is solved at the root. In solving this,
we pick the commodity, if any, that is routed on the (v, r) edge. Once this is done, the
rest of the routing in the subtree rooted at v can now be fixed.

This is the essential idea of the algorithm for arbitrary height trees as well. In the
upward pass we consider vertices level by level. At a vertex v we solve a height 1
problem using matching, and determine for each commodity exiting T,, whether routing it
is strictly advantageous. Then we remove the children of v and consider the commodit ies
giving strict advantage as originating at v itself.

In the downward pass we start at the root, fixing commodities. The vertex parent(v)
decides which commodity gets routed on (v, parent(v)). Once this is done vertex v fixes
the commodit ies routed on the edges to its children. []

4.3. Trees with Edge Capacities. We generalize the notion of b-matchings by allowing
constraints for any family of noncrossing cuts (not just singleton cuts) and call this a
cross-free-cut b-matching. Thus, given a graph G = (V, E), a family, ~-, of noncrossing
cuts, and a function b:)v ~ Z*, a cross-tree-cut b-matching is a set of edges, E ' _c E
with associated multiplicities m: E' ~ Z +, such that the sum of the multiplicities of
the edges in each cut (S, S) E f is at most b((S, S)). The maximum cross-free-cut
b matching problem is to find a cross-free-cut b-matching of maximum cardinality.

A variant of the problem, in which edges can be picked only with multiplicity 1, or
more generally each edge has an upper bound on its multiplicity, could be defined. We
remark that this variant can be easily reduced to the problem as defined above. Define
a new graph G' = (V', E ') which has one vertex ue for each vertex u of G and edge
e incident to u, and has an edge (Ue, ve) for every edge e = (u, v) of G. That is, G ' is
a perfect matching whose edges coiTespond to the edges of G. Define a family ,T" as
follows. For every cut (S, rS) ~ f we include in ~-' the corresponding cut (S', S') of G',
where S' contains the nodes ue for all nodes u ~ S and b(S', S') = b(S, S). In addition,
~-' includes the singleton cuts (ue, V' - u~) with the value of the function b on these cuts
equal to the allowed multiplicity for edge e. It is easy to see that ~" is also a noncrossing
family.

Along the same lines as Proposition 4.3 we can show:

12 N. Garg, V. V. Vazirani. and M. Yannakakis

PROPOSITION 4.4. The max imum integral f l ow problem on trees with a r b i t r a ~ edge
capaci t ies is equivalent to the maximunz cross-free-cut b-matching problem.

The maximum integral flow problem for trees with arbitrary edge capacities is NP-
hard, and so is the maximum cross-free-cut b-matching problem. It is intriguing that
generalizing the maximum matching problem to a family of noncrossing cuts results in
a polynomial- t ime solvable problem (the maximum cross-free-cut matching problem),
whereas the same generalization of the maximum b-matching problem results in an
NP-hard problem.

THEOREM 4.2. The maximunz integral f l ow problem is NP-hard and M A X SNP-hard
f o r trees with edge capacit ies 1 and 2.

We reduce the NP-hard three-dimensional matching problem to the maximum integral
flow problem. Given three disjoint sets X, Y, Z, IX] = r]"l = I Z] = n, and a set of triples
S = {(xi, yj, zk)lxi 6 X, yj ~ Y, zk c Z}, the three-dimensional matching problem is
to find the maximum number of disjoint triples.

Given an instance of the three-dimensional matching problem, we construct a tree,
T, of height 3. The vertices at level 1 correspond to the elements of X U Y U Z. A
vertex corresponding to the element x~ 6 X has Pi children, where Pi is the number of
occurrences of xi in S. We label these vertices x~, l, 1 < 1 < Pi. Each of the vertices
xi , I has two children labeled xi, l, a and xi , l, b. Thus there are ISI vertices at the second
level and 2[SI vertices at the third level of the tree. Edges (r, xi) , 1 < i < n, and
(xi, xi, I), 1 < l < p~, 1 < i < n, have a capacity 2. All other edges have unit capacity.
Figure 2 shows the construction of the tree.

The occurrences ofxi in S are numbered arbitrarily from 1 to pi, and the lth occurrence
corresponds to the vertex xi , I. If (x~, v z~) c S is the/ th occurrence ofxi we add three .] ~

source-sink pairs, (x i, I, a. xi , I, b), (xi , I, a, yj), and (x i, l, b, zk). Thus this instance of
the mult icommodity flow problem has 3iSI commodities in all. NP-hardness now follows
from:

/
/

/

, / " ,
2/�84184184 " , I

/ , ,

I

\\2, \\x,,t

x,,I,a / \x , , I .b

Fig. 2. The tree for the NP-hardness proof of maximum integral flow.

Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees 13

LEMMA 4.3. The instance o f the three-dimensional matching problem has t disjoint
triples iff T has an integral f low o f t + ISI units.

PROOF. Suppose that the instance of the three-dimensional matching problem has a set
S' of t disjoint triples. Define an integral flow in T as follows. If an element xi of X
is not covered by S', then for all m, 1 < m < Pi, we route a unit flow for the source-
sink pair (xi, m, a, xi, m, b). I f xi is covered, and (xi, yj, zk) ~ S' corresponds to the lth
occurrence ofx i , then we route one unit of the commodit ies corresponding to the source-
sink pairs (xi, l, a, y j) and (xi, l, b, zk); also, for all m such that 1 < m < Pi, m 5~ l, we
route a unit flow for the source-sink pair (xi, m, a, xi, m, b). Thus, a covered xi gives
rise to Pi -F- 1 units of flow, and an uncovered xi to Pi units. Therefore, the total flow

n
routed is t + ~ i=1 P i = t + ISI.

Conversely, assume there is an integral flow of t + I SI units. Note that the maximum
integral flow over the commodit ies that have at least one endpoint in the subtree rooted
at xi is Pi + 1. Moreover, this flow can be achieved only by routing one unit for the
source-s ink pairs (xi, l, a, y j) and (xi, l, b, zk), for some l, and one unit for each of the
remaining Pi - - 1 pairs (xi, m, a, xi, m, b), 1 <_ m < Pi, m ~ l.

Since the integral flow has value t + IS[, there must be at least t elements xl such that
the flow routes Pi -k- 1 units over commodit ies with at least one endpoint in the subtree
rooted at xi. If flow is routed for the source-s ink pairs (xi, l, a, y j) and (xi, l, b, zk), then
(x~, yj, zk) is a triple in S. Let S' be the set of these (at least t) triples. Because of the
capacities of the edges (r, xi) , (r, yj) , and (r, zk), each xi, yj , Zk is included in at most
one of these triples. []

The M A X SNP-hardness of the maximum integral flow problem follows from the fact
that the three-dimensional matching problem is M A X SNP-hard even if every element
occurs a bounded number of times [18], and in this case the above transformation is
an L-reduction [25]. Recall that an L-reduction from a problem A to a problem B is a
polynomial- t ime tranformation f from instances of A to instances of B, such that, for
some constants c~,/5, the following two conditions are satisfied:

1. o p t (f (I)) < et �9 o p t (l) , where o p t (l) , o p t (f (l)) are the optimal values of the
instance I of A and f (l) of B, respectively.

2. Given a solution y of f (I) we can find in polynomial time a solution x of I , so that
the values o f x and y obey I o p t (I) . - value(x)l < ~ l o p t (f (I)) - value(y)l .

If we consider the restriction of the three-dimensional matching problem to instances
I where every element occurs at most d times, then the optimal value o p t (l) is at
least ISI / (3d - 2) because every triple intersects at most 3(d - 1) other triples. Thus
the optimal value of the instance f (I) of the maximum integral flow problem satis-
fies o p t (f (I)) = o p t (l) + IS[< (3d - 1)op t (l) , and thus condition (1) is satisfied
with c~ = 3d - 1. Furthermore, from a solution y to the flow instance with value
t + ISI we construct a solution x to the three-dimensional matching instance of
size t, thus, Iopt (I) - value(x)[= [opt (f (I)) - value(y) l and condition (2) is satisfied
with/5 = 1.

14 N. Garg, V. V. Vazirani, and M. Yannakakis

5. Approximating Integral Flow and Multicut. In this section we present an algo-
rithm that finds a multicut, M, and an integral flow. F , such that the multicut is of weight
at most twice the integral flow, i.e., M < 2F . Since maximum mult icommodity flow
(and hence maximum integral flow) is a lower bound on the weight of the minimum
multicut we have

M _< 2 F < 2 - maximum integral flow _< 2 �9 weight of minimum multicut

and

1 F > g M > 7 I i . weight of minimum multicut _> ~ �9 maximum integral flow.

Our algorithm follows a primal- dual approach, the elements of which have been
enunciated in [14] and [30]; see also [15] for a comprehensive exposition. This approach
when applied to approximation algorithms consists of starting with arbitrary solutions
to the primal and dual linear programs, and making alternate improvements to each,
until "good" integral solutions to both are found. The improvements are guided by the
complementary slackness conditions. The two complementary slackness conditions for
our setting (recall the LPs from Section 2) are as follows:

1. ,f} > 0 =~ Y-~e~_p, de = 1. i.e., if the commodity i has a nonzero flow, then the sum of
the distance labels along path Pi is exactly 1.

2. de > 0 ~ ~i:e~p, f i = c,,, i.e., an edge with a positive distance label is saturated.

Enforcing both complementary slackness conditions would give us optimal solutions
to the primal and dual linear programs. Since we are looking for good integral solutions
to these programs and the optimal solutions are in general not integral, we cannot enforce
all these complementary slackness conditions. We enforce the second complementary
slackness condition and relax the first to

(1) ft > 0 :=~ 1 < Z d e < 2 .
e E p~

This implies that we pick only saturated edges in the multicut (de > 0 ~ Z i : e ~ p , f i = Ce)

and that, for any commodity that is routed, the flow path contains at most two edges of
the multicut. It is easy to see that ensuring these two conditions would imply that the
capacity of the multicut is at most twice the value of the flow.

We now describe an algorithm for finding a multicut and an integral flow (Figure 3)
that meet these two requirements.

We begin by rooting the tree at an arbitrary vertex, say r. The level of a vertex is
its distance from the root. A commodity is contained in the subtree rooted at v if the
path corresponding to it lies completely within this subtree. A commodity is contained

in level i if it is contained in a subtree rooted at some vertex in level i. An edge el is an
ancestor of an edge e2 if el lies on the path from e2 to the root. The algorithm makes
two passes over the tree.

PASS 1. In this pass we move up the tree, one level at a time, routing flow as we go
along and picking some edges (a subset of these edges will be retained as the multicut).
If v is a vertex in the current level, check if there exists a commodity contained in the

Primal-Dual Approximation Algorithms for Integral Flow and Muhicut in Trees 15

A l g o r i t h m multicut Antegral-flow(r);
1. (Pass i }

for current_level = ma.x_level d o w n t o 0 do
for all v E current_level do

1.1. for all commodities contained in subtree rooted at v do
Route as much flow of commodity as is possible, update F

1.2. Compute frontier(v)
2. {Pass 2 }

2.1. M ~ - r
{Initializing multicut }

2.2. for current-level = 0 to max_level do
for all v E current_level do

for all e E frontier(v) do
if Bd E M such that e t is on the path from e to v t h e n

M ,-- M U { e }
3. r e t u r n (M, F)

end .

Fig. 3. Finding a multicut, M, and an integral flow, F, such that M < 2/' .

subtree rooted at v. If yes, send as much flow of this commodity as is possible. Repeat this
procedure until no more flow can be routed for commodit ies contained in this subtree.

We also need to pick a set of edges to include in the multicut. Let Q be the set of
edges saturated in this step and let I be the set of commodit ies such that, for i ~ I ,
the path Pi did not contain a saturated edge before this step but contains one now. Note
that if a commodity in the set I is contained in the subtree rooted at v, then the path
corresponding to it must use the vertex v. This is because we are moving up the tree
and so would have considered all paths in this subtree that did not contain v at an earlier
step in the procedure and saturated some edge along each of these paths. For this same
reason, all paths along which flow is routed in this step use the vertex v. Thus if there
are two edges in Q such that one is an ancestor of the other, then one of these edges is
redundant as far as disconnecting the source-sink pair of commodit ies in I is concerned.
We retain the edge that is the ancestor and denote this subset of Q as frontier(v) (the
frontier of vertex v).

CLAIM 5.1. The union of all frontiers is a multicut.

PROOF. As a first step in proving this claim observe that the set of saturated edges is
a muhicut. If such is not the case, then there exists a commodity i such that no edge
along Pi is saturated. We could hence have routed an additional flow of commodity i - - a
contradiction.

From our definition of frontiers it follows that the union of all frontiers disconnects
exactly the source-sink pairs that are disconnected by the set of saturated edges. Hence
the union of all frontiers is a multicut. []

We augment the flow in this manner, level by level. A path along which some flow is
sent is called aflow path. Since all capacities are integral the flow along each flow path
is also integral.

16 N. Garg, V. V. Vazirani. and M. Yannakakis

In the second pass we move down the tree dropping redundant edges from the multicut;
this is done to ensure that no more than two edges of a flow path are included in the

multicut condition 1).

PASS 2. We move down the tree one level at a time and build the multicut. When
considering vertex v we include an edge e ~ frontier(v) in the multicut only if no edge
along the path from e to v is already included in the multicut. Let M be the set of edges
picked.

CLAIM 5.2. M is a multicut.

PROOF. By our previous claim, the frontiers of all vertices put together form a multicut.

Note that the edges of frontier(v) are required to disconnect a source-sink pair only if
the path corresponding to this pair uses the vertex v (the set of commodities, I, in
the preceding discussion), If e is an edge of frontier(v) not included in M, then there
is another edge e' e M that lies on the path from e to v and hence disconnects all

source-sink pairs that e was required to disconnect. []

We now show that the muiticut picked, M, contains at most two edges of any flow
path. We begin by making the following two claims.

CLAIM 5.3. Let si-ti be a f low path, and let v be the least common ancestor o f si, t i. I f

e c frontier(u) is an edge on this path, then u is an ancestor o f v.

PROOF. For contradiction, assume that v is an ancestor of u. Hence u is considered
before v in the first pass. Since e ~ frontier(u), e is saturated while considering vertex
u and flow is sent along the path s i - t i later (while processing vertex v). However, this is

not possible as edge e lies on the path s i - t i . []

CLAIM 5.4. I f u is an ancestor o f v, then no edge o f frontier(v) is an ancestor o f an
edge o f frontier(u).

PROOF. Suppose el E frontier(v) is an ancestor of e2 6 frontier(u). Since u is an
ancestor of v, vertex v is considered before u in the first pass. As el 6 frontier(v) , el
is saturated while considering vertex v and e2 e frontier(u) is saturated later (while
processing vertex u). However, this is not possible as edge ej is an ancestor of e2 and
lies on the path from e2 to u. []

LEMMA 5.1. Let si-ti be a f low path and let v be the least common ancestor o f si, ti.
Then M contains at most one edge from the path s i - v and one edge from the path t i -v .

PROOF. Let M contain two edges el, e2 from the path s i -v . Further, let el E frontier(vl)
be an ancestor of e2 ~ frontier(v2). By the above two claims it follows that v I is an
ancestor of v2 which is an ancestor of v. Thus, el occurs on the path from e2 to v2 and so
while picking edges from frontier(v2) (Pass 2) we would not have included e2 in M. []

Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees 17

Hence the multicut, M, includes at most two edges of any flow path. Since all the
edges in M are saturated, the two conditions that we set out to enforce are met. Hence
the capacity of the multicut is at most twice the value of the flow.

6. Integrality Gap for Grid Graphs. The approximation algorithm for the maximum
integral flow on trees uses, implicitly, the fact that the ratio between the maximum
fractional and integral flows for trees is at most 2. This, however, is not true for general
graphs. In fact, even for grid graphs this gap is quite large.

PROPOSITION 6. !. The gap between the ma.rimum integral f low and the maximum frac-
tional f low for grid graphs can be as high as k /2, where k is the number of commodities.

PROOF. The graph G is a union of k paths, p~, P2 Pk ; the endpoints of the path Pi
form the source-sink pair for commodity i. Every pair of paths, Pi, Pj, i ~ j , intersects
in a unique edge.

The graph G can be embedded on a k • k grid. If the origin (0, 0) is the left bottom
corner of the grid, then si = (0, k - i + 1) and ti ----- (i, 0). The path Pi is then the path
from (0, k - i + 1) to (i, k - i + 1) to (i, 0). Any two paths intersect at a unique vertex. To
ensure that they intersect in a unique edge we replace each intersection v - (i, j) by two
vertices va, vh. The edges incident at vertices v~,, Vb are (va, (i -- 1, j)) , (v~, (i, j + 1)),
(Vb, (i + 1, j)) , (Vb, (i, j -- 1)), and (Va, vl,). Figure 4 shows this embedding.

The maximum integral flow for this instance is one unit, as by routing any one com-
modity we block the paths of all other commodities. However, the maximum fractional
flow is k /2 units; halfa unit of each commodity can be routed simultaneously. This yields
a gap of k /2 between the maximum fractional flow and the maximum integral flow. []

In the above example at least k edges are needed to disconnect every source-sink
pair. Thus the gap between the maximum integral flow and the minimum multicut is k

tk

t~

I / [\

$1

Fig. 4. The grid graph with the k / 2 gap between the maximum (fractional) flow and the maximum integral
flow.

18 N. Garg, V. V. Vazirani, and M. Yannakakis

and so we cannot use integral flow as a lower bound on the weight of the multicut when
approximating the minimum multicut in general graphs.

7. The Tree-Representable Set Cover Problem. The minimum multicut problem for
trees can be viewed as a weighted set cover problem. The elements, P, of the set system,
(P, E), are the s,-t~ paths in the tree, 1 < i < k. The sets, E, correspond to edges of
the tree. A set includes all si-t i paths (elements) that use this edge; the set has weight
equal to the capacity of the edge. Finding the minimum weight multicut for the tree is
the same as finding the minimum weight set cover in this set system.

Note, however, that not all set cover problems can be viewed as minimum multicut
problems on trees. A set system (P, E) is called a tree-representable set system if there
exists a tree T, whose set of edges is E such that every path p ~ P is a path in T. The
problem of deciding whether a given set system is tree-representable is well studied and
efficient algorithms are known 15]. Thus, given a set cover problem, it can be checked,
in almost linear time, if it corresponds to the minimum multicut problem on some tree,
T, and, if so, find T and the {si, ti} pairs.

THEOREM 7.1. There exists a poh, nomial-time 2-approximation algorithm for the min-
irnum weight set cover problem for set systems that are tree-representable.

8. Discussion and Open Problems, The notion of a cross-tree family of cuts is quite
basic and arises in several contexts (e.g., in approximating TSP by solving the LP re-
laxation, and doing subtour elimination). It will be interesting to interpret and apply our
results to these contexts.

In particular, understanding better the link between our problem and the setting of [14]
and [30] is especially interesting. The problem considered in 114] is to lind a small
subgraph that satisfies specified cut requirements. Let G = (V, E) be a graph, and let
c: E --~ Z + capacities on the edges and f : 2 v --~ {0, 1} be a function specifying cut
requirements. For a set S of vertices, let v (S) denote the set of edges that have exactly
one vertex in S and one outside S. The LP relaxation (primal) and dual of their problem
is

minimize Z xece
eEL

subject to u C V,

VeE E,

2_., x,, _>
e:e~(S)

xe > O,

maximize Z f (S) y s
SC V

subject to u ~ E, Z Ys < ce,
S:e~v(S)

u c V. Ys >_ O.

This primal and our primal form a complementary pair--this is a covering problem
and ours is the corresponding packing problem. The above-stated dual is a cut packing

Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees 19

problem. The approximation algorithm of [141 finds a dual solution in which the nonzero
ys's correspond to a noncrossing family of cuts. Furthermore, our algorithm, as well as
those of 114] and [301 are primal-dual algorithms. These relationships seem to suggest a
deeper connection. A general framework, in which both algorithms fit nicely, is presented
in [151.

Is there a generalization of the maximum cross-free-cut matching problem, allow-
ing certain crossing cuts, that is in P? We can show that allowing arbitrary crossing
cuts leads to NP-hardness. Our reduction from the maximum independent set problem
is approximation preserving and hence no polynomial-time algorithm can achieve an
approximation factor of n ' .

Can our primal-dual approximation algorithm be generalized beyond trees? Proposi-
tion 6.1 shows that any such algorithm attempting to approximate the maximum integral
flow, will have to compare it with the nonintegral flow.

Acknowledgment. We wish to thank Clyde Momna and Alex Schaffer for providing
references for the tree-representable set systems.

References

[11 S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veritication and the hardness of
approximation problems. Proceedings, 33rd IEEE Symposium on I~bundations of Computer Science,
pages 14-23, 1992.

[2] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted vertex cover
problem. J. Algorithms, 2:198-203, 1981.

[31 M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilisticaUy checkable proofs and
applications to approximation. Proceedings, 25th Annual ACM S~,mposium on Theo~' of Computing,
pages 294-305, 1993.

14] C. Berge. Graph and Hypergraphs. North-Holland, Amsterdam, 1976.
[5] R.E. Bixby and D.K. Wagner. An almost linear time algorithm for graph realization. Math. Oper Res.,

13:99-123, 1988.
[61 B.V. Cherkasskij. Solution of a problem of multicommodity flows in a network (in Russian). Mat.

Metody, 13:143-151, 1977.
[71 S. Chopra and M.R. Rao. On the multiway cut polyhedron. Networks, 21:51-89, 1991.
[81 E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Seymour, and M. Yannakakis. The complexity of

multiterminal cuts. SIAM J. Comput., 23:864-894, 1994. Preliminary version appeared under the title,
The complexity of multiway cuts, Proceedings, 24th Annual ACM Symposium on Theoo, of Computing,
pages 241-251, 1992.

[9] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems.
SIAM J. Comput., 5:691-7(13, 1976.

[10l A. Frank. Packing paths, circuits and cuts--a sutwey. In B. Korte, L. Lovasz, H.J. Promel, and A. Scbri-
jver, editors, Paths, Flows and VLSI-Layout, pages 47-100. Algorithms and Combinatorics, volume 9.
Springer-Verlag, Berlin, 1991.

[I 1] H.N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected network
flow problems. Proceedings, 15th Annual ACM Symposium on Theory, of Computing, pages 448-456,
1983.

[12] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut theorems and their
applications. Proceedings, 25th Annual ACM Symposium on Theoo' of Computing, pages 698-7(17,
1993.

[13] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximation algorithms for multiway cuts in node-

20 N. Garg, V. V. Vazirani, and M. Yannakakis

weighted and directed graphs. Proceedings, 21st International Colloquium on Automata, ~mguages
and Programming, pages 487-498, 1994.

[14] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained forest prob-
lems. SIAMJ. Comput., 24:296-317, 1995. Preliminary version in Proceedings, 3rdAnnualACM-SIAM
Symposium on Discrete Algorithms, pages 3(17-316. 1992.

[15] M.X. Goemans and D.P. Williamson. The primal-dual method for approximation algorithms and its
application to network design problems. In D. Hochbaum, editor, Approximation Algorithms.for NP-
hard Problems, pages 144--191. PWS Publishing, Boston, 1995.

[16] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization.
Springer-Verlag, Berlin, 1988.

[17] T.C. Hu. Integer Programming and Network Flows. Addison-Wesley, Reading, MA. 1969.
[18] V. Kann. On the approximability of NP-complete optimization problems. Ph.D. Thesis, Royal Institute

of Technology, Stockholm, 1992.
[19] P. Klein. A. Agrawal, R. Ravi, and S. Rao. Approximation through multicommodity flow. Proceedings

31st IEEE Symposium on Foundations of Computer Science, pages 726-737, 1990.
[20] I'L Korach and M. Penn. Tight integral duality gap in the Chinese postman problem. Technical Report,

Computer Science Department, Israel Institute of Technology, Haifa, 1989.
[21] L. Lov,f.sz. On some connectivity properties of eulerian graphs. Acta Math. Akad. Sci. Hungar., 28:129-

138, 1976.
[22] ET. Leighton and S. Rao. An approximate max-flow rain-cut theorem for uniform nmlticommodity flow

problems with application to approximation algorithms. Proceedings 29th Synzposium on Foundations
of Computer Science, pages 422-431, 1988.

[23] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. J. Assoc.
Comput. Mach., 41(5):96(~-98 I, 1994. Preliminary version appeared in Proceedings 25th Annual ACM
Symposium on Theoo' t~f Computing, pages 286-293, 1993.

[24] W. Mader. Uber die maximalzahl kantendisjunkter a-wege. Arch. Math., 30:325-336, 1978.
[25] C.H. Papadimitriou and M. Yannakakis. Optimization, approximation and complexity classes. J. Corn-

put. System Sci., 43:425--440, 1991.
[26] N. Robertson and ED. Seymour. Graph minors XIII: The disjoint path problem. J. Combin. Theoo'

Ser. B, 63:65-110, 1995.
[27] A. Schrijver. Homotopic routing methods. In B. Korte, L. Lov~isz, H.J. Promel, and A. Schrijver, editors,

Paths, Flows and VLTI-Layout, pages 329-371. Algorithms and Combinatorics, volume 9. Springer-
Verlag, Berlin, 1991.

[28] A. Srivastav and E Stangier. Integer multicommodity flows with reduced demands. Proceedings Euro-
pean S~'mposium on Algorithms, pages 360-372, 1993.

[29] W.T. Tutte. An algorithm for determining whether a given binary matroid is graphic. Proc. Amer Math.
Soc., 11:905-917, 1960.

[30] D.E Williamson, M.X. Goemans, M. Mihail, and V.V. Vazirani. A primal~lual approximation algorithm
for generalized steiner network problems. Proceedings, 25th Annual ACM ~,mposium on Theoo' of
Computing, pages 708-717, 1093.

[31] M. Yannakakis, EC. Kanellakis, S.C. Cosmadakis, and C. H. Papadimitriou. Cutting and partitioning a
graph after a tixed pattern. In Automata, Languages and Programming, pages 712-722. Lecture notes
in Computer Science, volume 154. Springer-Verlag, Berlin, 1983.

