
RCP211 – Modèles génératifs
Réseaux génératifs antagonistes

Arnaud Breloy arnaud.breloy@lecnam.net
28 octobre 2025

Conservatoire national des arts & métiers

Table of contents

1. Principe

2. Optimisation des GAN

3. GAN conditionnels

1

Principe

Définitions

Generative Adversarial Networks
On parle de réseaux génératifs antagonistes pour décrire un type de
modèle génératif profond introduits par Goodfellow et al. en 2014.

Les GAN possèdent deux composants :

• un générateur G de paramètres θ,

• un discriminateur D de paramètres ϕ.

G et D sont des réseaux de neurones (fonctions paramétriques
non-linéaires et différentiables).

Goodfellow et al., 2014, Generative Adversarial Nets

2

https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Structure des GAN

• Générateur Gθ : génère de façon déterministe une observation x
à partir d’un bruit z,

• Discriminateur Dϕ : distingue les exemples réels des exemples
synthétiques.

3

Minimax

Apprentissage du GAN
Le générateur et le discriminateur sont appris l’un contre l’autre et
jouent à un jeu minimax à deux joueurs :

min
θ

max
ϕ

V(Gθ,Dϕ) = Ex∼pdata
[logDϕ(x)]︸ ︷︷ ︸

↗ score des données réelles

+Ez∼p(z) [log (1 − Dϕ(Gθ(z)))]︸ ︷︷ ︸
↘, ↗ score des données générées

Antagonisme
En décomposant, il y a donc deux tâches :

• maxϕ Ex∼pdata
[logDϕ(x)] + Ex̂∼p(x̂[log(1 − x̂)] : trouver les

paramètres ϕ de D qui associent le score 1 aux données réelles
et 0 aux données produites par G.

• minθ Ez∼p(z) [log (1 − Dϕ(Gθ(z)))] : trouver les paramètres θ de G
qui produisent un x̂ = Gθ(z) tel que D lui associe le score 1
(“réel”)

4

Minimax

Apprentissage du GAN
Le générateur et le discriminateur sont appris l’un contre l’autre et
jouent à un jeu minimax à deux joueurs :

min
θ

max
ϕ

V(Gθ,Dϕ) = Ex∼pdata
[logDϕ(x)]︸ ︷︷ ︸

↗ score des données réelles

+Ez∼p(z) [log (1 − Dϕ(Gθ(z)))]︸ ︷︷ ︸
↘, ↗ score des données générées

Antagonisme
En décomposant, il y a donc deux tâches :

• maxϕ Ex∼pdata
[logDϕ(x)] + Ex̂∼p(x̂[log(1 − x̂)] : trouver les

paramètres ϕ de D qui associent le score 1 aux données réelles
et 0 aux données produites par G.

• minθ Ez∼p(z) [log (1 − Dϕ(Gθ(z)))] : trouver les paramètres θ de G
qui produisent un x̂ = Gθ(z) tel que D lui associe le score 1
(“réel”)

4

Générateur

Génération
Le générateur transforme un bruit z ∈ N (0, 1)d en une observation
synthétique x̂.

z est un code de l’espace latent Z = Rd.

L’analogie du faussaire
L’objectif de G est d’apprendre à tromper le discriminateur,
c’est-à-dire à produire des observations x̂ telles que p(x̂) = p(G(z))
est indiscriminable de p(x).

5

Discriminateur

Discrimination
Le discriminateur classe les observations x en deux catégories :
réelle ou fausse. Sa sortie est une unique activation passée dans
une sigmoïde :

f(x) = 1
1 + e−x

à valeurs dans [0, 1].

Par convention, les données réelles ont un score de 1 et les données
“fausses” ont un score de 0.

6

Algorithme

Apprentissage
Pour N epochs :

1. Échantillonner m de données réelles x1, . . . , xm ∼∈ D
2. Échantillonner m bruits z1, . . . , zm ∼ pz

3. Faire une étape du descente de gradient sur les paramètres θ du
générateur (minθ) :

∇θV(Gθ,Dϕ) =
1
m∇θ

m∑
i=1

log (1 − Dϕ(Gθ(zi)))

4. Faire une étape de montée de gradient sur les paramètres ϕ du
discriminateur (maxϕ) :

∇ϕV(Gθ,Dϕ) =
1
m∇ϕ

m∑
i=1

[logDϕ(xi) + log(1 − Dϕ(Gθ(zi)))]

7

Algorithme

Apprentissage
Pour N epochs :

1. Échantillonner m de données réelles x1, . . . , xm ∼∈ D
2. Échantillonner m bruits z1, . . . , zm ∼ pz

3. Faire une étape du descente de gradient sur les paramètres θ du
générateur (minθ) :

∇θV(Gθ,Dϕ) =
1
m∇θ

m∑
i=1

log (1 − Dϕ(Gθ(zi)))

4. Faire une étape de montée de gradient sur les paramètres ϕ du
discriminateur (maxϕ) :

∇ϕV(Gθ,Dϕ) =
1
m∇ϕ

m∑
i=1

[logDϕ(xi) + log(1 − Dϕ(Gθ(zi)))]

7

Algorithme

Apprentissage
Pour N epochs :

1. Échantillonner m de données réelles x1, . . . , xm ∼∈ D
2. Échantillonner m bruits z1, . . . , zm ∼ pz

3. Faire une étape du descente de gradient sur les paramètres θ du
générateur (minθ) :

∇θV(Gθ,Dϕ) =
1
m∇θ

m∑
i=1

log (1 − Dϕ(Gθ(zi)))

4. Faire une étape de montée de gradient sur les paramètres ϕ du
discriminateur (maxϕ) :

∇ϕV(Gθ,Dϕ) =
1
m∇ϕ

m∑
i=1

[logDϕ(xi) + log(1 − Dϕ(Gθ(zi)))]

7

Algorithme

Apprentissage
Pour N epochs :

1. Échantillonner m de données réelles x1, . . . , xm ∼∈ D
2. Échantillonner m bruits z1, . . . , zm ∼ pz

3. Faire une étape du descente de gradient sur les paramètres θ du
générateur (minθ) :

∇θV(Gθ,Dϕ) =
1
m∇θ

m∑
i=1

log (1 − Dϕ(Gθ(zi)))

4. Faire une étape de montée de gradient sur les paramètres ϕ du
discriminateur (maxϕ) :

∇ϕV(Gθ,Dϕ) =
1
m∇ϕ

m∑
i=1

[logDϕ(xi) + log(1 − Dϕ(Gθ(zi)))]

7

Pourquoi le GAN fonctionne? (1/2)

Équation du GAN :

min
θ

max
ϕ

V(Gθ,Dϕ) = Ex∼pdata
[logDϕ(x)]+Ez∼p(z) [log (1 − Dϕ(Gθ(z)))]

Justification de la convergence
Pour un générateur Gθ fixé, le discriminateur Dϕ est entraîné pour
réaliser une classification binaire. On optimise :

max
ϕ

∫
x
(préelles(x) logD(x) + pfausses(x) log(1 − D(x))) dx

qui admet pour maximum :

Dϕ∗ : x → préelles(x)
préelles(x) + pfausses(x)

8

Pourquoi le GAN fonctionne? (2/2)

Convergence des distributions

Pour G fixé D∗ = Dϕ∗ : x → préelles(x)
préelles(x)+pfausses(x)

La valeur optimale de V est donc :

min
θ

V(G,D∗) =

∫
x

(
pr(x) log

pr(x)
pr(x) + pf(x)

+ pf(x) log
pf(x)

pr(x) + pf(x)

)
dx

Et on peut montrer que :

min
θ

V(G,D∗) = 2DJS(pr||pf)− 2 log 2

où DJS est la divergence de Shannon-Jensen.

Optimiser le générateur revient donc à minimiser la divergence de
Jensen-Shannon, c’est-à-dire à faire tendre vers pr = pf.

9

Schéma récapitulatif

Données
réelles

10

Comparaison avec les autres modèles génératifs

Modèles explicites ou implicites
On considère généralement que les GAN sont des modèles
génératifs implicites.

Contrairement aux modèles de mélange gaussiens ou aux
auto-encodeurs variationnels, l’apprentissage ne se fait pas par une
maximisation de la vraisemblance.

Le discriminateur comme mesure de distance
On utilise le discriminateur D comme test permettant de juger si les
deux distributions (réelle et générée) sont statistiquement
différentes.

→ D définit une mesure de distance implicite entre les deux
distributions (qu’elle tente de maximiser tandis que G tente de la
réduire).

11

DCGAN : Deep Convolutional GAN

DCGAN est une extension des GAN qui utilise une architecture
convolutive pour le discriminateur et une architecture convolutive
transposée pour le générateur.

Radford et al., 2015

12

https://arxiv.org/pdf/1511.06434.pdf

Optimisation des GAN

Difficultés de l’optimisation des GAN

Constat
L’optimisation minimax n’est généralement pas stable.

On observe en général trois types de problèmes :

• Non-convergence : les paramètres oscillent fortement sans se
stabiliser.

• Mode collapse : le générateur produit des observations avec très
peu de variété.

• Rupture de l’équilibre : le discriminateur devient « plus fort » que
le générateur qui reçoit des gradients très faibles en retour.

Cette instabilité introduit une haute sensibilité des GAN au choix des
hyperparamètres.

13

Difficultés de l’optimisation des GAN

Constat
L’optimisation minimax n’est généralement pas stable.

On observe en général trois types de problèmes :

• Non-convergence : les paramètres oscillent fortement sans se
stabiliser.

• Mode collapse : le générateur produit des observations avec très
peu de variété.

• Rupture de l’équilibre : le discriminateur devient « plus fort » que
le générateur qui reçoit des gradients très faibles en retour.

Cette instabilité introduit une haute sensibilité des GAN au choix des
hyperparamètres.

13

Difficultés de l’optimisation des GAN

Constat
L’optimisation minimax n’est généralement pas stable.

On observe en général trois types de problèmes :

• Non-convergence : les paramètres oscillent fortement sans se
stabiliser.

• Mode collapse : le générateur produit des observations avec très
peu de variété.

• Rupture de l’équilibre : le discriminateur devient « plus fort » que
le générateur qui reçoit des gradients très faibles en retour.

Cette instabilité introduit une haute sensibilité des GAN au choix des
hyperparamètres.

13

Stabilité de l’optimisation

Équation du GAN

min
θ

max
ϕ

V(Gθ,Dϕ) = Ex∼pdata
[logDϕ(x)]+Ez∼p(z) [log (1 − Dϕ(Gθ(z)))]

→ jeu à somme nulle (zero-sum game)

→ solution : équilibre de Nash

L’équilibre de Nash n’est pas forcément atteignable par descente de
gradient (surtout pour une fonction de coût non-convexe).

14

Mode collapse

Les distributions réelles sont généralement multimodales (e.g.
différents chiffres pour de MNIST).

Le mode collapse intervient quand le générateur ne produit plus que
des échantillons d’un seul mode (par exemple, des images d’une
seule classe).

Origine du mode collapse
Considérons le cas limite où l’on optimise uniquement G. Alors les
observations générées convergent vers x∗ qui trompe le mieux D.
Dans le cas extrême :

x∗ = argmax
x

D(x)

qui ne dépend pas de z ! La distribution G(z) s’est effondrée en un
seul point et le gradient est nul.

15

Gradients évanescents

Fonction de coût du GAN
L’utilisation implicite de la divergence JS pour entraîner le
générateur provoque des gradients évanescents. On rappelle que si
le discriminateur est optimal, alors l’optimisation de G se fait sur :

min
G

(G,D∗) = 2DJS(pr∥pf)− 2 log 2

Problème
Les gradients de la divergence JS diminuent très rapidement
lorsque pf est très proche ou très éloignée de pr.

→ la convergence est lente, puis rapide, puis lente !

16

Illustration de l’évanescence des gradients de DJS

À gauche : quatre distributions gausiennes unidimensionnelles de moyennes
différentes.

À droite : le valeur de DJS(p∥qi) lorsque la moyenne de qi varie entre 0 et 30.

17

Fonction de coût alternative

Optimisation du générateur

∇θV(G) = ∇θ log (1 − Dϕ(Gθ(z)))

Si Gθ(z) est peu plausible :

• Dϕ(Gθ(z)) → 0,
• V(G) ≃ log(1 − ε).

L’erreur sature et les gradients deviennent évanescents.

Solution
On utilise :

∇θ − log (Dϕ(Gθ(z)))

18

Astuces d’optimisation

Sur les données
• Normaliser les observations entre −1 et +1 (et utiliser tanh pour
la dernière couche de G)

• Bruiter les données réelles et synthétiques (“augmentation” sur
D)

Sur l’architecture
• Échantillonner z dans une gaussienne

• Interpoler sur les grands cercles plutôt que sur les lignes

• Éviter les gradients sparse : préférer LeakyReLU à ReLU, average
pooling plutôt que max pooling, etc.

Sur l’optimiseur
• Utiliser Adam plutôt que SGD

• Ne pas mixer vraies et fausses données dans un batch

• Label smoothing
19

Distance de Wasserstein

L’utilisation de la divergence JS produit des gradients évanescents
lorsque les distributions sont disjointes. Arjovsky et al. (2017) définit
une nouvelle fonction de coût utilisant la distance de Wasserstein.

La distance de Wasserstein (ou Earth Mover’s distance) correspond
au transport optimal entre deux distributions :

20

https://arxiv.org/abs/1701.07875

Distance de Wasserstein

1. déplace 2 unités de P1 vers P2

2. déplace 2 unités de P2 vers P3

3. déplace 1 unité de Q3 vers Q4

Distance de Wasserstein
nombre d’unités déplacées ×
distance de déplacement

20

Wasserstein GAN

Cas des probabilités continues

W(pr, pf) = inf
γ∼Π(pr,pf)

E(x,y)∼γ [∥x − y∥]

W croît linéairement avec la distance entre les moyennes des
distributions, même si les distributions sont disjointes (ce qui n’est
pas le cas de DJS).

Inconvénient
On ne peut pas tester tous les probabilités conjointes Π(pr, pf).

La dualité de Kantorovich-Rubinstein nous donne :

W(pr, pf) =
1
K sup

∥f∥L≤K
Ex∼pr [f(x)]− Ex∼pf [f(x)]

pour f l’ensemble des fonctions K-lipschitziennes (i.e.
|f(x1)− f(x2) ≤ K|x1 − x2|).

21

Wasserstein GAN

Cas des probabilités continues

W(pr, pf) = inf
γ∼Π(pr,pf)

E(x,y)∼γ [∥x − y∥]

W croît linéairement avec la distance entre les moyennes des
distributions, même si les distributions sont disjointes (ce qui n’est
pas le cas de DJS).

Inconvénient
On ne peut pas tester tous les probabilités conjointes Π(pr, pf).

La dualité de Kantorovich-Rubinstein nous donne :

W(pr, pf) =
1
K sup

∥f∥L≤K
Ex∼pr [f(x)]− Ex∼pf [f(x)]

pour f l’ensemble des fonctions K-lipschitziennes (i.e.
|f(x1)− f(x2) ≤ K|x1 − x2|).

21

Implémentation du Wasserstein GAN

W-GAN en pratique
On impose que le discriminateur soit K−lipschitzien. Alors la
fonction de coût devient :

L(pr, pf) = W(pr, pf) = max
ϕ

Ex∼pr [Dϕ(x)]− Ez∼p(z)[Dϕ(Gθ(z))]

Autrement dit la fonction de coût revient à maximiser (pour le
discriminateur) sur un batch m :

L(pr, pf) = max
ϕ

1
m [Dϕ(x)− Dϕ(Gθ(z))]

Comment rendre D K−Lipschitz?
• restreindre les poids ϕ à une norme [−c, c],
• utiliser la pénalité du gradient de Gulrajani et al., 2017

22

https://arxiv.org/pdf/1704.00028.pdf

Implémentation du Wasserstein GAN

W-GAN en pratique
On impose que le discriminateur soit K−lipschitzien. Alors la
fonction de coût devient :

L(pr, pf) = W(pr, pf) = max
ϕ

Ex∼pr [Dϕ(x)]− Ez∼p(z)[Dϕ(Gθ(z))]

Autrement dit la fonction de coût revient à maximiser (pour le
discriminateur) sur un batch m :

L(pr, pf) = max
ϕ

1
m [Dϕ(x)− Dϕ(Gθ(z))]

Comment rendre D K−Lipschitz?
• restreindre les poids ϕ à une norme [−c, c],
• utiliser la pénalité du gradient de Gulrajani et al., 2017

22

https://arxiv.org/pdf/1704.00028.pdf

GAN conditionnels

Limitation du GAN standard

Le modèle de GAN vu précédemment reproduit une distribution p(x).

Contrôle de la génération
Comment traiter le cas à n classes où l’on voudrait reproduire
p(x|c)?

• Option 1 : n modèles → lourd, pas forcément possible si peu
d’exemples par classe.

• Option 2 : conditionner les distributions.

min
G

max
D

V(D,G) = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(z|y)))].

23

GAN conditionnel

Deux changements principaux :

Générateur
On conditionne le générateur sur le vecteur de conditionnement c :

G(z, c) → x̂

Souvent on concatène simplement c au bruit z.

Discriminateur
On conditionne le discriminateur sur le vecteur de conditionnement
c :

D(x, c) → score

La plupart du temps, on introduit c dans une branche séparée.

24

Schéma du cGAN

Mirza et Osindero, 2014
25

https://arxiv.org/abs/1411.1784

AC-GAN : Auxiliary Classifier GAN

Cas d’application
Soit D = (X, y) un jeu de
données annoté. On ajoute une
branche de sortie au
discriminateur : un classifieur
auxiliaire.

On définit deux fonctions de
coût, la log-vraisemblance pour
la source S et pour la classe C :

LS = E[logP(S = réelle|Xréelle)] + E[logP(S = fausse|Xfausse]

LC = E[logP(C = c|Xréelle)] + E[logP(C = c|Xfausse]

Le discriminateur maximise LS + LC

Le générateur maxmimise LC − LS.

26

	Principe
	Optimisation des GAN
	GAN conditionnels

