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Rappels



Auto-encodeur variationnel

Décodeur



Encodeur



échantillonnage

Fonction de coût du VAE

L(θ, ϕ; x) = Eqϕ(z|x)[∥x̂ − x∥]︸ ︷︷ ︸
vraisemblance (reconstruction)

+ DKL(qϕ(z|x)|p(z))︸ ︷︷ ︸
régularisation (distance au prior)

• Reconstruction : « similarité » entre l’entrée et la sortie
• dépend du problème (MSE, MAE, BCE…)

• Régularisation : divergence-KL (contrainte de proximité au prior)
• Expression analytique dans le cas où tout est gaussien
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VAE conditionnels



Génération conditionnelle

Modèles génératifs
Le décodeur des auto-encodeurs forme un modèle génératif pθ(x|z).

• on ne connaît (généralement) pas p(z) =⇒ VAE

• comment spécifier une connaissance a priori sur l’observation x
que l’on souhaite générer?

Exemples de problématiques

• générer une séquence cohérente d’objets,

• réaliser une prédiction probabiliste,

• générer un exemple d’une certaine classe,

• générer un exemple présentant des propriétés de plusieurs
classes.
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VAE conditionnel

Conditionnement
Construire le modèle génératif
pθ(x|y, z)

→ on injecte une information
spécifique (y) dans l’espace
latent (Y × Z)

Cadre formel
On cherche un modèle θ permettant de générer x à partir de z
sachant y. On maximise la (log-)vraisemblance conditionnelle sur
D = {(x1, y1), . . . , (xn, yn)} :

θ̂ = argmax
θ

EpD log pθ(x|y) =
1
N

∑
i

log pθ(xi|yi)
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Cadre formel

VAE conditionnel
Soit x les données, z les variables latentes, y le conditionnement.

Le VAE conditionnel s’intéresse :

• au modèle génératif pθ(x|z, y) (≃ décodeur)

• au modèle conditionnel qϕ(z|x, y) (≃ encodeur)

Objectif
Déterminer les paramètres θ et ϕ tels que :

• pθ(x|y) soit une bonne approximation de p(x|y)→ génération
conditionnelle,

• qϕ(z|x, y) soit une bonne approximation de pθ(z|x, y)→ encodage
dans l’espace latent.
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ELBO conditionnelle

Définition

ELBO(x, θ, ϕ|y) = log pθ(x|y)−KL(qϕ(z|x, y)||pθ(z|x, y))

Équivalence

argmax
θ

log pθ(x|y)

⇕

argmax
θ,ϕ

ELBO(θ, ϕ; x, y)

(extension naturelle du cas non-conditionnel)
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Entraînement du VAE conditionnel

échantillonnage 





concat.
Décodeur



Encodeur





concat.

Optimisation
Analogue au VAE classique :

• Astuce de la reparamétrisation,

• Concaténation du conditionnement au code latent.
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Inférence dans le VAE conditionnel

échantillonnage 







concat.
Décodeur




Génération

1. Choix de y (ou tirage aléatoire),

2. Échantillonnage de z ∼ p(z),
3. Concaténation [y, z],
4. Génération de x̂ par décodage.
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Évaluation des VAE

Évaluer des modèles génératifs est difficile : comment quantifier la
qualité des observations synthétiques produites?

Fréchet Inception Distance
On compare la distribution des observations générées x̃ et réelles x.
Supposons un modèle (par exemple, discriminatif) f qui produit
features des observations réelles et générées calculées.

• Calculer f(x̃) et f(x) pour n observations réelles et générées,

• Estimer la moyenne µ et la variance Σ sur les deux distributions

• Calculer la distance de Fréchet entre les distributions :

FID = |µ− µ̃|2 + tr
(
Σ+ Σ̃− 2(ΣΣ̃)1/2

)
Intuitivement, FID faible =⇒ distributions proches.

Dans le cas des images, on utilise les features extraites par le
modèle Inception v3 préentraîné sur Imagenet.
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Évaluation des VAE conditionnels

Si le modèle est conditionnel, on voudrait aussi mesurer son respect
du conditionnement. Pour un modèle génératif p(x|y), on suppose que
l’on a un modèle discriminatif p(y|x) entraîné sur le même jeu de
données.

Inception score

• Générer n observations synthétiques x̃
• Calculer pour chaque observation la prédiction du modèle
discriminatif p(y|x̃)

• Idéalement, cette prédiction devrait être proche du vecteur one-hot
associé à y

• Calculer la divergence KL entre la distribution a priori des classes
p(y) et la distribution observée p(y|x̃) :

IS = exp
(
Ex̃∼p(x|y)[KL(p(y|x̃)|p(y))]

)
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VQ-VAE



Distribution postérieure dans le VAE

Approximation du postérieur
qϕ(z|xi) = N (µxi , σxiI)→ obtenue par l’encodeur

Avantages

• Simple à calculer, dérivation facile pour la rétropropagation

• Échantillonnage aisé à l’aide du reparametrization trick

• Possibilité d’approcher qϕ(z|x) =
∑

i qϕ(z|xi) (par ex., modèle de
mélange gaussien)

Inconvénients

• Capacité d’approximation limitée (gaussienne…)

• La régularisation (proximité au prior) limite les possibilités pour
µx

• Pas de corrélations entre les dimensions de z → interprétabilité
limitée
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Discrétiser l’espace latent

Pourquoi discrétiser?

• Facilite la manipulation

• Permet d’apprendre la forme de l’espace latent

Codebook
L’espace latent gaussien Z est remplacé par un dictionnaire de K
codes latents appris :

{e1, e2, . . . , eK}

Une observation est représentée par un vecteur d’entiers,
correspondant aux «mots » du dictionnaire qui la décrivent, par
exemple :

x → [1, 7, 104, 12] → [e1, e7, e104, e12]
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Postérieur catégoriel

Distribution catégorielle
Considérons un ensemble latent de K vecteurs {e1, . . . , eK}. On
définit alors la distribution postérieure qϕ(z|x) telle que :

qϕ(z = k|x) =
{

1 si k = argminj∥ze(x)− ej∥2

0 sinon

Autrement dit, z prend pour valeur le vecteur ei qui est le plus proche
du code ze(x) obtenu en sortie de l’encodeur.

• l’espace latent est divisé en K entrées d’un dictionnaire,

• la catégorie latente est obtenue par recherche du plus proche
voisin.
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Optimisation

VQ-ELBO

qϕ(z = k|x) =
{

1 si k = argminj∥ze(x)− ej∥2

0 sinon

qϕ(z = k|x) est déterministe. En supposant l’a priori sur z uniforme :

KL(qϕ(z|x)||pθ(z)) = logK

La fonction objectif du VQ-VAE est alors :

L(θ, ϕ; x) = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
log pθ(x|z) car qϕ(z|x) est déterministe

−KL(qϕ(z|x)||pθ(z))︸ ︷︷ ︸
log K
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Apprentissage

Quantification
Le décodeur reçoit zq(x) = ei qui est le plus proche voisin de ze(x) :

zq(x) = argmin
ej∈{e1,...,eK}

∥ze(x)− ej∥

Non-dérivabilité
L’opérateur argmin n’est pas dérivable :

• on « copie » le gradient en entrée du décodeur Dθ à la sortie de
l’encodeur Eϕ,

→ on calcule les gradients de ze(x) comme si c’était zq(x)

L(θ, ϕ; x) = log pθ(x|zq(x))︸ ︷︷ ︸
vraisemblance

+ ∥sg[ze(x)]− e∥2
2︸ ︷︷ ︸

apprentissage des atomes, sg = “stop gradient”
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Commitment loss

Problème

L(θ, ϕ; x) = log pθ(x|zq(x))︸ ︷︷ ︸
vraisemblance

+ ∥sg[ze(x)]− e∥2
2︸ ︷︷ ︸

apprentissage des atomes, sg = “stop gradient”

Rien n’empêche l’encodeur de dériver par rapport au dictionnaire ou
d’osciller entre plusieurs valeurs pour e.

Régularisation

L(θ, ϕ; x) = log pθ(x|zq(x))︸ ︷︷ ︸
vraisemblance

+ ∥sg[ze(x)]− e∥2
2︸ ︷︷ ︸

apprentissage des atomes

+β ∥ze(x)− sg[e]∥2
2︸ ︷︷ ︸

commitment loss
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En pratique

Encodage en pratique
En réalité, une observation x est encodée en N vecteurs latents. Par
exemple, une image 224 × 224 → 32 × 32 codes entiers.

Échantillonnage?
Selon quelle distribution échantilloner les valeurs des codes z pour
la génération?

→ apprentissage d’un modèle autorégressif (PixelCNN) pour
apprendre la distribution des z
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Modèles autorégressifs



Processus autorégressif

Supposons un processus :

• dont on peut estimer les prochaines réalisations à partir des
observations déjà rencontrées,

• dont les prochaines réalisations ne dépendent pas du futur (i.e.
causal).
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Modélisation

Ordonnancement
Soit D un jeu de données contenant les observations d’une variable
aléatoire x ∈ Rd. À l’aide de la chain rule * :

p(x1, x2, . . . , xd) = p(x1, x2, . . . , xd−1) · p(xd|x1, x2, . . . , xd−1)

= p(x<d−1) · p(xd|x<d−1)

= p(x<d−2) · p(xd−1|x<d−2) · p(xd|x<d−1)

= . . .

→ x devient un processus autorégressif pour peu que l’on accepte
d’imposer un ordonnancement sur ses dimensions

Modèle génératif autorégressif
On suppose pθi(xi|x<i) : les lois conditionnelles sont paramétrées
par θi.

* Formule des probabilités composées : P(A ∩ B) = P(B | A) · P(A) 19
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Exemple

Soit {xt}0≤t≤N avec xi ∈ {0, 1} :

pθi(xi|x<i) = Bern(fi(x1, x2, . . . , xi−1))

c’est-à-dire que la probabilité de passer d’obtenir xi = 1 est donnée
par une loi de Bernouilli dont la probabilité est une fonction fi de
x1, x2, . . . , xi−1, paramétrée par θi.

Cas simple

fi(x1, x2, . . . , xi−1) = σ(α
(i)
0 + α

(i)
1 x1 + · · ·+ α

(i)
i−1xi−1)

avec σ la sigmoide et θi = {α(i)
0 , . . . , α

(i)
i−1} les paramètres.

=⇒ fully-visible sigmoid belief network (FVSBN)
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NADE

Neural Autoregressive Density Estimator
fi est remplacé par un perceptron
multi-couche :

hi = σ(Aix<i + ci)

fi(x1, x2, . . . , xi−1) = σ(α(i)hi + bi)

Partage des poids
En pratique, tous les MLP utilisent la même
matrice de poids W et on utilise Ai = W.,<i :

hi = σ(ai)

ai+1 = ai + W[:, i]xi

avec a1 = c.
21



MADE : principe

Comment rendre un autoencodeur autorégressif?
Pour un ordonnancement donné x1, . . . , xn, il ne doit pas y avoir de
chemin dans le réseau qui mène de x<i à x̂i.

Masked Autoencoders for Density Estimation
Autoencodeur : multi-layer perceptron

z = f(b + (W ⊙ MW)x)
x̂ = σ(c + (V ⊙ MV)z)

On assigne un numéro m(k) < D à chaque neurone et on “masque”
tous les neurones d’un numéro supérieur au neurone courant :

MW
m(k),d =

1 si m(k) ≥ d
0 sinon

et MV
m(k),d =

1 si m(k) > d
0 sinon
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MADE : illustration
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Génération d’images

x1

xi

xn

xn2

Context 

xn2

Pixels = séquence

p(x) =
n2∏

i=1
p(xi|x1, . . . , xi−1)

Image couleur : trois canaux RVB
(xi = (xi,R, xi,V, xi,B))

p(xi|x<i) = p(xi,R|x<i)p(xi,V|x<i, xi,R)p(xi,B|x<i, xi,R, xi,V)

Pixels discrets ou continus?
Deux possibilités :

• p(x) est une distribution continue (∼ régression)

• p(x) est une distribution discrète (256 valeurs) → softmax
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PixelRNN/PixelCNN

Architectures autorégressives

PixelCNN Row LSTM Diagonal BiLSTM
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