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Primal-Dual Approximation Algorithms for Integral 
Flow and Multicut in Trees 

N. Garg, j V. V. Vazirani, l and M. Yannakakis  2 

Abstract. We study the maximum integral multicommodity flow problem and the minimum multicut prob- 
lem restricted to trees. This restriction is quite rich and contains as special cases classical optimization problems 
such as matching and vertex cover for general graphs. It is shown that both the maximum integral multicom- 
modity flow and the minimum multicut problem are NP-hard and MAX SNP-hard on trees, although the 
maximum integral flow can be computed in polynomial time if the edges have unit capacity. We present an ef- 
ficient algorithm that computes a multicut and integral flow such that the weight of the multicut is at most twice 
the value of the flow. This gives a 2-approximation algorithm for minimum muhicut and a �89 
algorithm for maximum integral multicommodity flow in trees. 
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1. I n t r o d u c t i o n .  The  Mul t icut  problem is defined as follows: Given a graph G = 
(V, E)  with a positive weight (or capacity) c(e)  on every edge e E E, and a list of  vertex 
pairs, (si, ti), 1 < i < k, find a m i n i m u m  weight set of  edges separating each pair of  
vertices in the list. We call such a set of  edges a multicut.  In this paper we deal with 
undirected graphs. The mult icut  problem was posed as early as 1969 by Hu [17]. For 
k ---- 1, the problem coincides with the ordinary s - t  m i n i m u m  cut  problem. The problem 
is also po lynomia l - t ime  solvable when k ---- 2, by using two applications of  a m i n i m u m  
s - t  cut algorithm [31 ]. 

The mult icut  problem includes as a special case the mult iway (or mult i terminal)  cut 
problem ]8], where instead of  a list of  pairs of  vertices we are given a set of  vertices 
(called terminals)  and we wish to find a m i n i m u m  weight set of  edges whose removal 
separates every pair of  terminals.  Clearly, the mul t iway cut problem can be encoded as 
a mul t icut  problem by including in the list of  vertex pairs all distinct pairs of  terminals.  
It was shown in [8] that the mul t iway cut problem is NP-hard and M A X  SNP-hard for 
any fixed number  k > 3 of  terminals;  hence the same is true of  the mult icut  problem. 

In this paper we address the special case of  f inding a m i n i m u m  mult icut  when the 
input graph is a tree (the problem is dealt with in full generali ty in [12]). The m i n i m u m  
mult iway cut in trees can be found in polynomial  time using a straightforward dynamic  
programming  approach [7]. However, for multicuts,  NP-hardness sets in much earlier; 
we show that comput ing  the m i n i m u m  mult icut  is NP-hard and M A X  SNP-hard even 
on unweighted  trees of  height 1. 
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We approach this intractability of the minimum multicut problem by considering a 
multicommodity flow problem; the formulation we deal with associates a commodity 
with each vertex pair and requires maximizing the sum of the flows routed subject to 
capacity and flow conservation requirements. Clearly, the maximum multicommodity 
flow is bounded from above by the minimum multicut; the question is whether equality 
holds. Consider a tree of height 1 with three leaves. Each pair of leaf vertices form the 
source-sink pair of a commodity. All edges have unit capacity. The maximum flow in 
the tree is 3 whereas the minimum multicut has weight 2. 

In this situation the best that can be hoped for is an approximate max-flow min-multicut 
theorem. Such an approximate theorem for general graphs was shown in [12], stating 
that the maximum flow and the minimum multicut are within a multiplicative factor 
O(log k) of each other (improving an earlier O (log 3 n) bound of [19]). Furthermore, the 
gap is tight up to a constant factor, i.e., there are instances in which the ratio between 
the minimum multicut and the maximum flow is g2 (log k) [12]. (There is also another 
version of multicommodity flows and cuts that has been studied in the literature [22], 
[19], in which the commodities have associated demands and we wish to find a two-way 
cut that minimizes the ratio of the capacity over the demand across the cut. It is easy to 
see that this min-ratio cut problem is trivial on trees, so we do not discuss this version 
in this paper.) 

We prove here that a tighter relationship between the maximum flow and the minimum 
multicut holds for trees. Furthermore, the relative simplicity of this setting (input graph a 
tree) allows us to consider a stronger version of flow, namely, integral flow; a commodity 
can now be routed only in integral units. Clearly, the maximum integral flow cannot 
exceed the maximum flow. Our main result is an approximate maximum-integral-flow 
minimum-multicut theorem. 

THEOREM 1.1 (Approximate Max-Integral-Flow Min-Multicut Theorem). For trees, 

maximum integral f low < minimum multicut < 2 �9 maximum integral flow. 

Our proof of this theorem is an efficient algorithm for computing a multicut and an 
integral flow such that the weight of the multicut is at most twice the value of the flow. This 
also gives us a 2-approximation algorithm for the minimum multicut problem in trees and 
a �89 algorithm for the maximum integral flow problem in trees (we show 
that this problem is NP-hard and MAX SNP-hard). The MAX SNP-hardness [25] of 
the multicut and integral flow problems implies that no polynomial-time approximation 
scheme exists unless P = NP [1]. 

A specially interesting aspect of the algorithm is the methodology used in design- 
ing it--it is based on a primal-dual approach. The primal-dual method has been used 
extensively in the past for solving problems in E The recent work of Goemans and 
Williamson [ 14] and Williamson et al. [30] demonstrates, conclusively, the effective- 
ness of this method in the context of approximation algorithms for NP-hard optimization 
problems. 

The maximum integral flow problem has been extensively studied; see e.g., [10] and 
[27]. For a k ---- 1 commodity it coincides with the ordinary maximum flow problem, but 
for k _> 2 commodities it becomes NP-hard [9]. In the case of unit edge capacities, the 
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problem of finding the maximum integral flow is the same as that of  finding a maximum 
cardinality set of edge-disjoint paths between the specified source-sink pairs; in this case 
the problem can be solved in polynomial time for fixed k by the results of Robertson and 
Seymour 126], and becomes NP-hard for general k. We do not know of approximation 
algorithms for any other NP-hard cases of the maximum integral flow problem besides 
ours. Variants of  the problem where the commodities have specified demands that have 
to be (approximately) satisfied are studied in [20] and [28]. We show by means of  an 
example that even for grid graphs, the ratio of  the maximum (fractional) flow to the 
maximum integral flow (and also of the minimum multicut to the maximum integral 
flow) is f2 (k), thus indicating that these upper bounds cannot be of  any help in obtaining 
good approximation algorithms for this problem. 

Although the restricted setting of  trees may seem very simple at first, we show that 
it captures a surprisingly rich collection of problems. When restricted to trees of  height 
1 and unit edge capacities, minimum multicut is the same as minimum vertex cover 
for general graphs; if the capacities are arbitrary (and the height 1), it is equivalent to 
minimum weight vertex cover for graphs with weights on the vertices. The best approx- 
imation factor known for vertex cover is 2 for both the unweighted and the weighted 
case (see e.g., [2]) and has not been improved in a long time, indicating that improv- 
ing our result would be quite difficult. Regarding maximum integral flow, we note that 
in the case of  trees of height 1 and unit edge capacities, it is equivalent to maximum 
matching in general graphs; if the trees are of height 1 and edge capacities are arbitrary, 
it corresponds to maximum b-matching in general graphs. On the other hand, if the edge 
capacities are unity and the trees are of arbitrary height, integral flow corresponds to a 
generalization of matching, which we call cross-free-cut matching. This generalization 
inherits many nice combinatorial properties of  matching. We give a polynomial-time 
algorithm for maximum integral flow in trees with unit edge capacities and hence for 
finding a maximum cross-free-cut matching. 

Finally, we also show that the multicut problem in trees is equivalent to the set cover 
problem for a special class of set systems, which we call tree-representable set systems. 
Interestingly enough, the problem of recognizing this class in polynomial time has been 
extensively studied in a different context [29] (it is the same as testing if a given binary 
matroid is graphic), and efficient algorithms have been discovered [5]. Hence, we also 
get a 2-approximation algorithm for the tree-representable set cover problem. The best 
aproximation factor known for the set cover problem is O (log n), where n is the number 
of  elements being covered and this is the best possible (modulo constant factors) unless 
NP C TlME(nl~176 n) 1231, [3]. 

2. Preliminaries.  Given a tree T = (V, E), a capacity function c: E --~ Z +, and k 
pairs of vertices (si, ti), 1 < i < k, we associate a commodity i with the pair (si, ti) and 
designate si as the source and ti as the sink for this commodity. 

A multicommodityflow is a way of  simultaneously routing commodities from their 
sources to the respective sinks while ensuring that the flow of  each commodity is con- 
served at each vertex (except the source and sink vertex for that commodity) and that the 
sum of the flows of all commodities through an edge does not exceed the capacity of the 
edge. A multicommodity flow in which the sum of the flows over all the commodities 
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is maximized is called a maximum (multiconlmodity) flow. A flow is integral if each 
commodity has an integral flow through each edge. The maximum integralflow problem 
is to find an integral multicommodity flow that is maximum. 

A multicut is defined as a set of edges whose removal disconnects each source-sink 
pair. The capacity (weight) of a multicut is the sum of the capacities of the edges in it. 
The minimum multicut problem is to find a multicut of minimum weight. 

The maximum multicommodity flow problem can be solved in polynomial time using 
linear programming. In the case of  trees the linear program (LP) has a particularly simple 
structure. Let Pi denote the unique path from si to ti in the tree, and let fi be a variable for 
the flow along this path. Since the flow along any path is nonnegative, f/ > 0. Further. 
the total flow through an edge cannot exceed the capacity of the edge, i.e., 

)-~ .~ _< c~, e ~ E .  
I :eE p~ 

The flow would be maximum when )--~-~=1 .~ is maximized. Hence the linear program 
for a maximum multicommodity flow is 

k 

maximize Z fi 
i-:1 

subject to Z .l) < c~, e c E, 
t : eE p ,  

f/ > 0, 1 < i  < k .  

The additional constraint, fi 6 Z ~, yields a program for the maximum integral flow 
problem. 

The dual of this linear program is 

minimize Z dece 
e ~ E  

subject to Z de > 1, 1 < i < k. 
e~p~ 

d e > 0 ,  e c E ,  

and can be viewed as an assignment of nonnegative distance labels, de, to edges e 6 E, 
so as to minimize ~ , ~ ,  d~c~, subject to the constraint that cach pair, (s~, t~), be at least 
a unit distance apart. 

The optimal integral solution to the dual program is a 0/1 assignment of  distance 
labels to the edges such that. for every commodity, the path in the tree corresponding to 
the commodity contains an edge with distance label 1. Thus the edges with d,, = 1 form 
a multicut of weight equal to )-~-,.~ E d,c,,. Conversely, the minimum multicut corresponds 
to an integral solution to the dual program of value equal to the weight of  the multicut. 
Thus the optimal integral solution to the dual LP is the minimum multicut and hence 
the value of  the optimal (fractional) solution, which by the Duality Theorem is equal to 
the maximum multicommodity flow, is a lower bound on the weight of the minimum 
mu]ticut. 

A similar approach to formulating the multiway cut problem (in general graphs) leads 
to an integer program whose linear-programming relaxation has an an optimal solution 



Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees 7 

S 5 , S 3 $5"\\., 

"" / 1/3 1/3~'\ "2/3 

/ ~  1/3." " . . ~  
j ,  . 

t s 4 / . 

s2 t2 tS's 2 t2 s' 

Fig. 1. Example to show that the minimum (fractional) multicut is not half-integral. 

that is half-integral, i.e., every variable has value 0, 1 5, or 1 [ 13]. This is not the case with 
the multicut problem, even for trees. All edges of the tree in Figure 1 have unit capacities. 
The figure shows a mult icommodity flow of value 2 -~ and a fractional multicut of  the 3 
same weight. Therefore this is the pair of  optimal solutions to the primal and dual linear 
programs. 

3. Finding the Minimum Mult icut .  The minimum multicut problem for trees can be 
solved in polynomial  time for fixed k [31 ]. This is because the multicut contains at most 
k edges; one can in time O(n k) enumerate all subsets of edges of cardinality at most k 
and pick one that is a multicut and has the minimum weight. However. for arbitrary k 
the problem is NP-hard. 

The demand graph H corresponding to a mult icommodity flow or multicut instance 
is the graph whose vertices are the sources and sinks, and which contains an edge for 
each source-sink pair (si, ti). 

PROPOSITION 3.1. For trees o f  height 1 and unit edge capacities, the minimum multicut 
problem is equivalent to the minimum vertex cover problem on general graphs. For trees 
o f  height 1 and arbitrar 3, edge capacities, the minimum multicut problem is equivalent 
to the minimum weight vertex cover problem on general graphs. 

PROOF. Consider an instance of  the multicut problem on a tree T of height 1 with 
root v and leaves Vl, v2 . . . . .  Yd. If the root v and a leaf vi form a source-sink pair in 
the multicut instance, then clearly we must remove the edge (v, vi). By removing all 
these forced edges we can assume without loss of generality that the given list of pairs 
in the multicut instance contains only leaves. Let the edge ei = (V, Vi) have capacity 
ci. Consider the (weighted) vertex cover problem on the demand graph H,  where the 
weight of  a vertex vi is ci. If the edges eft, ei2 . . . . .  ei~, form a multicut in T, then the 
vertices vi,, vi, . . . . .  vii, form a vertex cover in the demand graph, H,  and vice versa. 
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Thus, finding the minimum multicut in T is equivalent to finding a minimum weight 
vertex cover in H. 

Conversely, given an instance of  the (weighted) vertex cover problem on a graph H, 
we can construct a tree T of height 1 that has one leaf vi for every vertex of  H and one 
commodity for every every edge of  H. [] 

Since the vertex cover problem is NP-hard and MAX SNP-hard [25] we have: 

THEOREM 3.1. The minimum multicut problem is NP-hard and MAX SNP-hard even 
for  trees of  height 1 and unit capacities. 

4. Finding the M a x i m u m  Integral  Flow. The problem of finding the maximum in- 
tegral flow is the same as that of  finding a maximum cardinality set of  edge-disjoint 
paths between the specified source-sink pairs. For the case when the demand graph is 
a complete subgraph, there exists under certain conditions (e.g., for Eulerian graphs) a 
rain-max theorem relating the maximum number of  edge-disjoint paths to the weight of 
the minimum multiway cut [21 ], [6], [24]. In this section we relate the problem of finding 
the maximum integral flow in a tree to other combinatorial optimization problems and 
establish its complexity. 

4.1. Unit Height Trees. Let T be a unit height tree with root v and leaves vi , u2, . . . ,  V d. 
Let the edge ei =- (1J, Vi)  have capacity ci. 

PROPOSITION 4.1. For trees of  height 1 and unit edge capacities, finding the maximum 
integral flow is equivalent to the maximum matching problem on general graphs. 

PROOF. Consider an instance of  the maximum integral flow problem on a tree T of  
height 1 and unit edge capacities. If  the root v and a leaf vi form a source--sink pair, then 
we can route flow along the edge (v, vi) without losing optimality. Thus, after routing 
these root-leaf flows we may assume, without any loss of  generality, that the sources and 
sinks of  all commodities are leaves of T. Consider the maximum matching problem on 
the demand graph H. Routing a unit of  flow from vi to l ) j  corresponds to picking edge 
(vi, vj) in H. Since all edges of  T have unit capacity, an integral flow in T is a matching 
in H of the same size. The converse is also true; a matching in H of  size f corresponds 
to an integral flow of  f units in T. Thus computing the maximum integral flow in T is 
equivalent to finding a maximum matching in H. 

Conversely, given an instance of  the maximum matching problem on a graph H, we 
can construct a tree T of  height 1 and unit edge capacities that has one leaf vi for every 
vertex of  H and one commodity for every edge of  H. [] 

A well-studied generalization of matching is the b-matching problem. Given a graph 
G = (V, E) and a function b: V ~ Z +, a b-matching is a set of  edges, E '  ___ E with as- 
sociated multiplicities m: E '  ~ Z +, such that each vertex, v c V, has at most b (v) edges 
incident at it (i.e., the sum of  the multiplicities of  the edges incident to v is at most b(v)). 
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PROPOSITION 4.2. For trees of height 1 and unit edge capacities, finding the maximum 
integral flow is equivalent to the maximum b-matching problem on general graphs. 

PROOF. Given an instance of the multicut problem on a tree T of  height 1, we can first 
saturate all edges (v, vi) such that the root v and leaf vi are the source and sink of  a 
commodity, and hence we can assume, without any loss of generality, that the source- 
sink of  each commodity is a leaf of  T. Consider the b-matching problem on the demand 
graph H, where we let b(vi) be the capacity of the edge ei = ( V ,  V i ) .  Sending fij units 
of flow between the source-sink pair (vi, vj) corresponds to picking the edge (vi, vj) 
with multiplicity fij in the b-matching of H. Thus, computing a maximum integral flow 
in T now corresponds to finding a maximum b-matching in H. 

Conversely, given an instance (H, b) of the b-matching problem we can define an 
instance of  the maximum integral flow problem on a tree of height one as in the proof 
of Proposition 4.1. The edge e i  -~- (1), /)i) is now assigned a capacity b(v~). [] 

We remark that the variant of the b-matching problem, where edges can be picked 
only with multiplicity one (see e.g., [41), or more generally there are upper bounds on 
the allowed multiplicities, can be translated to the b-matching problem as defined above 
(unbounded multiplicities); see e.g., p. 258 of [161. 

Since the b-matching problem can be solved in polynomial time (see, for example, 
[11 ]), it follows that the maximum integral flow problem on trees of height 1 can be also 
solved in polynomial time. 

4.2. Trees with Unit Capaci~ Edges. If S is a proper subset of  the set of  V of  vertices, 
we use S to denote its complement V - S, and denote the partition of V into the two 
sets S and S and the corresponding cut by (S, S). Following standard terminology, two 
cuts (S, S) and (Q, Q) are said to be crossing iff S N Q, S n Q, S n Q, and S n Q are 
all nonempty. A family of cuts is noncrossing if no two cuts in the family are crossing. 

Given a graph G -- (V, E) and a family, U, of  noncrossing cuts, define an U-matching 
(a cross-free-cut matching) as a set of edges, E '  ___ E, such that E '  contains at most one 
edge from each cut in .T'. If.T" is the set of  all singleton cuts, ( v, V - v), v ~_- V, then a cross- 
free-cut matching is simply a matching in G (note that this family of  cuts is noncrossing). 
Thus a cross-free-cut matching generalizes the notion of a matching. In general, a family 
.T may not include some of  the singleton cuts, in which case an .T-matching may have 
two or more edges incident to some nodes; that is, a cross-free-cut matching is not 
necessarily a matching, depending on the given family .T. The maximum cross-free-cut 
matching problem is to find a cross-free-cut matching of maximum cardinality for a 
given graph G and noncrossing family .Y" of cuts. 

We now extend Proposition 4.1 to trees of arbitrary height. 

PROPOSITION 4.3. The maximum integralflowproblem on trees with unit capacity edges 
is equivalent to the maximum cross-free-cut matching problem. 

PROOF. Consider an instance of  the maximum integral flow problem consisting of  a 
tree T with unit capacities and a list of  pairs of vertices (si, ti). Define an instance of 
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the maximum cross-free-cut matching problem on the demand graph H with a family of  
cuts f T  that includes one cut (Se, Se) for every edge e of T. Note that removing an edge 
e from the tree T separates T into two components; this induces a partition (Se, Se) of  the 
vertices of H according to which component of T - e they belong to. A feasible integral 
flow in T is a set of edge-disjoint source-sink paths, which by construction corresponds 
to a cross-free-cut matching in H,  and vice versa. 

Conversely, let H be a graph and let 3 v be a family of noncrossing cuts. Clearly, if an 
edge of  H does not belong to any of the cuts in .Y" we can include it in the cross-free-cut 
matching. After removing these edges from H we may assume without loss of  generality 
that every edge of the graph H belongs to some cut of.7-. 

We define an instance of the maximum integral flow problem on a tree T, so that 
there is a correspondence between integral flows in T and cross-free-cut matchings in 
H. Every vertex of H is assigned to a unique vertex of T (not necessarily one-to-one), 
and for every edge (u, v) of H there is one commodity whose source and sink are the 
vertices of  T that are assigned u and v. There is a one-to-one correspondence between 
edges of  T and cuts in .Y'. We define T by induction on the size of  7.. If the family 7.  is 
empty, then H has no edges, and we let T be the tree with one vertex, which is assigned 
all the vertices of H. I f 7 .  is nonempty, let (S, S) be a cut in .Y'. We define two families 
of noncrossing cuts, a family )vl on S t3 {al }, and a family 7"2 on S t3 {a2}, where a l ,  a2 
are new elements, as follows. Since 7.  is noncrossing, for every other cut ( Q, (~), one of  
the two sets in the partition, say Q, has an empty intersection with either S or ,~. If S n Q 
is empty, then we include (Q, S - Q t3 {a,}) in .7"2; if S fq Q is empty, then we include 
(Q, S - Q t_) {al}) in 5rl. Construct inductively a tree Tl for f l ,  which is assigned all 
the vertices in S and a~, and a tree T2 for 9%, which is assigned all the vertices in S and 
a2. Add an edge joining the vertex of  Tj that is assigned al with the vertex of T2 that is 
assigned a2 to form the tree T. 

An integral flow in T is a set of  edge-disjoint source-sink paths and corresponds to 
a set of  edges of H. It is easy to show inductively that every edge of  T corresponds to a 
cut in f ,  and that the partition of the vertices of H induced by removing an edge from 
T corresponds to a cut in F .  Hence an integral flow obeys the capacity constraints iff 
the corresponding set of  edges of H is a cross-free-cut matching. [] 

THEOREM 4.1. There is a polynomial-time algor#hm for finding a maximum integral 
flow on trees with unit capacity edges, and hence for the maximum cross-free-cut match- 
ing problem. 

PROOF. Since all edge capacities are unity, and we want an integral flow, at most one 
commodity can flow through an edge. As shown in Proposition 4.1, for a tree of  height 
1, this is simply a maximum matching problem. 

Our algorithm starts by rooting the tree at an arbitrary vertex. It then does two passes 
over the tree, level by leve l - -an  upward pass followed by a downward pass. Consider a 
tree of  height 2 and let v be a vertex at level 1 and let T~ be the subtree rooted at v. Consider 
the commodit ies that have both their source and sink in T,.. As in Proposition 3.1, we can 
define a graph G,, whose vertices are the children of v, and solve a maximum matching 
problem on G~ to route the maximum flow in T~.. However, it may also be advantageous 
to route a commodity that exits T,., i.e.. that has one endpoint in Tv and the other outside. 
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Such a commodity must flow along the edge from v to the root, r,  and hence we can 
only route at most one unit of  one such commodity. This will be strictly advantageous 
only if we can still route the maximum amount of flow in 7",,. 

We determine the commodit ies  for which we get a strict advantage as follows. Suppose 
that one endpoint of commodity,  i ,  say si, is in T~, and the other outside. If si = v, then 
clearly we can still route the maximum flow within T,,. If si is a child of  v, then it 
is advantageous to route commodity i only if there is a maximum matching in G~, in 
which si is free (unmatched). It is easy to compute these vertices once we have found 
a maximum matching Mr of G,,: a vertex si is free in some maximum matching if and 
only if there is an alternating path, with respect to M~, from a free vertex to si. Once a 
maximum matching is found, it is well known that the vertices that are reachable from the 
free vertices by some alternating path can be computed in linear time. In this way we can 
compute those commodit ies exiting Tr routing which might be strictly advantageous. 
Vertex v can now be considered the source or sink of  these commodities.  This is done 
for all vertices at level 1. Then a height 1 problem is solved at the root. In solving this, 
we pick the commodity, if any, that is routed on the (v, r)  edge. Once this is done, the 
rest of the routing in the subtree rooted at v can now be fixed. 

This is the essential idea of the algorithm for arbitrary height trees as well. In the 
upward pass we consider vertices level by level. At a vertex v we solve a height 1 
problem using matching, and determine for each commodity exiting T,, whether routing it 
is strictly advantageous. Then we remove the children of  v and consider the commodit ies 
giving strict advantage as originating at v itself. 

In the downward pass we start at the root, fixing commodities.  The vertex parent(v) 
decides which commodity gets routed on (v, parent(v)). Once this is done vertex v fixes 
the commodit ies routed on the edges to its children. [] 

4.3. Trees with Edge Capacities. We generalize the notion of b-matchings by allowing 
constraints for any family of noncrossing cuts (not just singleton cuts) and call this a 
cross-free-cut b-matching. Thus, given a graph G = (V, E),  a family, ~-, of  noncrossing 
cuts, and a function b: )v ~ Z*,  a cross-tree-cut b-matching is a set of edges, E '  _c E 
with associated multiplicities m: E'  ~ Z +, such that the sum of the multiplicities of 
the edges in each cut (S, S) E f is at most b((S, S)). The maximum cross-free-cut 
b matching problem is to find a cross-free-cut b-matching of maximum cardinality. 

A variant of the problem, in which edges can be picked only with multiplicity 1, or 
more generally each edge has an upper bound on its multiplicity, could be defined. We 
remark that this variant can be easily reduced to the problem as defined above. Define 
a new graph G'  = (V',  E ')  which has one vertex ue for each vertex u of  G and edge 
e incident to u, and has an edge (Ue, ve) for every edge e = (u, v) of G. That is, G '  is 
a perfect matching whose edges coiTespond to the edges of G. Define a family ,T" as 
follows. For every cut (S, rS) ~ f we include in ~-' the corresponding cut (S', S') of G',  
where S' contains the nodes ue for all nodes u ~ S and b(S', S') = b(S, S). In addition, 
~-' includes the singleton cuts (ue, V' - u~) with the value of  the function b on these cuts 
equal to the allowed multiplicity for edge e. It is easy to see that ~" is also a noncrossing 
family. 

Along the same lines as Proposition 4.3 we can show: 
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PROPOSITION 4.4. The max imum integral f l ow  problem on trees with a r b i t r a ~  edge 
capaci t ies  is equivalent  to the maximunz cross-free-cut  b-matching problem.  

The maximum integral flow problem for trees with arbitrary edge capacities is NP- 
hard, and so is the maximum cross-free-cut b-matching problem. It is intriguing that 
generalizing the maximum matching problem to a family of noncrossing cuts results in 
a polynomial- t ime solvable problem (the maximum cross-free-cut matching problem), 
whereas the same generalization of the maximum b-matching problem results in an 
NP-hard problem. 

THEOREM 4.2. The maximunz integral f l ow  problem is NP-hard  and M A X  SNP-hard  
f o r  trees with edge capacit ies  1 and 2. 

We reduce the NP-hard three-dimensional matching problem to the maximum integral 
flow problem. Given three disjoint sets X, Y, Z, IX] = r]"l = I Z] = n, and a set of  triples 
S = {(xi, yj, zk)lxi 6 X, yj ~ Y, zk c Z}, the three-dimensional matching problem is 
to find the maximum number of disjoint triples. 

Given an instance of the three-dimensional matching problem, we construct a tree, 
T, of height 3. The vertices at level 1 correspond to the elements of  X U Y U Z. A 
vertex corresponding to the element x~ 6 X has Pi children, where Pi is the number of 
occurrences of xi in S. We label these vertices x~, l, 1 < 1 < Pi. Each of  the vertices 
xi ,  I has two children labeled xi,  l, a and xi ,  l, b. Thus there are ISI vertices at the second 
level and 2[SI vertices at the third level of the tree. Edges (r, xi) ,  1 < i < n, and 
(xi, xi, I), 1 < l < p~, 1 < i < n, have a capacity 2. All other edges have unit capacity. 
Figure 2 shows the construction of  the tree. 

The occurrences ofxi in S are numbered arbitrarily from 1 to pi, and the lth occurrence 
corresponds to the vertex xi ,  I. If (x~, v z~) c S is the/ th occurrence ofxi  we add three . ] ~  

source-sink pairs, ( x i, I, a. xi ,  I, b ), ( xi ,  I, a, yj ), and ( x i, l, b, zk ). Thus this instance of 
the mult icommodity flow problem has 3iSI commodities in all. NP-hardness now follows 
from: 

/ 
/ 

/ 

, / "  , 
2/�84184184 " ,  I 

/ , ,  

I 

\\2, \\x,,t 

x,,I,a / \x , , I .b  

Fig. 2. The tree for the NP-hardness proof of maximum integral flow. 
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LEMMA 4.3. The instance o f  the three-dimensional matching problem has t disjoint 
triples iff T has an integral f low o f t  + ISI units. 

PROOF. Suppose that the instance of  the three-dimensional matching problem has a set 
S' of t disjoint triples. Define an integral flow in T as follows. If  an element xi of X 
is not covered by S', then for all m, 1 < m < Pi, we route a unit flow for the source-  
sink pair (xi, m,  a, xi, m,  b). I f  xi is covered, and (xi, yj, zk) ~ S' corresponds to the lth 
occurrence ofx i ,  then we route one unit of  the commodit ies corresponding to the source-  
sink pairs (xi, l, a, y j )  and (xi, l, b, zk); also, for all m such that 1 < m < Pi, m 5~ l, we 
route a unit flow for the source-sink pair (xi, m, a, xi, m, b). Thus, a covered xi gives 
rise to Pi -F- 1 units of  flow, and an uncovered xi to Pi units. Therefore, the total flow 

n 
routed is t + ~ i=1  P i  = t + ISI. 

Conversely, assume there is an integral flow of t + I SI units. Note that the maximum 
integral flow over the commodit ies  that have at least one endpoint in the subtree rooted 
at xi is Pi + 1. Moreover, this flow can be achieved only by routing one unit for the 
source-s ink pairs (xi, l, a, y j )  and (xi, l, b, zk), for some l, and one unit for each of  the 
remaining Pi - -  1 pairs (xi, m,  a, xi, m,  b), 1 <_ m < Pi, m ~ l. 

Since the integral flow has value t + IS[, there must be at least t elements xl such that 
the flow routes Pi -k- 1 units over commodit ies with at least one endpoint in the subtree 
rooted at xi. If  flow is routed for the source-s ink pairs (xi, l, a, y j )  and (xi, l, b, zk), then 
(x~, yj, zk) is a triple in S. Let S' be the set of these (at least t) triples. Because of  the 
capacities of  the edges (r, xi) ,  (r, yj) ,  and (r, zk), each xi, yj ,  Zk is included in at most 
one of  these triples. [] 

The M A X  SNP-hardness of the maximum integral flow problem follows from the fact 
that the three-dimensional matching problem is M A X  SNP-hard even if every element 
occurs a bounded number of times [18], and in this case the above transformation is 
an L-reduction [25]. Recall that an L-reduction from a problem A to a problem B is a 
polynomial- t ime tranformation f from instances of A to instances of  B, such that, for 
some constants c~,/5, the following two conditions are satisfied: 

1. o p t ( f ( I ) )  < et �9 o p t ( l ) ,  where o p t ( l ) ,  o p t ( f ( l ) )  are the optimal values of  the 
instance I of  A and f ( l )  of B, respectively. 

2. Given a solution y of  f ( I )  we can find in polynomial  time a solution x of I ,  so that 
the values o f x  and y obey I o p t ( I ) . -  value(x)l  < ~ l o p t ( f  ( I ) )  - value(y)l .  

If we consider the restriction of  the three-dimensional matching problem to instances 
I where every element occurs at most  d times, then the optimal value o p t ( l )  is at 
least ISI / (3d - 2) because every triple intersects at most 3(d - 1) other triples. Thus 
the optimal value of  the instance f ( I )  of the maximum integral flow problem satis- 
fies o p t ( f ( I ) )  = o p t ( l )  + IS[ < (3d - 1)op t ( l ) ,  and thus condition (1) is satisfied 
with c~ = 3d - 1. Furthermore, from a solution y to the flow instance with value 
t + ISI we construct a solution x to the three-dimensional matching instance of  
size t, thus, Iopt ( I )  - value(x)[ = [opt ( f  ( I )  ) - value(y) l  and condition (2) is satisfied 
with/5 = 1. 
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5. Approximating Integral Flow and Multicut. In this section we present an algo- 
rithm that finds a multicut, M, and an integral flow. F ,  such that the multicut is of  weight 
at most twice the integral flow, i.e., M < 2F .  Since maximum mult icommodity flow 
(and hence maximum integral flow) is a lower bound on the weight of the minimum 
multicut we have 

M _< 2 F  < 2 - maximum integral flow _< 2 �9 weight of minimum multicut 

and 

1 F > g M > 7 I  i . weight of minimum multicut _> ~ �9 maximum integral flow. 

Our algorithm follows a primal- dual approach, the elements of  which have been 
enunciated in [14] and [30]; see also [15] for a comprehensive exposition. This approach 
when applied to approximation algorithms consists of  starting with arbitrary solutions 
to the primal and dual linear programs, and making alternate improvements to each, 
until "good" integral solutions to both are found. The improvements are guided by the 
complementary slackness conditions. The two complementary slackness conditions for 
our setting (recall the LPs from Section 2) are as follows: 

1. ,f} > 0 =~ Y-~e~_p, de = 1. i.e., if the commodity i has a nonzero flow, then the sum of  
the distance labels along path Pi is exactly 1. 

2. de > 0 ~ ~i:e~p, f i  = c,,, i.e., an edge with a positive distance label is saturated. 

Enforcing both complementary slackness conditions would give us optimal solutions 
to the primal and dual linear programs. Since we are looking for good integral solutions 
to these programs and the optimal solutions are in general not integral, we cannot enforce 
all these complementary slackness conditions. We enforce the second complementary 
slackness condition and relax the first to 

(1) ft > 0 :=~ 1 < Z d e  < 2 .  
e E p~ 

This implies that we pick only saturated edges in the multicut (de > 0 ~ Z i : e ~ p ,  f i  = Ce) 

and that, for any commodity that is routed, the flow path contains at most two edges of 
the multicut. It is easy to see that ensuring these two conditions would imply that the 
capacity of  the multicut is at most twice the value of  the flow. 

We now describe an algorithm for finding a multicut and an integral flow (Figure 3) 
that meet these two requirements. 

We begin by rooting the tree at an arbitrary vertex, say r. The level of  a vertex is 
its distance from the root. A commodity is contained in the subtree rooted at v if the 
path corresponding to it lies completely within this subtree. A commodity is contained 

in level i if it is contained in a subtree rooted at some vertex in level i. An edge el is an 
ancestor  of an edge e2 if el lies on the path from e2 to the root. The algorithm makes 
two passes over the tree. 

PASS 1. In this pass we move up the tree, one level at a time, routing flow as we go 
along and picking some edges (a subset of these edges will be retained as the multicut). 
If v is a vertex in the current level, check if there exists a commodity  contained in the 
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A l g o r i t h m  multicut Antegral-flow(r); 
1. (Pass i } 

for  current_level = ma.x_level d o w n t o  0 do  
for  all v E current_level do  

1.1. for  all commodities contained in subtree rooted at v do  
Route as much flow of commodity as is possible, update F 

1.2. Compute frontier(v) 
2. {Pass 2 } 

2.1. M ~ - r  
{Initializing multicut } 

2.2. for  current-level = 0 to  max_level do  
for  all v E current_level do 

for  all e E frontier(v) do  
if Bd E M such that e t is on the path from e to v t h e n  

M ,-- M U { e }  
3. r e t u r n  (M, F) 

end .  

Fig. 3. Finding a multicut, M, and an integral flow, F, such that M < 2/' .  

subtree rooted at v. If yes, send as much flow of this commodity as is possible. Repeat this 
procedure until no more flow can be routed for commodit ies contained in this subtree. 

We also need to pick a set of edges to include in the multicut. Let Q be the set of 
edges saturated in this step and let I be the set of  commodit ies  such that, for i ~ I ,  
the path Pi did not contain a saturated edge before this step but contains one now. Note 
that if a commodity in the set I is contained in the subtree rooted at v, then the path 
corresponding to it must use the vertex v. This is because we are moving up the tree 
and so would have considered all paths in this subtree that did not contain v at an earlier 
step in the procedure and saturated some edge along each of  these paths. For this same 
reason, all paths along which flow is routed in this step use the vertex v. Thus if there 
are two edges in Q such that one is an ancestor of the other, then one of  these edges is 
redundant as far as disconnecting the source-sink pair of commodit ies  in I is concerned. 
We retain the edge that is the ancestor and denote this subset of  Q as frontier(v) (the 
frontier of vertex v). 

CLAIM 5.1. The union of all frontiers is a multicut. 

PROOF. As a first step in proving this claim observe that the set of saturated edges is 
a muhicut. If such is not the case, then there exists a commodity i such that no edge 
along Pi is saturated. We could hence have routed an additional flow of commodity i - - a  
contradiction. 

From our definition of frontiers it follows that the union of all frontiers disconnects 
exactly the source-sink pairs that are disconnected by the set of saturated edges. Hence 
the union of all frontiers is a multicut. [] 

We augment the flow in this manner, level by level. A path along which some flow is 
sent is called aflow path. Since all capacities are integral the flow along each flow path 
is also integral. 
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In the second pass we move down the tree dropping redundant edges from the multicut; 
this is done to ensure that no more than two edges of a flow path are included in the 

multicut condition 1). 

PASS 2. We move down the tree one level at a time and build the multicut. When 
considering vertex v we include an edge e ~ frontier(v)  in the multicut only if no edge 
along the path from e to v is already included in the multicut. Let M be the set of edges 
picked. 

CLAIM 5.2. M is a multicut. 

PROOF. By our previous claim, the frontiers of all vertices put together form a multicut. 

Note that the edges of  frontier(v)  are required to disconnect a source-sink pair only if 
the path corresponding to this pair uses the vertex v (the set of commodities, I,  in 
the preceding discussion), If e is an edge of  frontier(v) not included in M, then there 
is another edge e' e M that lies on the path from e to v and hence disconnects all 

source-sink pairs that e was required to disconnect. [] 

We now show that the muiticut picked, M, contains at most two edges of any flow 
path. We begin by making the following two claims. 

CLAIM 5.3. Let si-ti  be a f low path, and let v be the least common ancestor  o f  si, t i. I f  

e c frontier(u) is an edge on this path, then u is an ancestor o f  v. 

PROOF. For contradiction, assume that v is an ancestor of u. Hence u is considered 
before v in the first pass. Since e ~ frontier(u),  e is saturated while considering vertex 
u and flow is sent along the path s i - t  i later (while processing vertex v). However, this is 

not possible as edge e lies on the path s i - t  i . [] 

CLAIM 5.4. I f  u is an ancestor o f  v, then no edge o f  frontier(v) is an ancestor o f  an 
edge o f  frontier(u ). 

PROOF. Suppose el E frontier(v)  is an ancestor of e2 6 frontier(u).  Since u is an 
ancestor of v, vertex v is considered before u in the first pass. As el 6 frontier(v) ,  el 
is saturated while considering vertex v and e2 e frontier(u) is saturated later (while 
processing vertex u). However, this is not possible as edge ej is an ancestor of e2 and 
lies on the path from e2 to u. [] 

LEMMA 5.1. Let si-ti  be a f low path and let v be the least common ancestor o f  si, ti. 
Then M contains at most one edge from the path s i - v  and one edge from the path t i -v .  

PROOF. Let M contain two edges el, e2 from the path s i -v .  Further, let el E frontier(vl ) 
be an ancestor of e2 ~ frontier(v2). By the above two claims it follows that v I is an 
ancestor of v2 which is an ancestor of v. Thus, el occurs on the path from e2 to v2 and so 
while picking edges from frontier(v2) (Pass 2) we would not have included e2 in M. [] 
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Hence the multicut, M, includes at most two edges of  any flow path. Since all the 
edges in M are saturated, the two conditions that we set out to enforce are met. Hence 
the capacity of the multicut is at most twice the value of  the flow. 

6. Integrality Gap for Grid Graphs. The approximation algorithm for the maximum 
integral flow on trees uses, implicitly, the fact that the ratio between the maximum 
fractional and integral flows for trees is at most 2. This, however, is not true for general 
graphs. In fact, even for grid graphs this gap is quite large. 

PROPOSITION 6. !. The gap between the ma.rimum integral f low and the maximum frac- 
tional f low for  grid graphs can be as high as k /2, where k is the number of  commodities. 

PROOF. The graph G is a union of  k paths, p~, P2 . . . . .  Pk ; the endpoints of  the path Pi 
form the source-sink pair for commodity i. Every pair of  paths, Pi, Pj, i ~ j ,  intersects 
in a unique edge. 

The graph G can be embedded on a k • k grid. If the origin (0, 0) is the left bottom 
corner of the grid, then si = (0, k - i + 1) and ti ----- (i, 0). The path Pi is then the path 
from (0, k - i + 1) to (i, k - i + 1) to (i, 0). Any two paths intersect at a unique vertex. To 
ensure that they intersect in a unique edge we replace each intersection v - (i, j )  by two 
vertices va, vh. The edges incident at vertices v~,, Vb are (va, (i -- 1, j ) ) ,  (v~, (i, j + 1)), 
(Vb, (i + 1, j ) ) ,  (Vb, (i, j -- 1)), and (Va, vl,). Figure 4 shows this embedding. 

The maximum integral flow for this instance is one unit, as by routing any one com- 
modity we block the paths of all other commodities. However, the maximum fractional 
flow is k /2  units; halfa unit of each commodity can be routed simultaneously. This yields 
a gap of  k /2  between the maximum fractional flow and the maximum integral flow. [] 

In the above example at least k edges are needed to disconnect every source-sink 
pair. Thus the gap between the maximum integral flow and the minimum multicut is k 

tk 

t~ 

I / [ \ 

$1 

Fig. 4. The grid graph with the k / 2  gap between the maximum (fractional) flow and the maximum integral 
flow. 
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and so we cannot use integral flow as a lower bound on the weight of the multicut when 
approximating the minimum multicut in general graphs. 

7. The Tree-Representable Set Cover Problem. The minimum multicut problem for 
trees can be viewed as a weighted set cover problem. The elements, P, of the set system, 
(P,  E), are the s,-t~ paths in the tree, 1 < i < k. The sets, E, correspond to edges of  
the tree. A set includes all si-t  i paths (elements) that use this edge; the set has weight 
equal to the capacity of  the edge. Finding the minimum weight multicut for the tree is 
the same as finding the minimum weight set cover in this set system. 

Note, however, that not all set cover problems can be viewed as minimum multicut 
problems on trees. A set system (P,  E) is called a tree-representable set system if there 
exists a tree T, whose set of  edges is E such that every path p ~ P is a path in T. The 
problem of deciding whether a given set system is tree-representable is well studied and 
efficient algorithms are known 15]. Thus, given a set cover problem, it can be checked, 
in almost linear time, if it corresponds to the minimum multicut problem on some tree, 
T, and, if so, find T and the {si, ti} pairs. 

THEOREM 7.1. There exists a poh, nomial-time 2-approximation algorithm for  the min- 
irnum weight set cover problem for  set systems that are tree-representable. 

8. Discussion and Open Problems,  The notion of a cross-tree family of cuts is quite 
basic and arises in several contexts (e.g., in approximating TSP by solving the LP re- 
laxation, and doing subtour elimination). It will be interesting to interpret and apply our 
results to these contexts. 

In particular, understanding better the link between our problem and the setting of  [ 14] 
and [30] is especially interesting. The problem considered in 114] is to lind a small 
subgraph that satisfies specified cut requirements. Let G = (V, E) be a graph, and let 
c: E --~ Z + capacities on the edges and f :  2 v --~ {0, 1} be a function specifying cut 
requirements. For a set S of  vertices, let v ( S )  denote the set of edges that have exactly 
one vertex in S and one outside S. The LP relaxation (primal) and dual of  their problem 
is 

minimize Z xece 
eEL 

subject to u C V, 

VeE E, 

2_., x,, _> 
e:e~(S) 

xe > O, 

maximize Z f ( S ) y s  
SC V 

subject to u ~ E, Z Ys < ce, 
S:e~v(S) 

u  c V. Ys >_ O. 

This primal and our primal form a complementary pair--this is a covering problem 
and ours is the corresponding packing problem. The above-stated dual is a cut packing 
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problem. The approximation algorithm of [ 141 finds a dual solution in which the nonzero 
ys's correspond to a noncrossing family of cuts. Furthermore, our algorithm, as well as 
those of 114] and [301 are primal-dual algorithms. These relationships seem to suggest a 
deeper connection. A general framework, in which both algorithms fit nicely, is presented 
in [151. 

Is there a generalization of the maximum cross-free-cut matching problem, allow- 
ing certain crossing cuts, that is in P? We can show that allowing arbitrary crossing 
cuts leads to NP-hardness. Our reduction from the maximum independent set problem 
is approximation preserving and hence no polynomial-time algorithm can achieve an 
approximation factor of n ' .  

Can our primal-dual approximation algorithm be generalized beyond trees? Proposi- 
tion 6.1 shows that any such algorithm attempting to approximate the maximum integral 
flow, will have to compare it with the nonintegral flow. 

Acknowledgment. We wish to thank Clyde Momna and Alex Schaffer for providing 
references for the tree-representable set systems. 
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