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Rappels



Auto-encodeur variationnel

Encodeur
Py (2|T)

Décodeur
po(x|2)

Fonction de coit du VAE

LO,;7) = Egolllz—2] +  De(gs(22)p(2))

vraisemblance (reconstruction)  régularisation (distance au prior)

+ Reconstruction : « similarité » entre I'entrée et la sortie
+ dépend du probleme (MSE, MAE, BCE...)

+ Régularisation : divergence-KL (contrainte de proximité au prior)
+ Expression analytique dans le cas ou tout est gaussien



VAE conditionnels



Génération conditionnelle

Modeles génératifs
Le décodeur des auto-encodeurs forme un modele génératif py(z|z).

* on ne connait (généralement) pas p(z) = VAE

« comment spécifier une connaissance a priori sur l'observation z
que l'on souhaite générer?
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Génération conditionnelle

Modeles génératifs
Le décodeur des auto-encodeurs forme un modele génératif py(z|z).

* on ne connait (généralement) pas p(z) = VAE

« comment spécifier une connaissance a priori sur l'observation z
que l'on souhaite générer?

Exemples de problématiques
+ générer une séquence cohérente d'objets,
- réaliser une prédiction probabiliste,
+ générer un exemple d'une certaine classe,

+ générer un exemple présentant des propriétés de plusieurs
classes.
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Po (Z’| Y, Z)
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spécifique (y) dans I'espace
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VAE conditionnel

Conditionnement
Construire le modéle génératif
Po (I| Y, Z)

— on injecte une information
spécifique (y) dans I'espace
latent (Y x Z)
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VAE conditionnel

Conditionnement
Construire le modéle génératif
Po (I| Y, Z)

— on injecte une information
spécifique (y) dans I'espace
latent (Y x Z)

“Chat"

- Générateur




VAE conditionnel

Conditionnement
Construire le modéle génératif
Po (T| Y, Z)

— on injecte une information
spécifique (y) dans I'espace
latent (Y x Z)

Cadre formel
On cherche un modele 6 permettant de générer z a partir de 2
sachant y. On maximise la (log-)vraisemblance conditionnelle sur

D= {(21,91)s- -+ (Tns Yn) } :

0= arg maxE,, log pg(z]y) = Z log po (x| y:)



Cadre formel

VAE conditionnel
Soit z les données, z les variables latentes, y le conditionnement.

Le VAE conditionnel s’intéresse :

+ au modele génératif py(z|z, y)
+ au modele conditionnel ¢, ( 2|z, y)
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Cadre formel

VAE conditionnel
Soit z les données, z les variables latentes, y le conditionnement.

Le VAE conditionnel s’intéresse :

* au modeéle génératif py(z|z, y) (~ décodeur)
+ au modeéle conditionnel ¢, (z|z, y) (~ encodeur)

Objectif
Déterminer les paramétres 6 et ¢ tels que :
* pe(2|y) soit une bonne approximation de p(z|y) — génération
conditionnelle,

* gs(#|z, y) soit une bonne approximation de py(z|z, y) — encodage
dans I'espace latent.



ELBO conditionnelle

Définition

ELBO(z, 0, ¢|y) = log pe(|y) — KL(gg(2lz, y)|Ipe(2|z, y))

Equivalence

arg max log py (a]1)
)

arg max ELBO(6, ¢; z, y)
0,

(extension naturelle du cas non-conditionnel)



Entrainement du VAE conditionnel

concat. concat.
X Encodeur z Décodeur
y py (22, y) H y po(z|2,y)
échantillonnage AV (0, I)
Optimisation

Analogue au VAE classique :

+ Astuce de la reparamétrisation,
« Concaténation du conditionnement au code latent.



Inférence dans le VAE conditionnel

concat.

échantillonnage

N(0,1)

Décodeur
PG(CE‘Za y)

Génération

1. Choix de y (ou tirage aléatoire),
2. Echantillonnage de z ~ p(2),

3. Concaténation [y, 7,

4. Génération de  par décodage.



Evaluation des VAE

Evaluer des modéles génératifs est difficile : comment quantifier la
qualité des observations synthétiques produites?

Fréchet Inception Distance
On compare la distribution des observations générées z et réelles .
Supposons un modele (par exemple, discriminatif) fqui produit
features des observations réelles et générées calculées.

+ Calculer f(z) et f(z) pour n observations réelles et générées,

+ Estimer la moyenne p et la variance X sur les deux distributions

+ Calculer la distance de Fréchet entre les distributions :
FID = |u — fif? + tr (z 5= 2(22)1/2)

Intuitivement, FID faible = distributions proches.

Dans le cas des images, on utilise les features extraites par le
modele Inception v3 préentrainé sur Imagenet.



Evaluation des VAE conditionnels

Si le modéle est conditionnel, on voudrait aussi mesurer son respect
du conditionnement. Pour un modele génératif p(z|y), on suppose que
I'on a un modele discriminatif p(y|z) entrainé sur le méme jeu de
données.

Inception score

+ Générer n observations synthétiques z

+ Calculer pour chaque observation la prédiction du modele
discriminatif p(y|z)
- ldéalement, cette prédiction devrait étre proche du vecteur one-hot
associé a y
+ Calculer la divergence KL entre la distribution a priori des classes
p(y) et la distribution observée p(y|z) :

1S = exp (Eamp(aly) KL(2(13) |())])

10



VQ-VAE




Distribution postérieure dans le VAE

Approximation du postérieur
4o (2lz;) = N (g, 05,1) — obtenue par I'encodeur

Avantages
+ Simple a calculer, dérivation facile pour la rétropropagation
+ Echantillonnage aisé a l'aide du reparametrization trick

* Possibilité d'approcher g, (2/z) = Y, g4 (| z;) (par ex., modéle de
mélange gaussien)



Distribution postérieure dans le VAE

Approximation du postérieur
4o (2lz;) = N (g, 05,1) — obtenue par I'encodeur

Avantages

+ Simple a calculer, dérivation facile pour la rétropropagation
+ Echantillonnage aisé a l'aide du reparametrization trick

* Possibilité d'approcher g, (2/z) = Y, g4 (| z;) (par ex., modéle de
mélange gaussien)

Capacité d'approximation limitée (gaussienne...)
La régularisation (proximité au prior) limite les possibilités pour
o

Pas de corrélations entre les dimensions de z — interprétabilité
limitée



Discrétiser I'espace latent

Pourquoi discrétiser?
+ Facilite la manipulation

- Permet d'apprendre la forme de I'espace latent

Codebook

L'espace latent gaussien Z est remplacé par un dictionnaire de K
codes latents appris :

{61, 62,...,6}(}

Une observation est représentée par un vecteur d’entiers,
correspondant aux « mots » du dictionnaire qui la décrivent, par
exemple :

x— [1,7,104,12] — [e1, 7, €104, €12

12



Postérieur catégoriel

Distribution catégorielle

Considérons un ensemble latent de K vecteurs {e, ..., ex}. On
définit alors la distribution postérieure ¢4(z|z) telle que :

L si k= argminl|z.(7) — ejll2

49(2 = Klz) = {

0 sinon

Autrement dit, z prend pour valeur le vecteur ¢; qui est le plus proche
du code z.(x) obtenu en sortie de I'encodeur.

+ I'espace latent est divisé en K entrées d'un dictionnaire,

+ la catégorie latente est obtenue par recherche du plus proche
voisin.

13



Optimisation

VQ-ELBO

L si k= argminl|2.(7) — ejll2

0 sinon

q(z = klz) = {
4 (z = k|z) est déterministe. En supposant I'a priori sur z uniforme :

KL(gy(22)||pe(2)) = log K

La fonction objectif du VQ-VAE est alors :

LO,¢;0) = Eggullogpe(el2)]  —KL(gs(2]2)||pe(2))

log po (z|2) car g, (z|z) est déterministe log K

14



Apprentissage

Quantification
Le décodeur regoit z,(z) = e; qui est le plus proche voisin de z.(z) :

zg(x) = argmin |[|z(z) — €|
ej€{e1,....ex}

L'opérateur arg min n'est pas dérivable :

on « copie » le gradient en entrée du décodeur Dy a la sortie de
I'encodeur Ej,

on calcule les gradients de z.(z) comme si c'était z,(z)

L(8, ¢; ) = log py(a]2(z)) + Isglze(2)] — el3
~————— —_— —
vraisemblance apprentissage des atomes, sg = “stop gradient”

15



Commitment loss

L(0, ¢; 2) = log po(alze(x)) + Isglz(2)] — ell3
~—_————— N———
vraisemblance apprentissage des atomes, sg = “stop gradient”

Rien n'empéche I'encodeur de dériver par rapport au dictionnaire ou
d'osciller entre plusieurs valeurs pour e.

Régularisation

L(8, ¢;z) = log po(alzg(2)) +  |lsglee(@)] — ell3  +8||ze(z) — sg[€]]3

vraisemblance apprentissage des atomes commitment loss

16



En pratique

) VL

2(x)

)

p(xiz)

.
5l

2(x) ~ q(zlx)

Encodage en pratique
En réalité, une observation z est encodée en N vecteurs latents. Par
exemple, une image 224 x 224 — 32 x 32 codes entiers.

Selon quelle distribution échantilloner les valeurs des codes z pour
la génération?

— apprentissage d’'un modele autorégressif (PixelCNN) pour
apprendre la distribution des 2



Modeles autorégressifs




Processus autorégressif

SupposoNns un processus :

+ dont on peut estimer les prochaines réalisations a partir des
observations déja rencontrées,

+ dont les prochaines réalisations ne dépendent pas du futur (i.e.
causal).

18



Processus autorégressif

Supposons un processus :

+ dont on peut estimer les prochaines réalisations a partir des
observations déja rencontrées,

+ dont les prochaines réalisations ne dépendent pas du futur (i.e.
causal).

Définition
On appelle AR(p) ou processus autorégressif d'ordre p un processus
{x1}o<i< v Qui Vérifie :

T =Cc+ Q1 X1 +aXs o+ -+ pp Xy p+ €

avec ¢, un bruit. On appelle @1, ¢», ..., ¢, les paramétres du modéle.

18
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Processus autorégressif

Supposons un processus :

+ dont on peut estimer les prochaines réalisations a partir des
observations déja rencontrées,

+ dont les prochaines réalisations ne dépendent pas du futur (i.e.
causal).

Propriété d'autorégression
Un processus {z;}o< <y satisfait la propriété d'autorégression si :

() = p(ae|Te—1,...,21)

Exemple : les chaines de Markov sont des processus autorégressifs
dordre 1 (p(z:) = p(a|z_1)).

18



Modélisation

Ordonnancement

Soit D un jeu de données contenant les observations d’'une variable
aléatoire x € R%. A 'aide de la chain rule* :

p(xlvx%"'v ) P(fﬂlafﬂz,-u,wdfl)'p($d|9317$27~-~,fﬂd71)
= p(r<d-1) - p(Td|T<d1)

p(af<d_2) - P(Tg—1]2<d—2) - P(Za|T<d—1)

— x devient un processus autorégressif pour peu que I'on accepte
d’'imposer un ordonnancement sur ses dimensions

Modele génératif autorégressif

On suppose py,(z;:|x<;) : les lois conditionnelles sont paramétrées
par 0;.

* Formule des probabilités composées: P(A N B) = P(B | A) - P(A) 19



Modélisation

Ordonnancement

Soit D un jeu de données contenant les observations d’'une variable
aléatoire x € R A l'aide de la chain rule* :

d d

p(x) = Hp(mi|x<,~) = Hp(wi\fﬂhﬂfz, o)

=1 i=1

— x devient un processus autorégressif pour peu que I'on accepte
d’'imposer un ordonnancement sur ses dimensions

Modeéle génératif autorégressif

On suppose py.(z;|x<;) : les lois conditionnelles sont paramétrées
par 6;.

* Formule des probabilités composées: P(A N B) = P(B | A) - P(A)

19



Soit {z:}o<i<n avec z; € {0,1} :

Pa,;(xi|x<i) = Befﬂ(fz‘(fl?h T2y, 93%1))

c'est-a-dire que la probabilité de passer d'obtenir 2; = 1 est donnée
par une loi de Bernouilli dont la probabilité est une fonction f; de

T1, T2, . .., T;_1, paramétrée par ;.
Cas simple

filzy, 2oy ooy zi) = U(aéi) 4= agi)xl + -+ ag?lxi,l)
avec o la sigmoide et 6, = {aéi), s agi)l} les paramétres.

= fully-visible sigmoid belief network (FVSBN)

20



Neural Autoregressive Density Estimator

/; est remplacé par un perceptron
multi-couche :

hi = O'(AiX<i —+ Ci)
film, vy wim1) = o(aDhy + by)
Partage des poids

En pratique, tous les MLP utilisent la méme
matrice de poids Weton utilise A; = W__;:

hi = a(ai)
Ai41 = A4 + VV[Z., Z]{L‘»L

21
avec a; = c.



MADE : principe

Comment rendre un autoencodeur autorégressif ?
Pour un ordonnancement donné z1, . .., z,, il ne doit pas y avoir de
chemin dans le réseau qui méne de x; a ;.

Masked Autoencoders for Density Estimation
Autoencodeur : multi-layer perceptron

z=f(b+(WoMW)x)
x=o(c+ (VoMY)z)

On assigne un numéro m(k) < D a chaque neurone et on “masque”
tous les neurones d’'un numéro supérieur au neurone courant :

1sim(k) > d 1sim(k) > d
MYZ(IC),d = ) et MXL(k),d = )
0 sinon 0 sinon

22
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Génération d'images

Pixels = séquence

n
p(x) =[] p(@lz, ..., 2i1)
=1

Image couleur : trois canaux RVB

(z; = (zi,r, T3, v T5,B))

Context

p($i|X<i) = p(-TJi,R|X<i)p(l’i, V|X<i, $i,R)p($i,B|X<i, T Ry T, v)

Deux possibilités :

p(x) est une distribution continue (~ régression)
p(x) est une distribution discréete (256 valeurs) — softmax

24



PixelRNN/PixelCNN

Architectures autorégressives
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