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Rappels généraux

Objectif : générer de nouvelles données similaires à celles existantes

Point de vue probabiliste : les données sont des réalisations de
variables aléatoires

Ce qu’on veut :
• la densité de probabilité (d.d.p.) des données p(x)
• un moyen d’échantillonner selon p(x)

Ce qu’on a :
• Des échantillons {xi}n

i=1

• Différentes approches pour en tirer une approximation de l’idéal

2



Méthodes vues précédemment

• Modèles paramétriques classiques
• PCA probabiliste, GMM, Modèles AR

• Auto-ecodeurs variationnels
• Auto-encodeur + échantillonnage de code lattent z
• Les paramètres modélisent les lois qϕ(z|x) et pθ(x|z)
• Approx. le max. de vraisemblance (ELBO)

• Réseaux génératifs antagonistes
• Deux modèles (générateur, discriminateur), jeu min-max
• plaque implicitement la d.d.p. des données générées sur p(x)

• Modèles de diffusion
• Longue séquence de débruiteurs
• Plusieurs points de vue : score, débruitage, Langevin, H-VAE, ...
• Transforme N → p via une SDE
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Retour sur les modèles de diffusion

Interprétable comme une equation différentielle stochastique (SDE)

dxt = f(xt, t)dt + g(t)dwt

échantilloner ⇔ inverser le processus

Peut on interpoler entre deux ddp de manière déterministe? (ODE)
• Approximation déterministe avec le score (DDIM)
• Transport optimal
• Flow matching 4



Références

Articles
Lipman, Y. (2024). Flow Matching Guide and Code. arXiv [pdf]

Blog posts
Gagneux A., et al. (2025). “A Visual Dive into Conditional Flow Matching” [html]

Vidéos
Plénière de Julie Delon au GRETSI 2025 [yt]

5

https://arxiv.org/pdf/2412.06264
https://iclr-blogposts.github.io/2025/blog/conditional-flow-matching/
https://www.youtube.com/watch?v=ujYSBoI7bb0


Outline

Rappels et introduction

Flow matching

6



Problème

On cherche une interpolation régulière pt entre

• p0 distribution d’origine généralement x ∼ N

• p1 distribution cible celle des données pdata

Il y en existe beaucoup ! [anim]

On va se restreindre à celles régies par un champ de vitesse
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Flow d’un champ

Champ de vitesse

v : Rd × R → TxRd (∼ Rd)

(x, t) 7→ vt(x)

Le flow ϕ d’un champ de vitesse v est définit via

dϕt
dt (x) = vt(ϕt(x)), ϕ0(x) = x

• l’intégrale du champ de vitesse

• Dit où se trouve le point x s’il suit le champ v du temps 0 à t
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Flow d’une distribution?
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Flow d’une distribution?

Supposons que x soit tiré d’une distribution X0 ∼ p0

Soit pt = “loi de ϕt(X0)” : elle vérifie une équation de continuité

dpt
dt + div( ptvt ) = 0 (CE)

Proposition 1 (réciproque)
X0 ∼ p0 et (pt, vt) ∼ (CE) + hypothèses de régularité

⇒ ∀t ∈ [0, 1], ϕt(X0) ∼ pt

Exemple : le transport optimal (OT) donne une solution particulière
“ligne droite + vitesse constante”

vt ((T∗(x) + (1 − t)x) = T∗(x)− x
avec T∗ plan de transport optimal en coût || · ||2
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Flow matching

Cependant, le OT n’est pas tractable en grande dimension

Le flow matching permet de définir un champ vt “plus simple”
Il donnera un algorithme pour trouver des correspondances point à point entre deux distributions

Définissons
• X0 ∼ p0, X1 ∼ p1 les deux distributions
• Xt = tX0 + (1 − t)X1 l’interpolation entre les deux v.a.

aussi une v.a. suivant la loi pt

• Le champ
vt(x) = E[ X1 − X0 | Xt = x ]

directions moyenne de tous les chemins de Xt t.q. Xt = x

Proposition 2
Le couple (pt, vt) ainsi définit vérifie (CE)

Visualisation ici [blog-post] ou là [playground] (+ détails au tableau)
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Bilan intermédiare

Précédemment :

• On a définit un couple (pt, vt) qui suit (CE)
• on sait échantilloner X ∼ p0

• Proposition 1 ⇒ ϕ1(X0) donne un moyen d’échantilloner p1

Reste a traiter :

• #1 apprendre vt à partir des données suivant p1 = pdata

• #2 échantilloner avec vt appris en pratique (integrer l’ODE)
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#1 Conditional flow matching : apprentissage en pratique

Definir un modèle vθ(x, t) : Rd × [0, 1] → TxRd

Apprendre le modèle avec la loss

LFM(θ) = Ext,t ||vt(xt)− vθ(xt, t)||2

mais vt(xt) est défini implicitement via une esperance + loi de xt inconnue

Theoreme (interpolation linéaire)
Le problème de regression LFM(θ) est équivalent à

LCFM(θ) = E(xx,x1),t,xt|(x0,x1,t) ||vt(xt)− vcond(xt|x0, x1, t)||2

avec vcond(xt|x0, x1, t) = x1 − x0

Détails et autres possibilités dans Gagneux et al. 2025
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#2 Flow matching : échantillonage en pratique

Echantilloner un point selon p1

x̂1 = φt=1(x0) = EDOvθ (x0, 0 → 1), x0 ∼ p0

ou EDOvθ (·, t0 → t1) résoud le flow (intégration du champ de vitesse) vθ(t, ·)

Méthode d’Euler (K pas)

xk+1 = xk +
1
Kvθ(tk, xk)

ou méthodes plus avancées (Runge-Kutta)
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Un exemple visuel
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