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Principe



Generative Adversarial Networks

On parle de réseaux génératifs antagonistes pour décrire un type de
modele génératif profond introduits par Goodfellow et al. en 2014.

Les GAN possédent deux composants :

+ un générateur G de paramétres 6,

+ un discriminateur D de parametres ¢.

G et D sont des réseaux de neurones (fonctions paramétriques
non-linéaires et différentiables).

Goodfellow et al., 2014, Generative Adversarial Nets


https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Structure des GAN
Gy Dy

+ Générateur Gy : génere de facon déterministe une observation x
a partir d'un bruit z,

+ Discriminateur D,, : distingue les exemples réels des exemples
synthétiques.



Apprentissage du GAN

Le générateur et le discriminateur sont appris I'un contre I'autre et
jouent a un jeu minimax a deux joueurs :

n%inmgx V(Go, Dy) = Exp,,,[10g Dg(x)] +E,wpe) [log (1 — Dy(Go(z)))]

" score des données réelles N\, /" score des données générées



Apprentissage du GAN

Le générateur et le discriminateur sont appris I'un contre I'autre et
jouent a un jeu minimax a deux joueurs :

HgnHl(;lX V(Gy, Dy) = IExwpdm [log Dy x)] + Ezwp(z) [log (1 — D¢(G9 (2)))]

" score des données réelles N\, /" score des données générées

Antagonisme
En décomposant, il y a donc deux taches :

* maxy Exp,,. [log Dg(x)] + Egpz[log(1 — %)) : trouver les
parametres ¢ de D qui associent le score 1 aux données réelles
et 0 aux données produites par G.

* ming E, ;) [log (1 — Dy(Gy(z)))] : trouver les parametres 6 de G
qui produisent un x = Gy(z) tel que D lui associe le score 1
(llréelll)



Générateur

2~ N(0,T) Gy %

Génération
Le générateur transforme un bruit z € A/(0,1)? en une observation
synthétique x.

z est un code de I'espace latent Z = R%.

Lanalogie du faussaire

Lobjectif de G est d’apprendre a tromper le discriminateur,
c'est-a-dire a produire des observations x telles que p(x) = p(G(z))
est indiscriminable de p(x).



Discriminateur

Osixe X
1 sinon

e

Discrimination

Le discriminateur classe les observations x en deux catégories :
réelle ou fausse. Sa sortie est une unique activation passée dans

une sigmoide :
1

0 =1

avaleurs dans [0, 1].

Par convention, les données réelles ont un score de 1 et les données
“fausses” ont un score de 0.



Algorithme
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Pour N epochs :
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Algorithme

Apprentissage

Pour N epochs :
1. Echantillonner m de données réelles x1, .. .,x,, ~€ D
2. Echantillonner m bruits z1, .. ., z,, ~ p,

3. Faire une étape du descente de gradient sur les parametres 6 du
générateur (miny) :
m

Vo V(Gy, Dy) = ﬂ%ve > log (1 — Dy(Go(2:)))

4. Faire une étape de montée de gradient sur les paramétres ¢ du
discriminateur (max) :

m

Vo V(Go, Dy) = VgD [log Dy(x) + log(1 — Dy(Goa:))]

i=1



Pourquoi le GAN fonctionne? (1/2)

Equation du GAN :

mein mgx V(Gy, Dy) = Exp,,, 1108 Dy (x)] + Epop(a) [log (1 — Dy(Go(2)))]

Justification de la convergence

Pour un générateur Gy fixé, le discriminateur D, est entrainé pour
réaliser une classification binaire. On optimise :

max / o) 0 ) = () () — )

qui admet pour maximum :

Dréelles ()

Dy~ 1 x—
¢ préelles(fﬂ) + pfausses(x)




Pourquoi le GAN fonctionne? (2/2)

Convergence des distributions

A * - Dréelles ()
POUI’ GﬁXe b= Dd)* sL Dréelles () +Pfausses (%)
La valeur optimale de V est donc:

pr(2)

min V(G, D*) = / (Pr@) e @+ D)

T

Et on peut montrer que :

mgin V(G, D*) = 2D s(pr||ps) — 2log2

ou Dyg est la divergence de Shannon-Jensen.

Optimiser le générateur revient donc a minimiser la divergence de
Jensen-Shannon, c’est-a-dire a faire tendre vers p, = py.



Schéma récapitulatif

Données
réelles

L* Osixe X
—

2~ N(0,T) Gy F —> X

1 sinon
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Comparaison avec les autres modeles génératifs

Modeles explicites ou implicites

On considere généralement que les GAN sont des modeles
génératifs implicites.

Contrairement aux modeles de mélange gaussiens ou aux
auto-encodeurs variationnels, I'apprentissage ne se fait pas par une
maximisation de la vraisemblance.

Le discriminateur comme mesure de distance

On utilise le discriminateur D comme test permettant de juger si les
deux distributions (réelle et générée) sont statistiquement
différentes.

— D définit une mesure de distance implicite entre les deux
distributions (qu’elle tente de maximiser tandis que G tente de la
réduire).



DCGAN : Deep Convolutional GAN

DCGAN est une extension des GAN qui utilise une architecture
convolutive pour le discriminateur et une architecture convolutive
transposée pour le générateur.

p— e
1002 {H :>4 St;i:ie 2

Stride 2

Project and reshape Deconv 1

Deconv 2

Deconv 3 64

Deconv 4 -
G(2)

Radford et al., 2015
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https://arxiv.org/pdf/1511.06434.pdf

Optimisation des GAN



Difficultés de I'optimisation des GAN

Constat
Loptimisation minimax n'est généralement pas stable.

On observe en général trois types de problemes :

+ Non-convergence : les parametres oscillent fortement sans se
stabiliser.

Cette instabilité introduit une haute sensibilité des GAN au choix des
hyperparamétres.

13
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Difficultés de l'optimisation des GAN

Constat
Loptimisation minimax n'est généralement pas stable.

On observe en général trois types de problemes :

+ Non-convergence : les parametres oscillent fortement sans se
stabiliser.

+ Mode collapse : le générateur produit des observations avec tres
peu de variété.

+ Rupture de I'équilibre : le discriminateur devient « plus fort » que
le générateur qui regoit des gradients trés faibles en retour.

Cette instabilité introduit une haute sensibilité des GAN au choix des
hyperparamétres.
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Stabilité de l'optimisation

Equation du GAN

min max V(Go, D) = Expy, 108 Do ()] + Eynpi llog (1 = Do Go(a)]

— jeu a somme nulle (zero-sum game)

— solution : équilibre de Nash

L'équilibre de Nash n'est pas forcément atteignable par descente de
gradient (surtout pour une fonction de co(t non-convexe).

14



Mode collapse

Les distributions réelles sont généralement multimodales (e.g.
différents chiffres pour de MNIST).

Le mode collapse intervient quand le générateur ne produit plus que
des échantillons d'un seul mode (par exemple, des images d'une
seule classe).

Origine du mode collapse

Considérons le cas limite ou I'on optimise uniqguement G. Alors les
observations générées convergent vers x* qui trompe le mieux D.
Dans le cas extréme :

x* = argmax D(z)
T

qui ne dépend pas de z! La distribution G(z) s'est effondrée en un
seul point et le gradient est nul.

15



Gradients évanescents

Fonction de colt du GAN

Lutilisation implicite de la divergence JS pour entrainer le
générateur provoque des gradients évanescents. On rappelle que si
le discriminateur est optimal, alors l'optimisation de G se fait sur :

min(G, D*) = 2Ds(prllpy) - 2log 2

Les gradients de la divergence JS diminuent trés rapidement
lorsque py est trés proche ou trés €loignée de p,.

— la convergence est lente, puis rapide, puis lente!

16



ation de I'évanescence des gradients de D
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A gauche : quatre distributions gausiennes unidimensionnelles de moyennes
différentes.

A droite : le valeur de D;S(p||¢;) lorsque la moyenne de ¢; varie entre 0 et 30.

17



Fonction de coit alternative

Optimisation du générateur
Vo V(G) = Velog (1 — Dy(Gy(2)))
Si Gy(z) est peu plausible :

* Dy(Go(2)) — O,
* V(G) ~log(l —e).

Lerreur sature et les gradients deviennent évanescents.

Solution
On utilise :

Vo —log (Dy(Go(2)))

18



Astuces d'optimisation

Sur les données
+ Normaliser les observations entre —1 et +1 (et utiliser tanh pour
la derniere couche de G)

+ Bruiter les données réelles et synthétiques (“augmentation” sur
D)
Sur l'architecture
- Echantillonner z dans une gaussienne
« Interpoler sur les grands cercles plutét que sur les lignes

- Eviter les gradients sparse : préférer LeakyReLU a Rel.U, average
pooling plutét que max pooling, etc.

Utiliser Adam plut6ét que SGD
Ne pas mixer vraies et fausses données dans un batch

Label smoothing
19



Distance de Wasserstein

Lutilisation de la divergence JS produit des gradients évanescents
lorsque les distributions sont disjointes. Arjovsky et al. (2017) définit
une nouvelle fonction de codt utilisant la distance de Wasserstein.

La distance de Wasserstein (ou Earth Mover’s distance) correspond
au transport optimal entre deux distributions :

# Shovelfuls in P
o H N W » U O H N W s~ U
P L0

# Shovelfuls in Q

Step [0]

Step [1]

Step [2]

Step [3]
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O H N W A U O L N W A U
—_ N

20


https://arxiv.org/abs/1701.07875

Distance de Wasserstein

1. déplace 2 unités de P; vers P Distance de Wasserstein
2. déplace 2 unités de P, vers Ps nombre d’unités déplacées x
3. déplace 1unité de Q3 vers Q4 distance de déplacement
Step [0] 5 Step [1] 5 Step [2] 5 Step [3]
& )
82710
P, P

# Shovelfuls in Q

Q1 Q Q3 Q4 Q1 Q Q3 Q4 1 Q Q3 1 Q Q3
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Wasserstein GAN

Cas des probabilités continues

W(pra pf) = inf E(Ly)N’Y[Hx - ?J\H
Y~II(pr,py)

W croit linéairement avec la distance entre les moyennes des
distributions, méme si les distributions sont disjointes (ce qui n'est
pas le cas de Djg).

21



Wasserstein GAN

Cas des probabilités continues

W(pr, pf) = inf E(z.,y)~7w$ - yH]
Y~IL(pr,py)

W croit linéairement avec la distance entre les moyennes des
distributions, méme si les distributions sont disjointes (ce qui n'est

pas le cas de Djg).

On ne peut pas tester tous les probabilités conjointes II(p,, py).

La dualité de Kantorovich-Rubinstein nous donne :

1
W(pr,py) = 7 sup Egup, [(2)] — Eonp,[f(2)]
K<k
pour fl'ensemble des fonctions K-lipschitziennes (i.e.

(1) = flzz) < Klzy — z]).
21



Implémentation du Wasserstein GAN

W-GAN en pratique

On impose que le discriminateur soit K—lipschitzien. Alors la
fonction de co(t devient :

L{pr, py) = Wipr, py) = maxEonp, [Dy(2)] — Eorp() [Do( Go(2))]

Autrement dit la fonction de codt revient a maximiser (pour le
discriminateur) sur un batch m :

L(ps 1) = max —[Dy(s) — Do(Go(2)

22


https://arxiv.org/pdf/1704.00028.pdf

Implémentation du Wasserstein GAN

W-GAN en pratique

On impose que le discriminateur soit K—lipschitzien. Alors la
fonction de co(t devient :

L{pr, py) = Wipr, py) = maxEonp, [Dy(2)] — Eorp() [Do( Go(2))]

Autrement dit la fonction de codt revient a maximiser (pour le
discriminateur) sur un batch m :

L(pr, ) = max —[Dy(s) — Dy(Go(2))]

Comment rendre D K—Lipschitz?
+ restreindre les poids ¢ a une norme [—¢, ¢,

« utiliser la pénalité du gradient de Gulrajani et al., 2017
22


https://arxiv.org/pdf/1704.00028.pdf

GAN conditionnels



Limitation du GAN standard

Le modele de GAN vu précédemment reproduit une distribution p(x).

Controle de la génération
Comment traiter le cas a n classes ou I'on voudrait reproduire

p(x|c)?

+ Option 1: n modéles — lourd, pas forcément possible si peu
d’exemples par classe.

+ Option 2 : conditionner les distributions.

minmax V(D, G) = Exwpgy (x) [l0g D(x[y)] +Esnp. ) [log(1 — D(G(2]y)))]-

23



GAN conditionnel

Deux changements principaux :

Générateur
On conditionne le générateur sur le vecteur de conditionnement ¢ :

G(z,¢) > x
Souvent on concatene simplement ¢ au bruit z.

Discriminateur

On conditionne le discriminateur sur le vecteur de conditionnement
c:
D(z, c) — score

La plupart du temps, on introduit ¢ dans une branche séparée.

24



Schéma du cGAN

Discriminator D(xly)

00000
00000 ©0000"

Generator G(zly) [‘ . . . .J
00000

Z@OOO@@@OQOb

a et Osindero, 2014
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https://arxiv.org/abs/1411.1784

AC-GAN : Auxiliary Classifier GAN

Cas d’application

Soit D = (X,y) un jeu de
données annoté. On ajoute une
branche de sortie au
discriminateur : un classifieur
auxiliaire.

Real/Fake

On définit deux fonctions de
colt, la log-vraisemblance pour
la source S et pour la classe C':

Ls = E[log P(S = réelle| Xigeiie)] + E[log P(S = fausse| Xaysse
Lo = E[logP(C'= c| Xrgelle)] + E[log P(C'= | Xtausse]
Le discriminateur maximise Lg + Lo
Le générateur maxmimise L¢ — Lg.
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