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Rappels et introduction



Rappels (1/2)

Objectif : générer de nouvelles données similaires a celles existantes

Point de vue probabiliste : les données sont des réalisations de
variables aléatoires

Ce qu'on veut :
+ la densité de probabilité (d.d.p.) des données p(x)

+ un moyen d'échantillonner selon p(x)
Cequona:
+ Des échantillons {x;}7? ,
+ Différentes approches pour en tirer une approximation de I'idéal



Rappels (2/2)

Méthodes vues précédemment

+ Modeéles paramétriques classiques

+ PCA probabiliste, GMM

+ Modéles AR
+ Auto-ecodeurs variationnels

+ Auto-encodeur + échantillonnage de code lattent z

+ Les parametres modélisent les lois g, (z|x) et po(x|z)

+ Approx. le max. de vraisemblance par inférence variationnelle

(ELBO)

+ Réseaux génératifs antagonistes

+ Deux réseaux de neurones : générateur et discriminateur

+ plaque implicitement la d.d.p. des données générées sur p(x) par

un jeu min-max



Modeéles de diffusion, vue d’ensemble

Modeéles de diffusion : “longue séquence de petits dé-bruiteurs”
Forward SDE (data — n0|se)
dx = f(x,t)dt + g(t 4)@

i s;:orefuctlon -
dx = [£(x,1) — g (Vx ogp (x)] d + (1) @

Reverse SDE (noise — data)

ped (2

¢

Principes généraux :

+ Apprentissage et lien avec I'estimation de score
+ Génération et lien avec dynamique de Langevin
+ Le point de vue “VAE"
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Score et score matching



Idée générale

On cherche a modéliser la d.d.p. “réelle” p(x) par py(z)

La tache est difficile :

+ Dans un VAE, on approche conceptuellement la modélisation par

) = / po(x]2)p(z)dz

mais on n'a pas réellement acces a la d.d.p en pratique.
« Sion utilise un réseau fy : R — Rt et
efo(x)
Z(0)

po(x) = avec Z(0) = / (@) dx

impossible d'obtenir la normalisation Z(6) raisonnablement

Arrive alors I'idée de



Score onction sco

Definition
La fonction score s : R — R? d’'une distribution p est

s(x) = Vxlog p(x)

“donne a chaque z la direction de plus forte pente pour augmenter la probabilité”
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Attention, légérement différent du score de Fisher classique en théorie de I'information



Propriétés intéressantes du score

Le soucis de constante de normalisation disparait
e—fo )
Zg
= V.log e fo® 4 V. log(Zp)
= —Vfo(x)

V. log py(z) = V;log

On peut retrouver la d.d.p. par intégration (+ la normalisation résout 'ambiguiité)

La quantité intervient dans les processus génératifs



Estimation du score

Probability density i.i.d. samples Score function
Pdata(X) X1,X2, " Xn 89(x) ~ Vx10g pdata(x)

image taken from CS236
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Estimation du score

+ Jeu de données {x;}7; ~ Ddata(X)

+ Fonction paramétrée Sp - R? — R4 (réseau de neurones)
« Trouver 6 tel que sp(x) ~ Vy10g paata(X)

+ On doit quantifier une perte

Divergence de Fisher
L) = 3Exepiaa [l|Vx10g paata(x) — so(x)|[3]
= 5 i1 IVx10g pdata (%) — s9(x)][3
Score matching

minimize £(0)
0cO

I'expression dépend de pg.¢., que 'on cherche!



Estimation du score

Théoreme (Hyvarinen 2005)
Sous certaines conditions de régularité

‘C(a) = %EX’“pdata U |vx log pdata(x) — S0 (X)H%}
= Exwpuna [3/180(®0)][5 + tr(Vxse(x))] + const.

ou Vysy(x) est la matrice Jacobienne de sy (x)

+ Lexpression devient actionnable car elle ne dépend plus de pgaa
+ En pratique, évaluer la diagonale de V, sy(x) est trop couteux
O(d) rétropropagations
+ EnI'état, I'estimation de score ne passe pas a l'échelle
+ Deux approximations possibles
+ Méthodes de slicing (Song 2020)
o (Vincent 2011)

12



Techniques d'approximation pour lI'estimation de score

Estimation de score par débruitage
On consideére une version bruitée des données

@ (Xx) = N(x,0°) ¢, (%) = /qa(iIX)pdam(X)dx

Bénéfices :

« Lestimation du score Vi log ¢, (x) se simplifie grandement
+ Si o est petit, ¢,(X) =~ pdata(X)
+ Lien théoriques avec un probleme de débruitage et les VAE

13



Estimation de score par débruitage

" @~
Paata(X) On ajoute un bruit Gaussien aux données
X = x=x+o0z, z~N(0I)
g0 (X | x)
- | o (R1%) = N (x, 0°T)
q X ) )
O'( ) QG(X) = f (Ja(X|X)pdata(X)dX
X
Théoreme (Vincent 2011)
L) = 3Ezq, [[[Vzlog g (%) — s0(%)|3]

= %EX~pdata,i~qa(i\X) [||89(i) — Vi log qa(iIX)llg] + const.
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Estimation de score par débruitage

On considére donc la loss

~ 1 _ B
E(@) = iEXdiam,iNqa(fcIX) [HSO(X) — Vi log (IG(X|X)H§]

Or, si ¢, (x|x) = N (x,02I), tout se simplifie, car

X—X
2

Vzlog ¢, (%]x) = -

En pratique (reparameterization trick)

3 Exmpaaea v ) |80 (X) — 22| 13]

= 3Exepauaa~nop [[|80(x + 02)[5 — 285 (x + 02) " £]
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Denoising Score Matching

Entrainement
+ Echantilloner un mini-batch {x1, ...,x,} ~ p(x)
+ Echantilloner les versions bruitées {x1, ..., %, } ~ ¢-(X|x)

» Evaluer la loss

o2

il X; — X;
=3 o) — 2B
i=1

« Effectuer un pas de descente de gradient

+ Facile a mettre en oeuvre, méme en grande dimension
+ Mais on ne pourra pas estimer le score des données non bruitées

+ Idealement on veut ¢ — 0, mais numériquement instable

16



Lien avec le débruitage
2
J

X —X -
— Sp(X
= 0(X)

Eiwqa (%) [| ‘vi IOg 9o (i) — S0 (i) | |§] = ]EX’\‘Pdata Ei’\‘qg (%]x) l

+ sy cherche a prédire le bruit ajouté a x pour produire x
+ Lestimation du score est équivalent a un probléme de débruitage

« Formule de Tweedie :
% =%+ 0?Vzlog ¢, (%)

“la meilleure stratégie de débruitage est de suivre le score”

17



Génération a partir du score

18
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Génération de données avec un modele de score

Deux étapes :

+ Apprendre un sp sur un ensemble {x;}7 ,

« Utiliser le score appris dans une
Xy ¢ X1 + %se(xt) +ez, te[l,T]
* Si s9(x) >~ Vy10g paata(x), alors on approche x1 ~ paata !
Mis en pratique : cela ne fonctionne pas :(

20



Limitations (1/2)

Probléme #1 : dimension de I'espace ambiant

+ Les données vivent dans une variété M et non dans R¢
+ Dimension intrinséque d < d

« Exemple avec un simple variété linéaire (PCA)

S04/ 9203\ ¥ ,

S04 /4 2\ 3| 7/

Pl POy i

d=3072 — d = 2165

+ Le score n'est pas défini partout  (probleme sur les hypotheses de régularité)

21



Limitations (2/3)

Probléme #2 : dimension de I'espace ambiant

Data density Data scores Estimated scores

N
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v
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La dyn. de Langevin n'explore pas les zones de faible densité
correctement
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Limitations (3/3)

Probléme #3 : proportion des modes

+ Si la distribution a deux modes a supports disjoints ANB = &

pdata(x) = Tp1 (X) + (1 - 7T)p2 (X)

+ Le score est insensible aux propostions 7

Vi log Pdata (X)

+ La dynamique de Langevin ne refletera pas les proportions

Vi log mp;1(x) + Vi log(l — m)pa(x)

Vi [log m + log p1 (x)] + Vi [log(1 — 7) + log pa(x)]
Vxp1(x) + Vipa(x)

i.id samples

Langevin dynamics samples

b & L b o v a0 o

| L
L G )
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Solution : perturbation multi-échelle

o1 >09 > "+>01-1 > 0],

On peut tirer profit du compromis

+ o grand : densité moins piquée, score plus facile a estimer
+ o petit : plus proche de la distribution originale

24



Compromis piloté par le niveau de bruit o

Data density Data scores
Nmmmmmmaaaa A e

Estimated scores
R

Perturbed dglsity

P ittt O T I

Worse data quality! Better score estimation!
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Apprentissage du score avec perturbation multi echelle

Modele de score conditionné au bruit
On utilise le niveau de bruit comme parametre d’entrée additionnel

sp(x,0) : R x Rt — R?
Loss multi-échelle

L(6) 1 X M00)Eq,, ) [||Vx1og g, (%) — 56(%, 0)|[3]

10
= 221 MO Empynn ann(o1) [|190(x + 042, 00) — 2/04|[3]

Réglages?
« 0, distance maximale entre deux échantillons
+ o, niveau de bruit invisible du point de vue de x
+ On doit fixer la séquence {o,}~_, et les poids A(")

° RatIO U(/O’g+1 ﬂXe recouvrement entre les différentes d.d.p.
* Mo¢) = of balance les échelles et simplifie les expressions 2



Dynamique de Langevin avec recuit simulé

Algorithm 1 Annealed Langevin dynamics.

Require: {o;} ¢, T.
1: Initialize X
2: fori< 1to L do
3 o« €-02/02 > a; is the step size.
4 fort < 1toT do
5: Draw z; ~ N (0, 1)
6 5(1; — it—l + %Sg(it_l,(}'i) -+ \/OS_Z Zt
7 end for
8 Xg < X7
9: end for

return xr

27
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Estimation du score ~ approche par maximum de vraisemblance
score matching

Noise perturbed score matching ~ apprendre a d'ébruiter

Perturbation multi-échelle : apprendre sur plusieurs niveau de bruit

on surcharge un seul modele sy (x, o) plutét que d'en apprendre un par niveau de bruit s;’ (x)
Dynamique de Langevin : génération stochastique basée sur le score
Avec recuit simulé : raffiner séquentiellement I'échelle du bruit
Désormais état de I'art pour la génération de données “continues” ¢ r*

29



Modeéles de diffusion

30



Modeéles de diffusion )

Une formulation équivalente aux approches basées sur le score

+ On ajoute progressivement du bruit a une image
+ Le modeéle apprend un débruiteur pour retrouver x,_; depuis x;
+ Echantilloner : appliquer T étapes de débruitage a xr ~ N(0,021)

Po(Xe—1]%:)
@ O — O H

q( Xr‘xt 1)

31



Processus forward et backward
pS Xt— llxt)
&) - H@ @H H

Processus forward
Bruite graduellement I'image. Définit une chaine de Markov :

© q(x1,...,X7[X0) = Hthl o (X¢|x¢—1)
* g(xe|xi—1) = N (V1 = Bi x4—1, Be])

“Gaussien+Gaussien=Gaussien”

* q(x¢|x0) = N (vVaxo, (1 — ay)l) ar =Ty (1 - By

32



Processus forward et backward
PG Xt— 1|Xr)
@@ — @ H

(xt‘xt—l

Processus backward
Débruite graduellement I'image. Aussi une chaine de Markov :

* p(xr) = N(0,0'1)
° po(Xm -~-,XT) = p(XT) Hf;l pe(th\Xt)

pe est le modéle a apprendre, on va faire un choix
et le lien avec les VAEs!

33



Le point de vue VAE

Choix de I'encodeur-décodeur

+ “Encodeur” (fixé, ne réduit pas la dimension)

q(xixi1) et q(xixi1) = N(V/1— Bixi1,Bed)

q(x1:7|%0) =

=

o
Il

1

» Decodeur (appris, choix de paramétrisation)

po(Xi—1[x:) €t po(xi—1]xe) = N(pa(xs, 1), o7 T)

—

po(X0:7) = p(x7)

o
Il
=

ol on paramétrise g (x¢, £) = ——— (x¢t — —L—cp (x4, ¢
M 1—8¢ Vi—ay

34



Entrainement du modele

Evidential lower bound (ELBO)
On utilise la loss
Do (XO: T)
Ey(xo) [~ 10g po(x0)] < Eg(xo)q(xr.zlx0) [ log (](XI:T|XO):|

Pourles choix de paramétrisation, elle se réduit a

5(9) = EXON(XO),tNL{(l,T),ENN(O,I) {)\ff - 69(\/57153(0 + V1 — aue, t)}

Conclusion : approche identique a l'estimation de score par
débruitage

35



Modele de diff

Algorithm 1 Training Algorithm 2 Sampling
I: repeat 1: x7 ~ N(0,1)
2: o ~ q(%o) 2: fort=7T,...,1do
3: t~ Uniform({1,...,T}) 3 z~N(0I)
4 e~N(0,T) ) ‘ -
5: Take gradient descent step on i v (x‘ - 7k E"(x"ﬂ)"" s

e e +Vi=aof

6: until converged

5: end for
6: return xo

< Estim. de score par débruitage

L

2
2 Exmpdata o~ (0,1) [llegx+ opn o) —2l13]
=1

Echantilloner py(x;—1|x:)
& Langevin-recuit-simulé

€o(,04) := 048(+,04)

36



Le cas continu 7' — o

—— Stochastic process

Interprétable comme une equation différentielle stochastique (SDE)
dx; = flxy, t)dt + g(t)dw,
Accélération de I'échantillonage

+ Combinaisons de solveurs SDE + Langevin MCMC
+ DDIM (utilisation d’'ODE déterministes)

37



Modeles de diffusion < génération par modéles de score
Estimation de score par débruitage <> lien avec une loss ELBO
Décoder successivement <> débruiter en suivant le score < Langevin

Les deux points de vue apportent des outils complémentaires

38



Pour aller plus loin
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Architectures

> €g(xy,1)

Time Representation ’II I

Fully-connected
Layers

Deux options principales en computer vision :

* U-net

» Transformeurs

40



Conditionnement

Comment conditionner la diffusion ? (prompts)

 Architectures dédiées et entrainement sur données+lablels
+ Adaptations d’architectures e.g., controlNet (zhang et al 2023)
+ Classifier guidance : utiliser le Theoréeme de Bayes

p(xly) = ERROIx)
)

p(y

Sur le score

Vi log p(x]y) = Vxlog p(x) + Vi log p(y|x) — Vxlog p(y)
——

=0

— perturber le score par le gradient d’un classifieur pré-entrainé

M



Diffusion dans I'espace lattent

Combiner VAE et diffusion pour réduire la dimension du probleme

Latent Space Forward Diffusion

P(ZD) p(21)

Reconst.
p(x|2o)

df—
Decoder KL(g(zo|x)||p(zo))  Latent Space Generative Denoising

Différentes approches :
+ Entrainement conjoint VAE + Diffusion
+ D'abord VAE, puis modele de diffusion dans I'espace lattent

(e.g. stable diffusion)
42



Modeéles de flux (conditional flow matching)

Apprendre un transport d’'une distribution vers une autre
Génération = ODE (déterministe)
Proche de la diffusion, mais formalisme et entrainement différents

Introduction dans I'excellent [blog-post suivant]

43


https://iclr-blogposts.github.io/2025/blog/conditional-flow-matching/

Flow matching - goal

We seek a velocity field u; such that

d

—oil@) = ulpi(@), Vi€, 1] M

for which ¢g = 7 and vy = paata

44



Flow matching - algorithm

Learn a function vy (¢, z) with the algorithm
* Sample zy ~ N (0,1), 21 ~ pgata, @and t ~U(0,1)
+ Stochastic gradient descent on 6 with loss

21 — 2
1-1

‘ 2

oot @) -

Looks like score matching, but we predict a direction rather than noise

What does it do on average?

2
EFM(Q) = Emmmle(ﬂCo,ml)Hve(tv xt) - ut(xt ‘ Ty, l’l)”
t~U([0,1])

Visualize with the following [blog-post] or [playground]

45


https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/
https://twitwi.github.io/Presentation-2025-02-27-ot-cfm-irisa/#/35

Flow matching - sampling

Sampling from the model

%1 = (pt:1($0) = EDO"™ (330,0 — 1)

where EDO" (-, to — t1) solves (1) from ¢, to ¢; with vy (¢, -) instead of u;

A
A
A
A
A
A
A
AW
%
-~
72\
N
A\
2\
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