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Rappels (1/2)

Objectif : générer de nouvelles données similaires à celles existantes

Point de vue probabiliste : les données sont des réalisations de
variables aléatoires

Ce qu’on veut :
• la densité de probabilité (d.d.p.) des données p(x)
• un moyen d’échantillonner selon p(x)

Ce qu’on a :
• Des échantillons {xi}n

i=1

• Différentes approches pour en tirer une approximation de l’idéal
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Rappels (2/2)

Méthodes vues précédemment

• Modèles paramétriques classiques
• PCA probabiliste, GMM
• Modèles AR

• Auto-ecodeurs variationnels
• Auto-encodeur + échantillonnage de code lattent z
• Les paramètres modélisent les lois qϕ(z|x) et pθ(x|z)
• Approx. le max. de vraisemblance par inférence variationnelle

(ELBO)

• Réseaux génératifs antagonistes
• Deux réseaux de neurones : générateur et discriminateur
• plaque implicitement la d.d.p. des données générées sur p(x) par

un jeu min-max
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Modèles de diffusion, vue d’ensemble

Modèles de diffusion : “longue séquence de petits dé-bruiteurs”

Principes généraux :

• Apprentissage et lien avec l’estimation de score
• Génération et lien avec dynamique de Langevin
• Le point de vue “VAE”
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Idée générale

On cherche a modéliser la d.d.p. “réelle” p(x) par pθ(x)

La tache est difficile :

• Dans un VAE, on approche conceptuellement la modélisation par

pθ(x) =
∫

pθ(x|z)p(z)dz

mais on n’a pas réellement accès à la d.d.p en pratique.

• Si on utilise un réseau fθ : Rd → R+ et

pθ(x) =
efθ(x)

Z(θ) avec Z(θ) =
∫

efθ(x)dx

impossible d’obtenir la normalisation Z(θ) raisonnablement

Arrive alors l’idée de score matching

7



Score (ou fonction score)

Definition
La fonction score s : Rd → Rd d’une distribution p est

s(x) = ∇x log p(x)

“donne à chaque x la direction de plus forte pente pour augmenter la probabilité”

Attention, légèrement différent du score de Fisher classique en théorie de l’information
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Propriétés intéressantes du score

Le soucis de constante de normalisation disparaît

∇x log pθ(x) = ∇x log
e−fθ(x)

Zθ

= ∇x log e−fθ(x) +∇x log(Zθ)

= −∇xfθ(x)

On peut retrouver la d.d.p. par intégration (+ la normalisation résout l’ambiguïté)

La quantité intervient dans les processus génératifs
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Estimation du score

image taken from CS236
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Estimation du score

• Jeu de données {xi}n
i=1 ∼ pdata(x)

• Fonction paramétrée sθ : Rd → Rd (réseau de neurones)

• Trouver θ tel que sθ(x) ≃ ∇x log pdata(x)
• On doit quantifier une perte

Divergence de Fisher

L(θ) = 1
2Ex∼pdata

[
||∇x log pdata(x)− sθ(x)||22

]
= 1

2
∑n

i=1 ||∇x log pdata(x)− sθ(x)||22

Score matching

minimize
θ∈Θ

L(θ)

l’expression dépend de pdata , que l’on cherche !
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Estimation du score

Théorème (Hyvärinen 2005)
Sous certaines conditions de régularité

L(θ) = 1
2Ex∼pdata

[
||∇x log pdata(x)− sθ(x)||22

]
= Ex∼pdata

[ 1
2 ||sθ(x)||22 + tr(∇xsθ(x))

]
+ const.

où∇xsθ(x) est la matrice Jacobienne de sθ(x)

• L’expression devient actionnable car elle ne dépend plus de pdata

• En pratique, évaluer la diagonale de∇xsθ(x) est trop couteux
O(d) rétropropagations

• En l’état, l’estimation de score ne passe pas a l’échelle
• Deux approximations possibles

• Méthodes de slicing (Song 2020)
• Score matching par débruitage (Vincent 2011)
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Techniques d’approximation pour l’estimation de score

Estimation de score par débruitage
On considère une version bruitée des données

qσ(x̃|x) = N (x, σ2I) qσ(x̃) =
∫

qσ(x̃|x)pdata(x)dx

Bénéfices :

• L’estimation du score∇x̃ log qσ(x̃) se simplifie grandement

• Si σ est petit, qσ(x̃) ≃ pdata(x̃)
• Lien théoriques avec un problème de débruitage et les VAE
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Estimation de score par débruitage

On ajoute un bruit Gaussien aux données

x̃ = x + σz, z ∼ N (0, I)

qσ(x̃|x) = N (x, σ2I)

qσ(x̃) =
∫

qσ(x̃|x)pdata(x)dx

Théorème (Vincent 2011)

L̃(θ) = 1
2Ex̃∼qσ

[
||∇x̃ log qσ(x̃)− sθ(x̃)||22

]
= 1

2Ex∼pdata,x̃∼qσ(x̃|x)
[
||sθ(x̃)−∇x̃ log qσ(x̃|x)||22

]
+ const.

14



Estimation de score par débruitage

On considère donc la loss

L̃(θ) = 1
2Ex∼pdata,x̃∼qσ(x̃|x)

[
||sθ(x̃)−∇x̃ log qσ(x̃|x)||22

]
Or, si qσ(x̃|x) = N (x, σ2I), tout se simplifie, car

∇x̃ log qσ(x̃|x) =
x̃− x
σ2

En pratique (reparameterization trick)

L̃(θ) = 1
2Ex∼pdata,x̃∼qσ(x̃|x)

[
||sθ(x̃)− x̃−x

σ2 ||22
]

= 1
2Ex∼pdata,z∼N (0,I)

[
||sθ(x + σz)||22 − 2sθ(x + σz)⊤ z

σ

]
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Denoising Score Matching

Entrainement

• Echantilloner un mini-batch {x1, ..., xn} ∼ p(x)
• Echantilloner les versions bruitées {x̃1, ..., x̃n} ∼ qσ(x̃|x)
• Evaluer la loss

1
n

n∑
i=1
||sθ(x̃i)−

xi − x̃i
σ2 ||22

• Effectuer un pas de descente de gradient

• Facile a mettre en oeuvre, même en grande dimension

• Mais on ne pourra pas estimer le score des données non bruitées

• Idealement on veut σ → 0, mais numériquement instable
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Lien avec le débruitage

Ex̃∼qσ(x̃)
[
||∇x̃ log qσ(x̃)−sθ(x̃)||22

]
= Ex∼pdataEx̃∼qσ(x̃|x)

[∥∥∥∥x− x̃
σ2 − sθ(x̃)

∥∥∥∥2

2

]

• sθ cherche a prédire le bruit ajouté à x pour produire x̃

• L’estimation du score est équivalent à un problème de débruitage

• Formule de Tweedie :

x̂ = x̃ + σ2∇x̃ log qσ(x̃)

“la meilleure stratégie de débruitage est de suivre le score”
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Echantillonage par dynamique de Langevin

Dynamique de Langevin

• x0 ∼ π(x)← initialisation aléatoire

• Produire T itérations suivant

xt+1 ← xt +
ϵ

2∇x log p(xt) + ϵzt

avec zt ∼ N (0, I)
si ϵ << 0 et T→∞, alors xT ∼ p
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Génération de données avec un modèle de score

Deux étapes :

• Apprendre un estimateur du score sθ sur un ensemble {xi}n
i=1

• Utiliser le score appris dans une dynamique de Langevin

xt ← xt+1 +
ϵ

2sθ(xt) + ϵzt, t ∈ [[1,T]]

• Si sθ(x) ≃ ∇x log pdata(x), alors on approche xT ∼ pdata !

Mis en pratique : cela ne fonctionne pas :(
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Limitations (1/2)

Problème #1 : dimension de l’espace ambiant

• Les données vivent dans une variétéM et non dans Rd

• Dimension intrinsèque d′ ≪ d

• Exemple avec un simple variété linéaire (PCA)

d = 784→ d′ = 595

d = 3072→ d′ = 2165

• Le score n’est pas défini partout (problème sur les hypothèses de régularité)
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Limitations (2/3)

Problème #2 : dimension de l’espace ambiant

La dyn. de Langevin n’explore pas les zones de faible densité
correctement
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Limitations (3/3)

Problème #3 : proportion des modes

• Si la distribution a deux modes à supports disjoints A ∩ B = ∅

pdata(x) = πp1(x) + (1− π)p2(x)

• Le score est insensible aux propostions π

∇x log pdata(x) = ∇x log πp1(x) +∇x log(1− π)p2(x)
= ∇x [log π + log p1(x)] +∇x [log(1− π) + log p2(x)]
= ∇xp1(x) +∇xp2(x)

• La dynamique de Langevin ne refletera pas les proportions
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Solution : perturbation multi-échelle

On peut tirer profit du compromis

• σ grand : densité moins piquée, score plus facile a estimer

• σ petit : plus proche de la distribution originale
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Compromis piloté par le niveau de bruit σ
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Apprentissage du score avec perturbation multi echelle

Modèle de score conditionné au bruit
On utilise le niveau de bruit comme paramètre d’entrée additionnel

sθ(x, σ) : Rd × R+ −→ Rd

Loss multi-échelle

L(θ) = 1
L
∑L

ℓ=1 λ(σℓ)Eqσℓ
(x̃)

[
||∇x̃ log qσℓ

(x̃)− sθ(x̃, σℓ)||22
]

= 1
L
∑L

ℓ=1 λ(σℓ)Ex∼pdata,z∼N (0,I)
[
||sθ(x + σℓz, σℓ)− z/σℓ||22

]
Réglages?

• σ1 distance maximale entre deux échantillons

• σL niveau de bruit invisible du point de vue de x
• On doit fixer la séquence {σℓ}L

ℓ=1 et les poids λ(·)
• Ratio σℓ/σℓ+1 fixe recouvrement entre les différentes d.d.p.

• λ(σℓ) = σ2
ℓ balance les échelles et simplifie les expressions 26



Dynamique de Langevin avec recuit simulé
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Dynamique de Langevin avec recuit simulé
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En résumé

Estimation du score ∼ approche par maximum de vraisemblance
score matching

Noise perturbed score matching ∼ apprendre à d’ébruiter

Perturbation multi-échelle : apprendre sur plusieurs niveau de bruit
on surcharge un seul modèle sθ(x, σ) plutôt que d’en apprendre un par niveau de bruit sσi

θ (x)

Dynamique de Langevin : génération stochastique basée sur le score

Avec recuit simulé : raffiner séquentiellement l’échelle du bruit

Désormais état de l’art pour la génération de données “continues” ∈ Rd
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Modèles de diffusion (Ho et al. 2020)

Une formulation équivalente aux approches basées sur le score

• On ajoute progressivement du bruit à une image

• Le modèle apprend un débruiteur pour retrouver xt−1 depuis xt

• Echantilloner : appliquer T étapes de débruitage à xT ∼ N (0, σ2I)
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Processus forward et backward

Processus forward
Bruite graduellement l’image. Définit une chaine de Markov :

• q(x1, ..., xT|x0) =
∏T

t=1 qθ(xt|xt−1)

• q(xt|xt−1) = N (
√

1− βt xt−1, βtI)

“Gaussien+Gaussien=Gaussien”

• q(xt|x0) = N (
√
ᾱtx0, (1− ᾱt)I) ᾱt =

∏t
s=1(1− βs)
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Processus forward et backward

Processus backward
Débruite graduellement l’image. Aussi une chaine de Markov :
• p(xT) = N (0, σ1I)

• pθ(x0, ..., xT) = p(xT)
∏T

t=1 pθ(xt−1|xt)

pθ est le modèle à apprendre, on va faire un choix
et le lien avec les VAEs !
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Le point de vue VAE

Choix de l’encodeur-décodeur

• “Encodeur” (fixé, ne réduit pas la dimension)

q(x1:T|x0) =

T∏
t=1

q(xt|xt−1) et q(xt|xt−1) = N (
√

1 − βt xt−1, βtI)

• Decodeur (appris, choix de paramétrisation)

pθ(x0:T) = p(xT)
T∏

t=1
pθ(xt−1|xt) et pθ(xt−1|xt) = N (µθ(xt, t), σ2

t I)

où on paramétrise µθ(xt, t) = 1√
1−βt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
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Entrainement du modèle

Evidential lower bound (ELBO)
On utilise la loss

Eq(x0)[− log pθ(x0)] ≤ Eq(x0)q(x1:T|x0)

[
− log

pθ(x0:T)

q(x1:T|x0)

]
Pourles choix de paramétrisation, elle se réduit à

L(θ) = Ex0∼(x0),t∼U(1,T),ϵ∼N (0,I)

[
λtϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)

]

Conclusion : approche identique à l’estimation de score par
débruitage
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Modèle de diffusion (DDPM)

⇔ Estim. de score par débruitage

L∑
ℓ=1

Ex∼pdata,z∼N(0,I)
[
||ϵθ(x + σℓz, σℓ) − z||22

]
Echantilloner pθ(xt−1|xt)

⇔ Langevin-recuit-simulé

ϵθ(·, σi) := σis(·, σi)
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Le cas continu T→∞

Interprétable comme une equation différentielle stochastique (SDE)

dxt = f(xt, t)dt + g(t)dwt

Accélération de l’échantillonage
• Combinaisons de solveurs SDE + Langevin MCMC

• DDIM (utilisation d’ODE déterministes)
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En résumé

Modèles de diffusion⇔ génération par modèles de score

Estimation de score par débruitage⇔ lien avec une loss ELBO

Décoder successivement⇔ débruiter en suivant le score⇔ Langevin

Les deux points de vue apportent des outils complémentaires
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Architectures

Deux options principales en computer vision :
• U-net

• Transformeurs
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Conditionnement

Comment conditionner la diffusion? (prompts)

• Architectures dédiées et entraînement sur données+lablels

• Adaptations d’architectures e.g., ControlNet (Zhang et al 2023)

• Classifier guidance : utiliser le Theorème de Bayes

p(x|y) = p(x)p(y|x)
p(y)

Sur le score

∇x log p(x|y) = ∇x log p(x) +∇x log p(y|x)−∇x log p(y)︸ ︷︷ ︸
=0

−→ perturber le score par le gradient d’un classifieur pré-entraîné
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Diffusion dans l’espace lattent

Combiner VAE et diffusion pour réduire la dimension du problème

Différentes approches :
• Entraînement conjoint VAE + Diffusion
• D’abord VAE, puis modèle de diffusion dans l’espace lattent

(e.g. stable diffusion)
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Modèles de flux (conditional flow matching)

Apprendre un transport d’une distribution vers une autre

Génération = ODE (déterministe)

Proche de la diffusion, mais formalisme et entraînement différents

Introduction dans l’excellent [blog-post suivant]

43
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Flow matching - goal

We seek a velocity field ut such that

d
dtφt(x) = ut(φt(x)), ∀t ∈ [0, 1] (1)

for which φ0 = π and φ0 = pdata
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Flow matching - algorithm

Learn a function vθ(t, x) with the algorithm

• Sample z0 ∼ N (0, I), z1 ∼ pdata, and t ∼ U(0, 1)

• Stochastic gradient descent on θ with loss∥∥∥vθ(t, xt)−
z1 − z0
1− t

∥∥∥2

Looks like score matching, but we predict a direction rather than noise

What does it do on average?

LFM(θ) = Ex0,x1∼p(x0,x1)
t∼U([0,1])

∥∥vθ(t, xt)− ut(xt | x0, x1)
∥∥2

Visualize with the following [blog-post] or [playground]

45
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Flow matching - sampling

Sampling from the model

x̂1 = φt=1(x0) = EDOvθ (x0, 0→ 1)

where EDOvθ (·, t0 → t1) solves (1) from t0 to t1 with vθ(t, ·) instead of ut
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