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Motivations



Modele prédictif/modéle génératif

Modélisation décisionnelle : prédire une variable y a partir d'une
observation x

= modélisation de la probabilité conditionnelle p(y|x)
« Exemple : connaissant une image, quelle est la race du chien
représenté?

Modele génératif : produire une observation x qui ressemble aux
observations x
—> modélisation de la probabilité p(x)

« Exemple : connaissant un ensemble d'images de chien, produire
une nouvelle image de chien.



Génération de texte

Produire du texte qui ressemble a, produire du
texte a partir d’'une accroche ou de voix. (. S

Ba
Applications @

+ Agents conversationnels

+ Traduction automatique

- Reporting @@
=0

+ Marketing

® Propagande
® Désinformation

Exemples : BERT, GPT, LLaMA, Whisper...
— RCP217




Synthése vocale

Produire un son, généralement conditionné a du
texte ou a un autre son.

Applications

+ Text-to-speech

* Robots « parlants »

+ Doublage

+ Jeux vidéo

* Musique

® Usurpation d'identité
® Désinformation

Exemples : MusicLM, WaveNet, PaddleSpeech.



Synthese d'image

Produire une image qui ressemble a, qui contient
X

Applications
« Effets spéciaux
+ Simulations

+ Retouche d'image

® Usurpation d'identité

https:

@ DéSinformation //thispersondoesnotexist.com/

Exemples : Dall-E, Midjourney, StableDiffusion.

an armchalr in the shape of an avocado [..

é‘ A = https://openai.com/blog/dall-e/


https://thispersondoesnotexist.com/
https://thispersondoesnotexist.com/
https://openai.com/blog/dall-e/

Cadre formel de la modélisation générative

Considérons deux variables aléatoires X et Y:

+ X est la variable explicative (I'observation),
+ Yest lavariable a expliquer (la classe).



Cadre formel de la modélisation générative

Considérons deux variables aléatoires X et Y:

+ X est la variable explicative (I'observation),
+ Yest lavariable a expliquer (la classe).

Modele discriminatif

On cherche a déterminer les valeurs que peut prendre Y en fonction
de X, c’est-a-dire la probabilité conditionnelle :

P(Y]X)

Connaissant X, quelle sont les valeurs probables pour Y?



Cadre formel de la modélisation générative

Considérons deux variables aléatoires X et Y:

+ X est la variable explicative (I'observation),
+ Yest lavariable a expliquer (la classe).

Modele discriminatif

On cherche a déterminer les valeurs que peut prendre Y en fonction
de X, c’est-a-dire la probabilité conditionnelle :

P(Y]X)

Connaissant X, quelle sont les valeurs probables pour Y?

En pratique
X et Y'sont généralements a valeurs dans un ensemble discret
(mais de grande dimension).



Un exemple

I T2 ‘ Yy
Considérons le jeu de données suivant : 0.5 1.0
00 1210
0.5 0.0 |1

Probabilités conditionelles
. m | Ply=0lz1,2) P(y=1|a1,2)

0.5 -1. 1.0 0.0
0.0 -1.2 1.0 0.0
-0.5 0.0 0.0 1.0

Modele discriminatif paramétrisé par 6

+ minimisation de la KL entre les prédictions Y = Py( Y| X) et

P(Y]X)
Lxar, = P(y = 01X) log =g + Py = 1|X) log pi=irg




Limites des modeles discriminatifs

+ Le modele discriminatif apprend directement P( Y| X)
+ On classe les observations sans savoir « pourquoi »

Avec un modele discriminatif, il est impossible de répondre a la
question :

A quoi ressemble une observation de la classe y?

Le modele discriminatif apprend les frontiéres entre classes, mais
pas la forme des classes.




Modele génératif

Considérons deux variables aléatoires X et Y:

+ X est la variable explicative (I'observation),
+ Yestlavariable a expliquer (la classe).



Modele génératif

Considérons deux variables aléatoires X et Y:

+ X est la variable explicative (I'observation),
+ Yestlavariable a expliquer (la classe).

Modele génératif
On cherche a déterminer quelles valeurs X sont susceptibles d’avoir
provoqué Y, c'est-a-dire :

P(X]Y)
ou, si P(Y) est connue, la probabilité conjointe d’avoir X et Y:

P(X, Y) = P(X]Y) - B(Y) (= B(Y]X) - P(X))



Lien entre modéle discriminatif et modéle génératif

On peut transformer un modele génératif en modele discriminatif en
utilisant le théoreme de Bayes :

Formule de Bayes

PX]Y) - P(Y)

P(YX) = =g 5

Dans cette formulation, P(Y) est I'a priori bayésien.

10



Lien entre modéle discriminatif et modéle génératif

On peut transformer un modele génératif en modele discriminatif en
utilisant le théoreme de Bayes :

Formule de Bayes

Dans cette formulation, P(Y) est I'a priori bayésien.

Transformation

Si je connais une approximation de P(X]|Y) alors je peux construire
le classifieur :

argmaxP(Y = ;| X) = argmaxP(X|Y = y;) - P(Y = ;)

10



Unexmnph

X

4 points :

N
HOOO‘Q

2
Probabilité d'appartenir a la classe y sachant z: P( Y] X)
\y:0 y=1

1. 0.
0.5 0.5

= 10
z=2.0

Probabilité d'avoir zet y : P(X, Y) = P(Y]X)P(X)
‘ y=0 y=1

0.5 0.

025 0.25

3= 10
rz=2.0




Avantages des modéles génératifs

Génération
La connaissance de P(X, Y) permet de produire de nouvelles
données en échantillonnant dans la distribution jointe.

12



Avantages des modéles génératifs

Génération
La connaissance de P(X, Y) permet de produire de nouvelles
données en échantillonnant dans la distribution jointe.

Compréhension

La connaissance de P(X]|Y) permet de comprendre quelles données
z sont les plus plausibles pour une catégorie y donnée.
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Avantages des modéles génératifs

Génération
La connaissance de P(X, Y) permet de produire de nouvelles
données en échantillonnant dans la distribution jointe.

Compréhension

La connaissance de P(X]|Y) permet de comprendre quelles données
z sont les plus plausibles pour une catégorie y donnée.

Combinaison

Si j'ajoute une classe y,,1, il me suffit d'estimer P(X|Y = y,,+1) pour
avoir la connaissance de P(X| YU {y,+1}). Autrement dit, il est facile
d’enrichir le modéle a posteriori.

12



Points de difficultés

Un modele discriminatif estime directement P( Y| X). Cette approche
directe tend en pratique a étre plus simple et plus performante en
classification.

En général, X est de grande dimension. Par conséquent, P(X|Y)
peut étre difficile a estimer dans un modéle génératif.

13



Un modéle M renvoie pour une donnée une probabilité p. Ce modéle
est-il génératif ou discriminatif ?

1. 1. Discriminatif
2. 2. Génératif

3. 3. 0n ne peut pas savoir.

14



Lien avec I'estimation de densité



Estimation de densité

Densité de probabilité
On appelle densité de probabilité de la variable aléatoire X a valeurs
dans R? une fonction ftelle que, pour tout pavé A ¢ R¢:

P(X € A) = /A flz)de

Estimation de densité

A partir de (z1, ..., z,) observations de X, on cherche f:
lf-fl<e.

— on modélise P(X)

— idem a un modele génératif (sans I'aspect conditionnel)

15



Méthode des noyaux

Méthode des noyaux
Soient z1, ..., z, des observations de X et ® une fonction noyau.

On définit la densité approchée par :

:c%f Z@xzz

c'est-a-dire la somme des noyaux centrés sur chaque observation.
La méthode des noyaux donne une estimation de densité

non-paramétrique :
— nombre de “paramétres” augmente avec la quantité de données

16



Le modéle de mélange gaussien : un modéle génératif

La densité frecherchée est une somme de gaussiennes.

Modeéle de mélange gaussien
On cherche une densité de la forme :

m
Jao(®) = ai®i(x[6;)
=1
« @, une loi normale paramétrisée par 6,
* «; le poids de la composante j, avec ) . a; = 1,

+ mle nombre de composantes du mélange.

Hypothése raisonnable car pour toute variable aléatoire X, il existe
une séquence X1, Xs, ..., X, de mélange gaussien tel que X,, — /.



Le modéle de mélange gaussien : un modéle génératif

La densité frecherchée est une somme de gaussiennes.

Modele de mélange gaussien
On cherche une densité de la forme :

m

fa€ ZO(CD X‘Q

« @, une loi normale paramétrisée par 6,
* «a; le poids de la composante 4 avec ) . «o; = 1,
+ m |le nombre de composantes du mélange.

Modéle paramétrique : on cherche les paramétres 6; des gaussiennes
qui minimisent I'erreur. Leur nombre ne dépend pas du nombre
d'observations.



Mélange gaussien : génération

Une fois les paramétres du mélange fixés, on peut échantillonner la
nouvelle variable aléatoire X de probabilité :

P(X) = 3 ail (i, )
=1

Il est également possible d’échantillonner sur une composante (= une
classe) spécifique suivant la loi :

P(X]Y = 4) = N(s, 04)

18



Mélange gaussien : classification

La classe de z est la valeur de i pour laquelle P(Y = 4| X = z) est la

plus élevée. Par le théoreme de Bayes :

P(X=2Y=1)-P(Y=1)
P(X = 1)

=argmax [logP(X = 7| Y = 4) + log P(Y = i)]

argmax [log P(Y = i{| X = z)] = argmax |log

= arg max [log ®;(2]0;) + log o]
(M
ou «; et §; sont respectivement le poids et les paramétres de la 7
composante du mélange.
Interprétation
La classe de z est la composante pour laquelle z a la plus haute
(log) vraisemblance.

19



Chaines de Markov



Chaine de Markov

Définition

Un processus de Markov (a temps discret) est une séquence
(Xi)1<i<... oU X est une variable aléatoire qui prend ses valeurs dans
un espace d'états E. On dit que X, est I'état du processus a l'instant
n.

Si | E| est fini, on parle de chaine de Markov.

20



Chaine de Markov

Définition
Un processus de Markov (a temps discret) est une séquence
(Xi)1<i<... oU X est une variable aléatoire qui prend ses valeurs dans

un espace d'états E. On dit que X, est I'état du processus a l'instant
n.

Si | E| est fini, on parle de chaine de Markov.

Propriété de Markov

La prédiction du futur ne nécessite pas de connaitre le passé,
seulement le présent :

P(Xnt1 = | Xo = d0, X1 = i1, ..., Xy = 1) = P(Xpy1 = j| X = 9)
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Chaine de Markov

Définition
Un processus de Markov (a temps discret) est une séquence
(Xi)1<i<... oU X est une variable aléatoire qui prend ses valeurs dans

un espace d'états E. On dit que X, est I'état du processus a l'instant
n.

Si | E| est fini, on parle de chaine de Markov.

Propriété de Markov

La prédiction du futur ne nécessite pas de connaitre le passé,
seulement le présent :

P(Xnt1 = | Xo = d0, X1 = i1, ..., Xy = 1) = P(Xpy1 = j| X = 9)

Modele autorégressif analogue a AR(1)

20



Probabilités de transition

Généralement, on suppose que la probabilité de passer d’'un état i a
un état jne dépend pas du temps :

P(Xpi1 = j1Xn = i) = P(Xp, = jl Xn_1 = )

On note
piJ = P(Xl :]|XQ = Z)

la probabilité de transition de I'état 7 a I'état ;.

Si n est entier, on peut construire M = (p; j)1<i<n,1<j<n» |a matrice de
transition.

21



La chaine de Markov comme modéle génératif

Estimation de la matrice de transition
A partir de séquences observées, on peut estimer la matrice de
transition P(X; = j| X;—1 = 7).

+ Approche fréquentiste
+ on compte les nombres d'occurrences des paires d'états (7, j)

Echantillonnage
Connaissant X, et M, on peut générer la séquence X7, Xs,..., X, la
plus probable :

¢ Xt =X
* achaque t, Xy, = arg max; p; ; (déterministe)
+ on peut aussi échantillonner de fagon stochastique en pondérant
selon p;;

22



Chaine de Markov d'ordre %

On parle de chaine de Markov d'ordre % lorsque la prédiction du futur
ne nécessite pas de connaitre plus de k pas de temps dans le passé :

]P)(Xn-‘rl = .]‘XO =gy, Xp = Z) = P(Xn+1 = 7|XIL =4, Xpg= i?l,—k) .

Dans ce cas, la matrice de transition est multidimensionnelle et on
cherche a estimer

Diyvig,oin = P(X = | Xem1 = @1, Xeo = G2, ..., X =11) .

Attention

La complexité du probléeme est exponentielle selon k. Si le cardinal
de I'espace d'états E est grand, la matrice de transition compléte est
énorme (on peut parfois s’en sortir si beaucoup de transitions sont
impossibles, i.e. p; ; = 0).

23



Génération de texte

Une phrase est une séquence de mots.

+ X;:le # mot de la phrase,
« I/ nmots du dictionnaire,

« M : matrice de transition n x n.

Modélisation par une chaine de Markov
On suppose que l'occurrence d'un mot ne dépend que des k mots qui
le précedent (on s'intéresse aux transitions dans les « k-grammes »).

— chaine de Markov d'ordre %

24



Jeu de données (“corpus”)
+ «Aliestici.»
+ «Ali aime le bleu. »
+ «Le vélo d’Ali est bleu. »
» «QuiestAli?»

“n

Vocabulaire : E = {Ali, est, ici, “.", aime, le, bleu, vélo, d’, qui, “?"}

Bi-grammes commencant par Ali :
« “Ali, est” (2 fois),
« “Ali, aime” (1 fois),
« “Ali,?" (1 fois).

“n

Dij ‘ Ali est ci

Ai | 0 05 0 0 025 O 0 0 0 0 025

aime le bleu vélo d qui “?

25



Considérons le corpus ou les suites de mots :

* (1) «j'aime l'intelligence artificielle »

* (2) « machine learning »

n‘apparaissent jamais.

En utilisant une chaine de Markov (d’ordre 1), laquelle de ces
propositions est vrai :

1. Je peux générer (1) et (2)

2. Je peux générer (1) mais pas (2)
3. Je peux générer (2) mais pas (1)
4. Je ne peux générer ni (1), ni (2)

26



Auto-encodeurs



Soit une variable aléatoire X a valeurs dans R™. Un réseau de
neurones artificiels auto-encodeur modélise une fonction # telle
que:

[H(z) — = < e
L'auto-encodeur se décompose en deux parties :

+ un encodeur, i.e. une fonction £ : R™® — RY,
« un décodeur, i.e. une fonction D : R¢ — R,

aveCH =Do&.
Lobjectif de déterminer £ et D tels que D o £ ~ 1d.

Réduction de dimension
En principe, d < n: I'encodeur réduit la dimension de z.

On note z = £(x) le code associé a z.
27



Apprentissage

L'auto-encodeur #H apprend a reconstruire I'entrée z. On cherche donc
les poids 6 tels que :

0" = argmin L(z,7) = [|D(E(2)) — 7]
ou £ est une fonction de co(t de régression (typiquement, erreur
quadratique moyenne ou erreur absolue).

Encodeur
L'encodeur réduit la dimension de z.

Décodeur
Le décodeur reconstruit x a partir du code réduit z.

28



Structure visuelle

decoder
encoder

29



Exemple sur MNIST

S|o]-]/14

Encodeur : Décodeur :
« FC (28 x 28,1024) + RelLU * FC (128,256) + ReLU
« FC (1024, 256) + RelU * FC (256,1024) + ReLU

+ FC (256, 128) + FC (1024, 28 x 28)

30



Auto-encodeur entierement connecté a une couche

Le perceptron a une seule couche cachée forme un auto-encodeur
simple :

avec W, W les matrices de poids, b, V' les vecteurs de biais et o la
non-linéarité.
Lien avec I'analyse en composantes principales

Dans le cas ou o = Id, alors l'auto-encodeur réalise une opération
analogue a I'analyse en composantes principales (sans
l'orthogonalité).

31



Intéréet des auto-encodeurs

Les auto-encodeurs réalisent une réduction de dimension avec perte
minimale d’information.

Comparaison avec I'analyse en composantes principales
* Sioc =1d, AE ~ ACP,
+ Sinon, AE =~ kernel-ACP ou le noyau est appris automatiquement.

LAE non-linéaire est plus riche que I'ACP.

32



Intéréet des auto-encodeurs

Les auto-encodeurs réalisent une réduction de dimension avec perte
minimale d'information.

Comparaison d’une projection par ACP (a gauche) et par auto-encodeur + t-SNE (a
droite) sur MNIST.

32



Auto-encodeurs et modeles génératifs

L'espace des codes Z = R¢ est appelé espace latent.
Génération
Le décodeur D est un modéle génératif P(X]z).

— Echantillonner dans Z permet de produire des observations
z e R™

33



Espace latent

Définition
Un espace latent est un espace caché qui explique bien les données.
Des différences importantes dans I'espace des observations

peuvent étre expliquée par de faibles variations dans I'espace latent
du fait de régularités (par exemple, méme sémantique).

Exemples

Plongements lexicaux (Word2Vec...), feature maps d'un CNN, espace
intermédiaire d’'un auto-encodeur, projection par t-SNE.

34



Mélanges

Interpolation dans I'espace latent
Considérons deux observations z; et z; et leurs codes z; et 2. Elles
peuvent étre par exemple de classes différentes y; et 1.

Il est possible de “reconstruire” une observation z a mi-chemin en
reconstruisant le code moyen :

Z‘moy:D(zl_;Z2)

Plus généralement, il est possible d'interpoler linéairement entre ;
et o .

To=D(a-z1+(1—a)-2)

a=0.0 a=0.1 a=02 a=0.3 a=04 a=0.6 a=07 a=08 a=0.9 a=1.0

35



Limites des auto-encodeurs

+ On ne connait pas la distribution P(z) qui sous-tend I'espace
latent Z

+ on ne peut donc pas échantillonner directement
P(X) = P(X]z) - P(2)
+ (on pourrait I'estimer)

36



Limites des auto-encodeurs

+ On ne connait pas la distribution P(z) qui sous-tend I'espace
latent Z

+ on ne peut donc pas échantillonner directement
P(X) = P(X]z) - P(2)
+ (on pourrait I'estimer)

* Quelle dimension d donner a Z?
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Limites des auto-encodeurs

+ On ne connait pas la distribution P(z) qui sous-tend I'espace
latent Z
+ on ne peut donc pas échantillonner directement
P(X) = P(X]z) - P(2)
+ (on pourrait I'estimer)

* Quelle dimension d donner a Z?

+ Lencodeur n'est généralement pas injectif : deux observations
71 # 1 peuvent avoir des projections z; ~ z
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Limites des auto-encodeurs

+ On ne connait pas la distribution P(z) qui sous-tend I'espace
latent Z

+ on ne peut donc pas échantillonner directement
P(X) = P(X]z) - P(2)
+ (on pourrait I'estimer)

* Quelle dimension d donner a Z?

+ Lencodeur n'est généralement pas injectif : deux observations
71 # 1 peuvent avoir des projections z; ~ z

+ Aucune garantie que les codes z se situant dans des « trous »
dans Z (zones de faible densité) aient du sens une fois décodés.
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Quel est I'avantage principal d'un auto-encodeur par rapport a une
analyse en composantes principales?

1. Lauto-encodeur est plus rapide

2. Lauto-encodeur a une plus grande capacité

3. Lauto-encodeur a moins de parametres

4. L'auto-encodeur a une meilleure reconstruction

37
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