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Rappels sur les auto-encodeurs



Auto-encodeurs (récapitulatif, 1/2)

Principe de I'auto-encodeur
Apprendre une compression avec les pertes les + faibles possibles.

Pour une variable aléatoire X € R", un réseau auto-encodeur
modélise # = D o & telle que :

[H(z) — 2l <e
« & représente I'encodeur R” — R?
* D représente le décodeur R? — R”

L'auto-encodeur construit un espace latent Z qui est I'espace de
dimension d contenant les codes z = £(z).



Auto-encodeurs (récapitulatif, 2/2)

Fonction de coit
On cherche les poids 6 du réseau de neurones H tels que :

0" = argemin L(z,z) = |D(E(x)) — 2

La fonction de co(t de reconstruction dépend de la tache (erreur
quadratique, absolue, entropie croisée...).



Auto-encodeurs (récapitulatif, 2/2)

Fonction de coit
On cherche les poids 6 du réseau de neurones H tels que :

0" = argemin L(z,z) = |D(E(x)) — 2

La fonction de co(t de reconstruction dépend de la tache (erreur
quadratique, absolue, entropie croisée...).

Apprentissage classique comme n'importe quel réseau de
neurones : algorithme de rétroprogation et descente de gradient
stochastique.

Le décodeur et I'encodeur sont appris conjointement (le gradient est
rétropropagé du décodeur vers I'encodeur).



Applications des auto-encodeurs : débruitage

Débruitage/restauration
Fonction de coiit : ||#(Z) — || ou Z = z + ¢ une version bruitée de =

Encoder —»i—» Decoder .2




Applications des auto-encodeurs : débruitage

Débruitage/restauration
Fonction de coiit : ||#(Z) — || ou Z = z + ¢ une version bruitée de =

Diverses applications

« Compression de signaux avec pertes

» Réduction de dimension non-linéaire

Encoder —»i—» Decoder




Applications des auto-encodeurs : AE con
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Lauto-encodeur comme modele génératif

Décoder = générer
Le décodeur D est un modéle génératif P(X]z).

1. Choisir au hasard un code latent > de dimension d
2. Décoder ce vecteur



Lauto-encodeur comme modele génératif

Décoder = générer
Le décodeur D est un modéle génératif P(X]z).

1. Choisir au hasard un code latent > de dimension d
2. Décoder ce vecteur

Micro-quiz : a quoi peut-on s’attendre en pratique ?
1. Une observation synthétique mais plausible

2. Une reconstruction médiocre



Lauto-encodeur comme modele génératif

Décoder = générer
Le décodeur D est un modéle génératif P(X]z).

1. Choisir au hasard un code latent > de dimension d
2. Décoder ce vecteur

Micro-quiz : a quoi peut-on s’attendre en pratique ?
1. Une observation synthétique mais plausible

2. Une reconstruction médiocre

Comment choisir z? A priori on ne sait pas!
Pas de régularité (= continuité) dans I'espace latent z

d << mmais dreste grand en pratique



Principe du VAE



De l'auto-encodeur a I'auto-encodeur variationnel

Idée générale
une observation = une distribution

+ une donnée z correspond a plusieurs z possibles,

+ I'encodeur ne produit pas un code mais une distribution p(z|x).

En général, on choisira une distribution gaussienne dont les
parametres (u., o,) sont prédits par I'encodeur.



De l'auto-encodeur a I'auto-encodeur variationnel

Idée générale
une observation = une distribution

+ une donnée z correspond a plusieurs z possibles,

+ I'encodeur ne produit pas un code mais une distribution p(z|x).

En général, on choisira une distribution gaussienne dont les
parametres (u., o,) sont prédits par I'encodeur.
Avantages

+ Lespace latent est moins clairsemé

- Echantillonnage plus aisé pour un zdonné

* p(2) plus facile a estimer : p(z) = > p(2|7;)



Schéma du VAE

Schéma général

échantillonnage

Décodeur
po(z|2)

Encodeur
Py (2z)




Schéma du VAE

Schéma général

échantillonnage

Encodeur
Py (2z)

Décodeur
po(z]2)

Encodeur
Py (2|T)

Décodeur
po((2)



Générer des données

Récapitulons...
* Lencodeur produit une distribution p,(z|z)
+ Typiquement, py(2|z) = N (s, o)
* On échantillonne py(z|z) pour trouver un (ou plusieurs) code z

+ Le décodeur reconstruit z a partir de z



Générer des données

Récapitulons...
* Lencodeur produit une distribution p,(z|z)
+ Typiquement, py(2|z) = N (s, o)
* On échantillonne py(z|z) pour trouver un (ou plusieurs) code z

+ Le décodeur reconstruit z a partir de z

Echantillonnage lors de l'inférence

A I'inférence, comment choisir 2?

+ Option 1: échantillonner sur la loi a posteriori
p(2) = 5 i po(d2) = 4 30, N (kay, 0s,)

* approximation mauvaise si peu de données, dimension de z grande,
etc.
- cher a calculer si beaucoup de données (n grand)

+ Option 2 : forcer p(z) a suivre une loi a priori
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Récapitulons...
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Echantillonnage lors de l'inférence

A I'inférence, comment choisir 2?

+ Option 1: échantillonner sur la loi a posteriori
p(2) = 5 i po(d2) = 4 30, N (kay, 0s,)
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Régularisation

Mesure de dissimilarité entre deux distributions P(z) et Q(x)

Dyt (P|Q) = ¥, P(w;) log (=5

10



Régularisation

Mesure de dissimilarité entre deux distributions P(z) et Q(x)

Dyt (P|Q) = ¥, P(w;) log (=5

A priori gaussien dans les VAE
Objectif : on exige que p(z) suive approximativement la loi normale
€ R¢

* onimpose :

D ( g6(#|2) | p(2)
——— ~—
approximation du postérieur par I'encodeur la loi a priori

)<e

* avec gy (2|z) = N (g, 01)
+ on choisit comme prior : p(z) = N(0,1)

10



Fonction de coit

Fonction de colt du VAE
L(0,8;7) = Eq, (210 12 — 2ll] + Di(gy(2l7)|p(2))

+ Reconstruction : « similarité » entre I'entrée et la sortie
+ dépend du probleme (MSE, MAE, BCE...)

- Régularisation : divergence-KL (contrainte de proximité au prior)
« Expression analytique dans le cas ou tout est gaussien :

Dia (g6 (49) p(2)) = 5 (61(02) + byia — d — log det(cr)



Inférence variationnelle




Cadre formel
* D={x,...,z,} un jeu de données i.i.d. issues d’'un processus
génératif pp.
+ On cherche le modeéle génératif qui permet d'approcher pp.

+ Soit z € Z une variable latente qui suit une distribution a priori
pe+ (z), paramétrée par 0*.
* on suppose que z; s'obtient par la réalisation de pg- (z;|2;)
+ en pratique, on ne connait ni 8%, ni les variables latentes z;

12



Trouver la distribution latente

Modéle génératif
On cherche 6 qui maximise la

po-(2) = Bern(p)  po- (3| 2) = N(2,0) (log-)vraisemblance sur D :

0 = arg maxE, [log pg(z)]
0
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Trouver la distribution latente

Modéle génératif
po-(2) =Bern(p)  pe-(z]2) =N(2,9)  On cherche § qui maximise la
(log-)vraisemblance sur D :

po- () /- arg max [, [10g Po (LU)]
6

Y

ol itV sl S

ob-->-

>
Il

—
3

—

po(z) =(1 — p)pe ([0, 0)
+ppe(z|l,0)

—> sampling
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Trouver la distribution latente

Modéle génératif
po-(2) =Bern(p)  pe-(z]2) =N(2,9)  On cherche § qui maximise la
(log-)vraisemblance sur D :

po- () /- arg max [, [10g Po (LU)]
6

Y

ol itV sl S

ob-->-

po(z) est difficile a calculer...

>
Il

—
3

—

w@) = [ po(a)po(ata)d
po(z) =(1 — p)pe(2]0, 0)
+ppo(z|l,0) po(2|z) est inconnu...
——> sampling Z est trop grand pour

échantillonner efficacement
13



Approximation du postérieur

Comment choisir ¢, (z|z)?
On cherche a étre proche du véritable postérieur py(z|z) :

¢ = arg;nin KL( gy (27)|po(2|7))

On peut montrer que :

KL(ge(2l7)|po(2lz)) = —Eq, (210 [log po(2]2)] — KL(gg(2]2)|po(2)) + log pe(z)
= —L(0, ¢; 7) + log py ()

Minimiser la divergence KL revient a maximiser L.

14



ELBO

Définition
ELBO (evidence lower-bound) est définie par :

L(0, ¢;z) = Eq, (21a) [log po(z]2)] — KL (g4(217) || pa(2))

Minimiser la divergence KL revient a maximiser I'ELBO.

15



ELBO

Définition
ELBO (evidence lower-bound) est définie par :

L(0, ¢ 2) = Eq, (1) [log po(al2)] — KL (g4 (2|2) || po(2))
Minimiser la divergence KL revient a maximiser I'ELBO.

Fonction objectif de I'inférence variationnelle

» On cherche 6 qui vérifie = arg max, E,,, [log ps(z)]

* Or, log po(z) = KL (g4(2|2)|po(2l2)) + L0, ¢; 2)
« Comme la divergence KL est positive, il vient :

log po(z) > L(8, ¢; z)
Maximiser 'ELBO revient donc a maximiser la vraisemblance.

15



Lien avec les VAE

L(0,¢;2) = Eg, (s llogpe(zlz)] — KL (gs(2z) || po(2))

Espérance de la vraisemblance Ecart au prior

Quelles fonctions choisir comme postérieur et prior?

* Un choix naturel pour ¢4(z|z) : une gaussienne N (y, o)
+ ses parametres dépendent de z

+ Un choix naturel pour py(2) : la loi normale A/(0,I)
- structure simple et facile a échantillonner

Vraisemblance
Dans notre cas, en notant fle décodeur :

argmax B ;) [log p(2]2)] = argmin Ey, ;0 [|2 — f(2)||

16



Optimisation des VAE



Entrainement en pratique par descente de gradient

Schéma du VAE

Décodeur
po(z|2)

Encodeur
py(2|z)

1. Création d'un batch {z;}
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Entrainement en pratique par descente de gradient

Schéma du VAE

Décodeur
po(z|2)

Encodeur
py(2|z)

1. Création d'un batch {z;}
2. Passage dans I'encodeur
+ Calcul de p,, o, pour chaque 7

3. Echantillonnage de z; ~ N (pt4,, 04,)
4. Passage dans le décodeur
+ Calcul de z;
5. Calcul de la fonction de codt
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Entrainement en pratique par descente de gradient

Schéma du VAE

Décodeur
po(z|2)

Encodeur
py(2|z)

1. Création d'un batch {z;}
2. Passage dans I'encodeur
+ Calcul de p,, o, pour chaque 7
3. Echantillonnage de z; ~ N (i, 04,) < non dérivable!
4. Passage dans le décodeur
+ Calcul de z;

5. Calcul de la fonction de co(t
6. Calcul du gradient, rétropropagation
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Reparametrization trick

Astuce
Ne pas échantillonner z directement en réécrivant: 2=+ o © ¢
avec e un bruit gaussien aléatoire ~ A/(0,1).

Original form Reparameterised form
r 77777777777777777 1 r-r—-————=—=7-=—=7—=7==-==-=-=-=-= 1
| I 1 I
: f | | Backprop f !
| L l I :
| ~q(zldx) D dt/0s 2, =98 !
| o2 |
| ¢ x L 0f/dg & WX ~ple) !
: L =0L/dg |
e e I |\ _______ 1
: Deterministic node [Kingma, 2013]
[Bengio, 2013]
. [Kingma and Welling 2014]
. + Random node [Rezende et al 2014]
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3-VAE

L0, ¢:0) = Eg,(ollz—all +5-KL(g5(27) || po(2))

Erreur de reconstruction Ecart au prior

B controle le dilemme reconstruction/structure de I'espace latent :

« 8 =1:VAE classique,

+ B3 > 1:encodage plus efficace et plus proche du prior mais
reconstruction moins bonne,

+ 3 < 1:meilleure reconstruction mais espace latent moins bien
structuré.

19
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