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Rappels sur les auto-encodeurs



Auto-encodeurs (récapitulatif, 1/2)

Principe de l’auto-encodeur
Apprendre une compression avec les pertes les + faibles possibles.

Pour une variable aléatoire X ∈ Rn, un réseau auto-encodeur
modéliseH = D ◦ E telle que :

∥H(x)− x∥ ≤ ε

• E représente l’encodeur Rn → Rd

• D représente le décodeur Rd → Rn

L’auto-encodeur construit un espace latent Z qui est l’espace de
dimension d contenant les codes z = E(x).
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Auto-encodeurs (récapitulatif, 2/2)

Fonction de coût
On cherche les poids θ du réseau de neuronesH tels que :

θ∗ = argmin
θ
L(x, x̂) = ∥D(E(x))− x∥

La fonction de coût de reconstruction dépend de la tâche (erreur
quadratique, absolue, entropie croisée…).

Optimisation
Apprentissage classique comme n’importe quel réseau de
neurones : algorithme de rétroprogation et descente de gradient
stochastique.

Le décodeur et l’encodeur sont appris conjointement (le gradient est
rétropropagé du décodeur vers l’encodeur).
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Applications des auto-encodeurs : débruitage

Débruitage/restauration
Fonction de coût : ∥H(x̃)− x∥ où x̃ = x + ε une version bruitée de x

Diverses applications

• Compression de signaux avec pertes

• Réduction de dimension non-linéaire
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Applications des auto-encodeurs : AE convolutif

Guo et al., Deep Clustering with Convolutional Autoencoders, ICONIP 2017

→ cf. séance de TP

5



L’auto-encodeur comme modèle génératif

Décoder = générer
Le décodeur D est un modèle génératif P(X|z).
1. Choisir au hasard un code latent z de dimension d
2. Décoder ce vecteur

Micro-quiz : à quoi peut-on s’attendre en pratique?
1. Une observation synthétique mais plausible

2. Une reconstruction médiocre

Limites de cette approche
• Comment choisir z? A priori on ne sait pas !

• Pas de régularité (= continuité) dans l’espace latent z
• d << n mais d reste grand en pratique
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Principe du VAE



De l’auto-encodeur à l’auto-encodeur variationnel

Idée générale
une observation = une distribution

• une donnée x correspond à plusieurs z possibles,

• l’encodeur ne produit pas un code mais une distribution p(z|x).

En général, on choisira une distribution gaussienne dont les
paramètres (µx, σx) sont prédits par l’encodeur.

Avantages

• L’espace latent est moins clairsemé

• Échantillonnage plus aisé pour un x donné

• p(z) plus facile à estimer : p(z) =
∑

xi∈X p(z|xi)
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Générer des données

Récapitulons…

• L’encodeur produit une distribution pϕ(z|x)
• Typiquement, pϕ(z|x) = N (µx, σx)

• On échantillonne pϕ(z|x) pour trouver un (ou plusieurs) code z
• Le décodeur reconstruit x à partir de z

Échantillonnage lors de l’inférence

À l’inférence, comment choisir z?

• Option 1 : échantillonner sur la loi a posteriori
• p(z) = 1

n
∑n

i=1 pϕ(z|x) = 1
n
∑n

i=1 N (µxi , σxi)

• approximation mauvaise si peu de données, dimension de z grande,
etc.

• cher à calculer si beaucoup de données (n grand)

• Option 2 : forcer p(z) à suivre une loi a priori
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Régularisation

La divergence de Kullback-Leibler
Mesure de dissimilarité entre deux distributions P(x) et Q(x)

• DKL(P|Q) =
∑

i P(xi) log
P(xi)
Q(xi)

A priori gaussien dans les VAE
Objectif : on exige que p(z) suive approximativement la loi normale
∈ Rd

• on impose :

DKL( qϕ(z|x)︸ ︷︷ ︸
approximation du postérieur par l’encodeur

| p(z)︸︷︷︸
la loi a priori

) ≤ ε

• avec qϕ(z|x) = N (µx, σx)

• on choisit comme prior : p(z) = N (0, I)
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Fonction de coût

Fonction de coût du VAE

L(θ, ϕ; x) = Eqϕ(z|x)[∥x̂− x∥] + DKL(qϕ(z|x)|p(z))

• Reconstruction : « similarité » entre l’entrée et la sortie
• dépend du problème (MSE, MAE, BCE…)

• Régularisation : divergence-KL (contrainte de proximité au prior)
• Expression analytique dans le cas où tout est gaussien :

DKL(qϕ(z|x)|p(z)) =
1
2 (tr(σx) + µt

xµx − d − log det(σx)
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Inférence variationnelle



Théorie

Cadre formel

• D = {x1, . . . , xn} un jeu de données i.i.d. issues d’un processus
génératif pD.

• On cherche le modèle génératif qui permet d’approcher pD.
• Soit z ∈ Z une variable latente qui suit une distribution a priori

pθ∗(z), paramétrée par θ∗.
• on suppose que xi s’obtient par la réalisation de pθ∗(xi|zi)

• en pratique, on ne connaît ni θ∗, ni les variables latentes zi
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Trouver la distribution latente

Modèle génératif
On cherche θ qui maximise la
(log-)vraisemblance sur D :

θ̂ = argmax
θ

EpD [log pθ(x)]

Problèmes
• pθ(x) est difficile à calculer…

pθ(x) =
∫

pθ(z)pθ(x|z)dz

• pθ(z|x) est inconnu…
• Z est trop grand pour
échantillonner efficacement
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Approximation du postérieur

Comment choisir qϕ(z|x)?
On cherche à être proche du véritable postérieur pθ(z|x) :

ϕ̂ = argmin
ϕ

KL(qϕ(z|x)|pθ(z|x))

On peut montrer que :

KL(qϕ(z|x)|pθ(z|x)) = −Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)|pθ(z)) + log pθ(x)
= −L(θ, ϕ; x) + log pθ(x)

Minimiser la divergence KL revient à maximiser L.
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ELBO

Définition
ELBO (evidence lower-bound) est définie par :

L(θ, ϕ; x) = Eqϕ(z|x) [log pθ(x|z)]− KL (qϕ(z|x) || pθ(z))

Minimiser la divergence KL revient à maximiser l’ELBO.

Fonction objectif de l’inférence variationnelle

• On cherche θ qui vérifie θ̂ = argmaxθ EpD [log pθ(x)]
• Or, log pθ(x) = KL (qϕ(z|x)|pθ(z|x)) + L(θ, ϕ; x)
• Comme la divergence KL est positive, il vient :

log pθ(x) ≥ L(θ, ϕ; x)

Maximiser l’ELBO revient donc à maximiser la vraisemblance.
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Lien avec les VAE

L(θ, ϕ; x) = Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
Espérance de la vraisemblance

−KL (qϕ(z|x) || pθ(z))︸ ︷︷ ︸
Écart au prior

Quelles fonctions choisir comme postérieur et prior?

• Un choix naturel pour qϕ(z|x) : une gaussienne N (µ, σ)

• ses paramètres dépendent de x
• Un choix naturel pour pθ(z) : la loi normale N (0, I)

• structure simple et facile à échantillonner

Vraisemblance
Dans notre cas, en notant f le décodeur :

argmaxEqϕ(z|x)[log p(x|z)] = argminEqϕ(z|x)∥x− f(z)∥
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Optimisation des VAE



Entraînement en pratique par descente de gradient

Schéma du VAE

Décodeur



Encodeur



échantillonnage

1. Création d’un batch {xi}
2. Passage dans l’encodeur

• Calcul de µxi , σxi pour chaque i

3. Échantillonnage de zi ∼ N (µxi , σxi)← non dérivable !
4. Passage dans le décodeur

• Calcul de x̂i

5. Calcul de la fonction de coût
6. Calcul du gradient, rétropropagation
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Reparametrization trick

Astuce
Ne pas échantillonner z directement en réécrivant : z = µ+ σ ⊙ ε

avec ε un bruit gaussien aléatoire ∼ N (0, I).
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β-VAE

L(θ, ϕ; x) = Eqϕ(z|x)∥x̂− x∥︸ ︷︷ ︸
Erreur de reconstruction

+β · KL (qϕ(z|x) || pθ(z))︸ ︷︷ ︸
Écart au prior

β contrôle le dilemme reconstruction/structure de l’espace latent :

• β = 1 : VAE classique,

• β > 1 : encodage plus efficace et plus proche du prior mais
reconstruction moins bonne,

• β < 1 : meilleure reconstruction mais espace latent moins bien
structuré.
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