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Machine learning

AI: field of computer science that studies or develops “intelligent” software

ML: develop algorithms to solve problems by automatically processing data
or “statistical learning”

A broad field that emerged from:
• Informatics computational science, data science

• Applied mathematics statistics, information theory, optimization

• Applications bio-informatics, signal processing, computer vision
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A new relationship to data (1/3)

Traditionally: data was made for experts

• Scientific question→ Experiments→ answer to an hypothesis
The IPCC asking “Is global warming due to human activities?”

• Mathematical models→ Measures→ Inversion
Meteorological data→ yield forecasting

• Automated classification through expert rules
Algorithmic transcription of “If # petals ≥ 5, then...”

Wigner (Nobel in φ), “The unreasonable effectiveness of mathematics in the natural sciences,” Symmetries and Reflections, 1967. 2
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A new relationship to data (2/3)

Current explosion of
• Available data sensors, measurements, experiments

• Data dimension pixels, monitored genes, sampling rate

• Computing power

Paradigm shift
• Learn models directly from the data
• Gather data first, ask questions later

Halevy, Norvig, & Pereira (Google) “The unreasonable effectiveness of data,” IEEE intelligent systems, 2009
3
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A new relationship to data (3/3)

Expert system

ResultComputer
Data

Program

Machine learning

ProgramComputer
Data

Results

Tools: statistics, informatics, linear algebra, optimization
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Notation: supervised dataset

Supervised data appends a labels {yi}n
i=1 ∈ (Y)n to the sample set {xi}n

i=1 ∈ (Rd)n

X =



x⊤
1

x⊤
2
...

x⊤
i
...

x⊤
n

← ith sample
is paired with Y =



y⊤
1

y⊤
2
...

y⊤
i
...

y⊤
n

← ith label

• Classification: Y = {1, . . . ,m} and Y stores the class labels

• Regression: Y = Rd and Y stores the latent variables of a relationship x = g(y)
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Classification

Learn a decision function fθ : Rd → Y1 from data X ∈ Rn×d with class labels Y ∈ Y1

Attribute classes to new samples ŷ = f(x)

“Learning the model” is finding θ so that fθ produces the right boundaries
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“Models” in ML

A model is a function
fθ : Rd → Rd′

x 7→ ŷ = fθ(x)
with tunable set of parameters θ

Example: 1D linear function
ŷ = ax + b

with parameters θ = {a, b}

How to chose θ?
7
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Neural networks are models

Multi layer preceptron (MLP):
fθ(x) = ϕout(Woutϕin(Winx + bin) + bout) with θ = {Win, bin,Wout, bout}

ϕ: activation function
e.g., ReLU

Generalizes to more layers

h(k+1) = ϕ(k)(W(k)h(k) + b(k))
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Other neural networks are models suited to some specific data

Signals and Images

• Convolutional neural networks (CNN)
• Vision transformers (ViT)

Data on graphs

• Graph neural networks (GNNs)

Time series

• Residual neural networks (RNN)
• LSTM, GRU
• Transformers

Still, how to chose θ?
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Supervized ML optimization philosophy

minimize
θ ∈ M

E
[
L ( y , f

θ
( x ))

]Optimization problem

Structure

Expectation

Loss

Label Data

Model

Model parameters

• Design prediction model ŷ = fθ(x) and loss L

• Learn the model parameters θ approx. E with data at hand + solve the optimization problem

• Apply model to new data
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Capacity, generalization, over-fitting, ...

Expected performance is evaluated on a training set, does it work on new unseen data ?

Possibility of over-fitting: trade off between the model capacity and generalization
ML literature provides methodologies to properly control this
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Generative models: an even weirder relationship to data

Learning step

ProgramComputer
Data

More data

Sampling step

DataComputer
Program
(Prompt)

Tools: all techniques adopt a statistical point of view x ∼ p(x)
12
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Simple examples of generative modeling

Gaussian distribution x ∼ N (µ,Σ)

p(x) = (2π)−d/2 det(Σ)−1/2 exp

(
−1

2 (x− µ)⊤Σ−1(x− µ)

)

• Learning: estimate parameters µ and Σ

• Generating: sample from N (µ̂, Σ̂)

Gaussian mixture models (GMM)

x|ck ∼ N (µk,Σk) with p(ck) = πk and
K∑

k=1
πk = 1 (1)

Estimating and sampling from this is easy, but limiting
13
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Generative modeling with neural networks

We want to approximate the data density (p.d.f.) pdata by a network pθ

pθ should be learned from samples {xi}n
i=1

This is very difficult

• Assume we learn fθ : Rd → R+, a p.d.f. can be obtrained by normalizing it

pθ(x) =
efθ(x)

Z(θ) with Z(θ) =
∫

efθ(x)dx

we cannot reasonably access Z(θ)

• Even if provided with pθ , how to sample from it efficiently?

All methods are proposals to circumvent this
14
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Some landmarks of modern generative AI

• Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
• 2012: Neural networks are back on the spotlight
• 2014: GAN
• 2015: VAE
• 2017: Transformers
• 2019: Score-based diffusion
• 2020: Diffusion models
• 2021: CLIP
• 2022: Dall-E, Stable Diffusion, ChatGPT
• 2023: Flow-matching
• And things are a bit crazy atm...
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Some landmarks of modern generative AI

• Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
• 2012: Neural networks are back on the spotlight
• 2014: Generative adversarial networks
• 2015: VAE
• 2017: Transformers
• 2019: Score-based diffusion
• 2020: Diffusion models
• 2021: CLIP
• 2022: Dall-E, Stable Diffusion, ChatGPT
• 2023: Flow-matching
• And things are a bit crazy atm...
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Generative adversarial networks

• Generator Gθ : outputs x from input noise z
• Discriminator Dϕ: detects if sample is real or generated
• Learning by min-max game

min
θ

max
ϕ

V(Gθ,Dϕ) = Ex∼pdata [logDϕ(x)]
↗ score real data

+ Ez∼p(z) [log (1−Dϕ(Gθ(z)))]
↘, ↗ score generated data

can be theoretically linked to a distance between pGθ
and pdata! 17
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Generative adversarial networks

Sampling

• Draw random noise z
• Apply model x̂ = Gθ(z)
• Repeat for new samples

In practice

• Very unstable and hard to train
• Improvement brought over the year (WGAN)
• Quite realistic results

18
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Some landmarks of modern generative AI

• Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
• 2012: Neural networks are back on the spotlight
• 2014: GAN
• 2015: Variational auto-encoders
• 2017: Transformers
• 2019: Score-based diffusion
• 2020: Diffusion models
• 2021: CLIP
• 2022: Dall-E, Stable Diffusion, ChatGPT
• 2023: Flow-matching
• And things are a bit crazy atm...
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Auto-encoders

• Encoder E : Rd → Rd′

• Decoder D : Rd′ → Rd

• Learning to compress-decompress

θ∗ = argminθ Ex∼pdata [‖D(E(x))− x‖]

20
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Variational auto encoder

Gaussian VAE

Décodeur



Encodeur



échantillonnage

L(θ, ϕ; x) = Eqϕ(z|x)‖x̂− x‖
reconstruction loss

+ β KL (qϕ(z|x) || pθ(z))
regularizing latent space

Can be theoretically linked to maximum likelihood estimation!
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Sampling from VAE

Sampling

• Draw z ∼ N (0, I)
• Decode x̂ = D(z)
• Repeat for new samples

In practice

• Much more stable than GANs
• Less impressive sometimes (blurry)
• GANs were still “best” sota in 2019
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Some landmarks of modern generative AI

• Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
• 2012: Neural networks are back on the spotlight
• 2014: GAN
• 2015: VAE
• 2017: Transformers
• 2019: Score-based diffusion
• 2020: Diffusion models
• 2021: CLIP
• 2022: Dall-E, Stable Diffusion, ChatGPT
• 2023: Flow-matching
• And things are a bit crazy atm...
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Diffusion models: “a long sequence of small denoisers”

Theoretical links with score estimation and Langevin diffusion

24
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Score estimation

Done by learning to denoise at different noise levels {σℓ}L
ℓ=1

L(θ) = 1
L
∑L

ℓ=1 λ(σℓ)Ex∼pdata,z∼N (0,I)
[
||sθ(x + σℓz, σℓ)− z/σℓ||22

]
25
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Sampling: annealed Langevin dynamics xt−1 ← xt +
ϵ
2sθ(x, σt) + ϵzt

26
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Diffusion models

Sampling

• Draw z ∼ N (0, I)
• Apply the sequence of denoisers
• Repeat for new samples

In practice

• Much more stable than GANs, more detailed than VAE
• State of the art between 2019-2023
• Deeper links with likelihood→ useful for other applications
• Still of use atm

27
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Some landmarks of modern generative AI

• Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
• 2012: Neural networks are back on the spotlight
• 2014: GAN
• 2015: VAE
• 2017: Transformers
• 2019: Score-based diffusion
• 2020: Diffusion models
• 2021: CLIP
• 2022: Dall-E, Stable Diffusion, ChatGPT
• 2023: Flow-matching
• And things are a bit crazy atm...
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Flow matching - goal

We seek a velocity field ut such that
d
dtφt(x) = ut(φt(x)), ∀t ∈ [0, 1] (2)

for which φ0 = π and φ0 = pdata 29
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Diffusion models

Sampling

• Draw z ∼ N (0, I)
• Perform

x̂1 = φt=1(x0) = EDOvθ (x0, 0→ 1)

where EDOvθ (·, t0 → t1) solves (2) from t0 to t1 with vθ(t, ·) instead of ut

• Repeat for new samples

In practice

• Recently outperformed the rest
• Links with optimal transport→ useful for other applications

30
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A quick word on text generation

Architectures dedicated to time-series
• From statistics: auto-regressive models, Markov-chains, etc.
• RNN, LSTM, GRU, Transformers

Texts are time-series!
• Text embedding allow to map text to vectors (word2vec 2013)
• Train models to predict next vectors from input (self-supervized)
• Large corpus to train from (digital library, web scrapping)

• Basis of recent commercial LLMs

Example: GPT means “generative pre-trained transformer”
31
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About text generation and LLMs

Many recent advances in natural language processing (NLP)
Pushed to large scales + commercial release of large language models (LLMs) 2022
Adopted quickly, and re-sold ad nauseam everywhere...

Hopefully, this introduction showed that we should not restrict “AI” to LLMs

Generative modeling is more than generation
• Parameter estimation in complex systems
• Data mining, outlier detection
• Signal and images denoising, restauration
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