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Rappels et introduction



Rappels généraux

Objectif : générer de nouvelles données similaires a celles existantes

Point de vue probabiliste : les données sont des réalisations de
variables aléatoires

Ce qu'on veut :
+ la densité de probabilité (d.d.p.) des données p(x)

+ un moyen d'échantillonner selon p(x)
Cequona:
+ Des échantillons {x;}7? ,
+ Différentes approches pour en tirer une approximation de I'idéal



Méthodes vues précédemment

* Modeéles paramétriques classiques
+ PCA probabiliste, GMM, Modéles AR

» Auto-ecodeurs variationnels

+ Auto-encodeur + échantillonnage de code lattent z
+ Les paramétres modélisent les lois g, (z|x) et po(x|z)
+ Approx. le max. de vraisemblance (ELBO)

* Réseaux génératifs antagonistes

+ Deux modeles (générateur, discriminateur), jeu min-max
+ plague implicitement la d.d.p. des données générées sur p(x)

+ Modeéles de diffusion
+ Longue séquence de débruiteurs
+ Plusieurs points de vue : score, débruitage, Langevin, H-VAE, ...
+ Transforme N' — p via une SDE



Retour sur les modeles de diffusion

—— Stochastic process

Interprétable comme une equation différentielle stochastique (SDE)

dx; = flxy, {)di+ g(t)dw,

échantilloner < inverser le processus

Peut on interpoler entre deux ddp de maniére déterministe? (ODE)
+ Approximation déterministe avec le score (DDIM)
+ Transport optimal
* Flow matching
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Flow matching



Probleme

On cherche une interpolation réguliere p, entre

* Do distribution d'origine généralement x ~ N

+ pp distribution cible celle des données p...

Il'y en existe beaucoup! [anim]

On va se restreindre a celles régies par un champ de vitesse


https://twitwi.github.io/Presentation-2025-02-27-ot-cfm-irisa/#/20

Flow d’'un champ

v: RIxR — T,R% (~R9)
(z,t) = v

Le ¢ d’'un champ de vitesse v est définit via
d
%0 = v(ou(@), gole) ==

+ l'intégrale du champ de vitesse

+ Dit ou se trouve le point z s'il suit le champ vdutemps 0 a ¢
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Flow d’'une distribution?

Supposons que z soit tiré d'une distribution Xy ~ pg

Soit p; = “loi de ¢4(Xp)" : elle vérifie une

d
% +div( pwy ) =0 (CE)

Proposition 1 (réciproque)
XO ~ Do et (pt, ’Ut) ~ (CE) + hypothéses de régularité

= Vte[0,1], ¢uXo) ~ ps

Exemple : le (OT) donne une solution particuliere
“ligne droite + vitesse constante”

v (T (2) + (1 = t)a) = T (2) — z
avec T™ plan de transport optimal en codt || - ||?
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Flow matching

Cependant, le OT n'est pas tractable en grande dimension

Le permet de définir un champ v; “plus simple”
Il donnera un algorithme pour trouver des correspondances point a point entre deux distributions

Définissons
« Xo ~ po, X1 ~ p; les deux distributions
* X; = tXo + (1 — ¢)X; l'interpolation entre les deux v.a.
aussi une v.a. suivant la loi p,
« Le champ
w(z) =E[ X1 — Xo | X; = ]

directions moyenne de tous les chemins de X, t.q. X; = =

Proposition 2
Le couple (p, v;) ainsi définit vérifie (CE)

Visualisation ici [blog-post] ou la [playground] (+ détails au tableau)


https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/
https://twitwi.github.io/Presentation-2025-02-27-ot-cfm-irisa/#/35

Bilan intermédiare

Précédemment :

+ On a définit un couple (p;, v;:) qui suit (CE)
+ on sait échantilloner X ~ pq

+ Proposition 1= ¢;(Xy) donne un moyen d'échantilloner p;

Reste a traiter :

+ #1 apprendre v; a partir des données suivant p; = pgata

« #2 échantilloner avec v; appris en pratique (integrer I'ODE)
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#1 Conditional flow matching : apprentissage en pratique

Definir un modéle v (z, t) : R? x [0,1] — T,R?
Apprendre le modele avec la loss
Lem(0) = Eq,,e ||vi() — vo(a2, 1)
mais v, (z;) est défini implicitement via une esperance + loi de z; inconnue

Theoreme (interpolation linéaire)
Le probleme de regression Ly (6) est équivalent a

cond(

‘CCFM(G) = IE((EI7I1)7t,It|(I‘Q7I17t) ||Ut(xt) - v ||2

|0, 21, T)

avec v°°" (x| 2y, 11, t) = 71 — 30

Détails et autres possibilités dans Gagneux et al. 2025
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#2 Flow matching : échantillonage en pratique

Echantilloner un point selon p;

Iy = @i—1(20) = EDO™ (29,0 — 1), 2 ~ po

ou EDO" (-, ty — t1) résoud le flow (intégration du champ de vitesse) vy (t, )

T — 1 (f T )
Lk+1 — Tk K U Uk Lk

ou méthodes plus avancées (Runge-Kutta)
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t=0.00
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