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Machine learning

Al: field of computer science that studies or develops “intelligent” software

ML: develop algorithms to solve problems by automatically processing data

or “statistical learning”

A broad field that emerged from:

¢ Informatics computational science, data science
° Applled mathematics statistics, information theory, optimization

o Appllcatlons bio-informatics, signal processing, computer vision
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A new relationship to data (1/3)

The Unreasonable Effectiveness of Mathematics
in the Natural Sciences

E.P. Wigner

Symmetries and Reflections.

Traditionally: data Was m ad e _r_‘o r experts Indiana University Press, Bloomington, Indiana, 1967, pp. 222-237

¢ Scientific question — Experiments — answer to an hypothesis

The IPCC asking “Is global warming due to human activities?”

e Mathematical models — Measures — Inversion

Meteorological data — yield forecasting

e Automated classification through expert rules

Algorithmic transcription of “If # petals > 5, then..”

Wigner (Nobel in ¢), “The unreasonable effectiveness of mathematics in the natural sciences,” Symmetries and Reflections, 1967. 5
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A new relationship to data (2/3)

The Unreasonable

] Effectiveness of Data
Current explosion of

. . Alon Halevy, Peter Norvig, and Fernando Pereira, Google
e Available data sensors, measurements, experiments
e Data dimension pixels, monitored genes, sampling rate

e Computing power

Paradigm shift
e Learn models directly from the data
e Gather data first, ask questions later

Halevy, Norvig, & Pereira (Google) “The unreasonable effectiveness of data,’ IEEE intelligent systems, 2009
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A new relationship to data (3/3)

——» Result

Expert system
Data —p
Computer
Program —>
Machine learning
Data —p
Computer
Results —>

——— Program

Tools: statistics, informatics, linear algebra, optimization



Intro to ML
oooomoooooo

Notation: supervised dataset

Supervised data appends a labels {y;}%, € (J)" to the sample set {x;}7, € (R9)"

%] ] [¥1 ]
x] ya
X= x; | « & sample 's paired with Y = y.iT + 4" label
[ x,, ] I yT |
o Classification: Y = {1,...,m} and Y stores the class labels

e Regression: ) = R? and Y stores the latent variables of a relationship x = g(y)
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Classification

Learn a decision function f, : R — V! from data X € R"*¢ with class labels Y € )!

Attribute classes to new samples 3 = f(x)

g \ =

“Learning the model” is finding # so that fy produces the right boundaries
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“Models” in ML

A model is a function )
fo: RY — R

with tunable set of parameters 6

Example: 1D linear function
y=axr+b

with parameters 6 = {a, b}

How to chose 67
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Neural networks are models

Multi layer preceptron (MLP):
fG (X) — C/)out (Wout(bin(winx 4 bin) 4 bout) Wlth 0 = {‘Nin7 bin7 Wout’ bout}

¢: activation function

e.g., RelU

Generalizes to more layers

h*+D = ¢k (W(k)h(k) + b(k‘))
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Other neural networks are models suited to some specific data

Signals and Images

e Convolutional neural networks (CNN)
e Vision transformers (ViT)

Data on graphs
e Graph neural networks (GNNs)
Time series

e Residual neural networks (RNN)
e LSTM, GRU
o Transformers

Still, how to chose 6?
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Supervized ML optimization philosophy

xpectation
Optimization problem
l w3
minimize L7, B (= ))}

0 ecM
Model parameters
Structure
Model

e Design prediction model § = fo(x) and loss £
e Learn the model parameters 6 approx. E with data at hand + solve the optimization problem

e Apply model to new data

10
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Capacity, generalization, over-fitting, ...

Expected performance is evaluated on a training set, does it work on new unseen data ?

Overfitting Right Fit Underfitting

Classification

Regression

Possibility of over-fitting: trade off between the model capacity and generalization

ML literature provides methodologies to properly control this

"
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Generative models: an even weirder relationship to data

Learning step

Data —p
Computer ——» Program
More data —>
Sampling step
Program —p
8 Computer ——p Data
(Prompt)  —

Tools: all techniques adopt a statistical point of view x ~ p(x)
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Simple examples of generative modeling

Gaussian distribution x ~ NV (u, X)

) = (22 det(Z) 2 exp (5~ )T - ) )

e Learning: estimate parameters p and X
e Generating: sample from N (j, 3)

Gaussian mixture models (GMM)
K

x| ek ~ N (pg, Bk) with p(ex) = and > me =1 (1)
k=1

Estimating and sampling from this is easy, but limiting

Voltage [uV]
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Generative modeling with neural networks

We want to approximate the data density (p.d.f.) pgaia by a network pg

pe should be learned from samples {x;}7 ,

This is very difficult

e Assume we learn fy : R¢ — R*, a p.df. can be obtrained by normalizing it
efo(x)
Z(0)
we cannot reasonably access Z(6)

with  Z() = / el (@ dx

po(x) =

e Even if provided with pg, how to sample from it efficiently?

All methods are proposals to circumvent this
14
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Some landmarks of modern generative Al

e Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
e 2012: Neural networks are back on the spotlight
e 2014 GAN

e 2015 VAE

e 2017: Transformers

e 2019: Score-based diffusion

e 2020: Diffusion models

e 2021: CLIP

e 2022: Dall-E, Stable Diffusion, ChatGPT

e 2023: Flow-matching

e And things are a bit crazy atm...
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Some landmarks of modern generative Al

e Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
e 2012: Neural networks are back on the spotlight
e 2014 Generative adversarial networks

e 2015 VAE

e 2017: Transformers

e 2019: Score-based diffusion

e 2020: Diffusion models

e 2021: CLIP

e 2022: Dall-E, Stable Diffusion, ChatGPT

e 2023: Flow-matching

e And things are a bit crazy atm...
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Generative adversarial networks

Go Dy

e Generator Gy: outputs x from input noise z
e Discriminator D,: detects if sample is real or generated
e Learning by min-max game
min max  V(Gg, Dg) = Expy,, [108 Dy (X)] + Eynp(a) [log (1 — Dy(Go(2)))]

b

" score real data N\, ' score generated data

can be theoretically linked to a distance between pg, and pgata! 17
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Generative adversarial networks

Sampling
e Draw random noise z
e Apply model x = Gy(z)
e Repeat for new samples

In practice

e Very unstable and hard to train
e Improvement brought over the year (WGAN)
e Quite realistic results
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Some landmarks of modern generative Al

e Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
e 2012: Neural networks are back on the spotlight
e 2014 GAN

e 2015: Variational auto-encoders

e 2017: Transformers

e 2019: Score-based diffusion

e 2020: Diffusion models

e 2021: CLIP

e 2022: Dall-E, Stable Diffusion, ChatGPT

e 2023: Flow-matching

e And things are a bit crazy atm...

19



Auto-encoders

a2

1432

Convl
stride=2

e Encoder £ : R4 — RY
e Decoder D : RY — R¢
e Learning to compress-decompress

sz ms2
Txed
3x128 i 3x3x128
P ™l L | 4 L
Conva Reshape
Conv2 St B DeConv3
stide=2 Jd ol srider2
Fatten  FC

DeConv2
stride=2
DeConvl
stride=2

0* = argming  Exop,... [|D(E(2)) — 1]|]

20



Variational auto encoder

Gaussian VAE

échantillonnage

,u:|
Z
o

N (p, oId)

Encodeur
py(2|z)

Décodeur
po(z|2)

(S

LO,¢;0) = Eqqnllz—al +5 KlL(gs(22) || po(2))

reconstruction loss regularizing latent space

Can be theoretically linked to maximum likelihood estimation!

21



Sampling from VAE

Sampling

e Drawz ~ N (0,T)
e Decode x = D(z)

e Repeat for new samples

In practice

e Much more stable than GANs
e Less impressive sometimes (blurry)

o GANs were still “best” sota in 2019

22
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Some landmarks of modern generative Al

e Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
e 2012: Neural networks are back on the spotlight
e 2014 GAN

e 2015: VAE

e 2017: Transformers

e 2019: Score-based diffusion

e 2020: Diffusion models

e 2021: CLIP

e 2022: Dall-E, Stable Diffusion, ChatGPT

e 2023: Flow-matching

e And things are a bit crazy atm...

23
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Diffusion models: “a long sequence of small denoisers”
Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw H@

score function

dx = [£(x, ) — ¢ (t) dt + g(t)dw @

Reverse SDE (noise — data)

Theoretical links with score estimation and Langevin diffusion

24
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Score estimation

Probability density i.i.d. samples Score function
pdata(x) X1,X2,  , Xp SG(X) = vx logpdata(x)

|
>

N
Al
z
\
\
\
\
\

Done by learning to denoise at different noise levels {o,}2

L
LO) = 1301 M00)Exmpyunsno) [||50(x+ 0z, 00) —2/04||3]
25



Sampling: annealed Langevin dynamics x,_;
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Diffusion models

Sampling
e Draw z ~ N(0,1)
e Apply the sequence of denoisers
e Repeat for new samples

In practice

e Much more stable than GANs, more detailed than VAE

e State of the art between 2019-2023

e Deeper links with likelihood — useful for other applications
e Still of use atm

27



Flow matching

Some landmarks of modern generative Al

e Statistical models (GMM, PPCA), Bayesian sampling methods, etc.
e 2012: Neural networks are back on the spotlight
e 2014 GAN

e 2015 VAE

e 2017: Transformers

e 2019: Score-based diffusion

e 2020: Diffusion models

e 2021: CLIP

e 2022: Dall-E, Stable Diffusion, ChatGPT

e 2023: Flow-matching

e And things are a bit crazy atm...

28



Flow matching

Flow matching - goal

SO

))))))))))))).?)»»)»»»“’

We seek a velocity field u; such that
d
@@t(@ = u(p4()), Vte[0,1] (2)

for which oo = 7 and o = paata



Flow matching

Diffusion models

Sampling

e Draw z ~ N (0,1)
e Perform
21 = pi1(29) = EDO™ (29,0 — 1)

where EDO6 (-, ty — t1) solves (2) from ty to ¢ with vg(t, ) instead of w,

e Repeat for new samples

In practice

e Recently outperformed the rest
e Links with optimal transport — useful for other applications

30



A quick word on text generation

Architectures dedicated to time-series

e From statistics: auto-regressive models, Markov-chains, etc.
o RNN, LSTM, GRU, Transformers

Texts are time-series!
e Text embedding allow to map text to vectors (wordavec 2013)
e Train models to predict next vectors from input (self-supervized)
e Large corpus to train from (digital library, web scrapping)
e Basis of recent commercial LLMs

Example: GPT means “generative pre-trained transformer”

31



About text generation and LLMs

Many recent advances in natural language processing (NLP)
Pushed to large scales + commercial release of large language models (LLMs) 2022

Adopted quickly, and re-sold ad nauseam everywhere...

Hopefully, this introduction showed that we should not restrict “Al” to LLMs
Generative modeling is more than generation

e Parameter estimation in complex systems

e Data mining, outlier detection

e Signal and images denoising, restauration

32
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