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Motivations



Modèle prédictif/modèle génératif

Modélisation décisionnelle : prédire une variable y à partir d’une
observation x

=⇒ modélisation de la probabilité conditionnelle p(y|x)
• Exemple : connaissant une image, quelle est la race du chien
représenté?

Modèle génératif : produire une observation x̃ qui ressemble aux
observations x

=⇒ modélisation de la probabilité p(x)
• Exemple : connaissant un ensemble d’images de chien, produire
une nouvelle image de chien.

2



Génération de texte

Produire du texte qui ressemble à, produire du
texte à partir d’une accroche ou de voix.

Applications

• Agents conversationnels

• Traduction automatique

• Reporting

• Marketing

Propagande

Désinformation

Exemples : BERT, GPT, LLaMA, Whisper…
=⇒ RCP217
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Synthèse vocale

Produire un son, généralement conditionné à du
texte ou à un autre son.

Applications

• Text-to-speech

• Robots « parlants »

• Doublage

• Jeux vidéo

• Musique

Usurpation d’identité

Désinformation

Exemples : MusicLM, WaveNet, PaddleSpeech.
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Synthèse d’image

Produire une image qui ressemble à, qui contient
X

Applications

• Effets spéciaux

• Simulations

• Retouche d’image

Usurpation d’identité

Désinformation

Exemples : Dall-E, Midjourney, StableDiffusion.

https:

//thispersondoesnotexist.com/

https://openai.com/blog/dall-e/
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Cadre formel de la modélisation générative

Considérons deux variables aléatoires X et Y :

• X est la variable explicative (l’observation),

• Y est la variable à expliquer (la classe).

Modèle discriminatif
On cherche à déterminer les valeurs que peut prendre Y en fonction
de X, c’est-à-dire la probabilité conditionnelle :

P(Y|X)

Connaissant X, quelle sont les valeurs probables pour Y?

En pratique
X et Y sont généralements à valeurs dans un ensemble discret
(mais de grande dimension).
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Un exemple

Considérons le jeu de données suivant :

x1 x2 y

0.5 -1. 0
0.0 -1.2 0
-0.5 0.0 1

Probabilités conditionelles

x1 x2 P(y = 0|x1, x2) P(y = 1|x1, x2)

0.5 -1. 1.0 0.0
0.0 -1.2 1.0 0.0
-0.5 0.0 0.0 1.0

Modèle discriminatif paramétrisé par θ

• minimisation de la KL entre les prédictions Ŷ = Pθ(Y|X) et
P(Y|X)

LKL = P(y = 0|X) log P(y=0|X)
P(ŷ=0|X) + P(y = 1|X) log P(y=1|X)

P(ŷ=1|X)
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Limites des modèles discriminatifs

• Le modèle discriminatif apprend directement P(Y|X)

• On classe les observations sans savoir « pourquoi »

Limite
Avec un modèle discriminatif, il est impossible de répondre à la
question :

À quoi ressemble une observation de la classe y?

Le modèle discriminatif apprend les frontières entre classes, mais
pas la forme des classes.
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Modèle génératif

Considérons deux variables aléatoires X et Y :

• X est la variable explicative (l’observation),

• Y est la variable à expliquer (la classe).

Modèle génératif
On cherche à déterminer quelles valeurs X sont susceptibles d’avoir
provoqué Y, c’est-à-dire :

P(X|Y)

ou, si P(Y) est connue, la probabilité conjointe d’avoir X et Y :

P(X,Y) = P(X|Y) · P(Y) (= P(Y|X) · P(X))
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Lien entre modèle discriminatif et modèle génératif

On peut transformer un modèle génératif en modèle discriminatif en
utilisant le théorème de Bayes :

Formule de Bayes

P(Y|X) =
P(X|Y) · P(Y)

P(X)

Dans cette formulation, P(Y) est l’a priori bayésien.

Transformation
Si je connais une approximation de P(X|Y) alors je peux construire
le classifieur :

argmax
i

P(Y = yi|X) = argmax
i

P(X|Y = yi) · P(Y = yi)

=⇒ P(X) ne dépend pas de yi et n’intervient pas dans l’argmax !

10



Lien entre modèle discriminatif et modèle génératif

On peut transformer un modèle génératif en modèle discriminatif en
utilisant le théorème de Bayes :

Formule de Bayes

P(Y|X) =
P(X|Y) · P(Y)

P(X)

Dans cette formulation, P(Y) est l’a priori bayésien.

Transformation
Si je connais une approximation de P(X|Y) alors je peux construire
le classifieur :

argmax
i

P(Y = yi|X) = argmax
i

P(X|Y = yi) · P(Y = yi)

=⇒ P(X) ne dépend pas de yi et n’intervient pas dans l’argmax !

10



Un exemple

4 points :

x y

1. 0
1. 0
2. 0
2. 1

Probabilité d’appartenir à la classe y sachant x : P(Y|X)

y = 0 y = 1

x = 1.0 1. 0.
x = 2.0 0.5 0.5

Probabilité d’avoir x et y : P(X,Y) = P(Y|X)P(X)

y = 0 y = 1

x = 1.0 0.5 0.
x = 2.0 0.25 0.25
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Avantages des modèles génératifs

Génération
La connaissance de P(X,Y) permet de produire de nouvelles
données en échantillonnant dans la distribution jointe.

Compréhension
La connaissance de P(X|Y) permet de comprendre quelles données
x sont les plus plausibles pour une catégorie y donnée.

Combinaison
Si j’ajoute une classe yn+1, il me suffit d’estimer P(X|Y = yn+1) pour
avoir la connaissance de P(X|Y∪ {yn+1}). Autrement dit, il est facile
d’enrichir le modèle a posteriori.

12



Avantages des modèles génératifs

Génération
La connaissance de P(X,Y) permet de produire de nouvelles
données en échantillonnant dans la distribution jointe.

Compréhension
La connaissance de P(X|Y) permet de comprendre quelles données
x sont les plus plausibles pour une catégorie y donnée.

Combinaison
Si j’ajoute une classe yn+1, il me suffit d’estimer P(X|Y = yn+1) pour
avoir la connaissance de P(X|Y∪ {yn+1}). Autrement dit, il est facile
d’enrichir le modèle a posteriori.

12



Avantages des modèles génératifs

Génération
La connaissance de P(X,Y) permet de produire de nouvelles
données en échantillonnant dans la distribution jointe.

Compréhension
La connaissance de P(X|Y) permet de comprendre quelles données
x sont les plus plausibles pour une catégorie y donnée.

Combinaison
Si j’ajoute une classe yn+1, il me suffit d’estimer P(X|Y = yn+1) pour
avoir la connaissance de P(X|Y∪ {yn+1}). Autrement dit, il est facile
d’enrichir le modèle a posteriori.

12



Points de difficultés

Performance des modèles discriminatifs
Un modèle discriminatif estime directement P(Y|X). Cette approche
directe tend en pratique à être plus simple et plus performante en
classification.

Dimensionalité
En général, X est de grande dimension. Par conséquent, P(X|Y)

peut être difficile à estimer dans un modèle génératif.
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Quiz

Un modèle M renvoie pour une donnée une probabilité p. Ce modèle
est-il génératif ou discriminatif ?

1. 1. Discriminatif

2. 2. Génératif

3. 3. On ne peut pas savoir.
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Lien avec l’estimation de densité



Estimation de densité

Densité de probabilité
On appelle densité de probabilité de la variable aléatoire X à valeurs
dans Rd une fonction f telle que, pour tout pavé A ⊂ Rd :

P(X ∈ A) =

∫
A

f(x)dx

Estimation de densité

À partir de (x1, . . . , xn) observations de X, on cherche f̂ :

∥̂f − f∥ ≤ ϵ .

→ on modélise P(X)

→ idem à un modèle génératif (sans l’aspect conditionnel)

15



Méthode des noyaux

Méthode des noyaux
Soient x1, . . . , xn des observations de X et Φ une fonction noyau.

On définit la densité approchée par :

x → f̂(x) = 1
n

n∑
i=1

Φ(x, xi)

c’est-à-dire la somme des noyaux centrés sur chaque observation.

La méthode des noyaux donne une estimation de densité
non-paramétrique :
→ nombre de “paramètres” augmente avec la quantité de données
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Le modèle de mélange gaussien : un modèle génératif

Hypothèse
La densité f recherchée est une somme de gaussiennes.

Modèle de mélange gaussien
On cherche une densité de la forme :

f̂α,θ(x) =
m∑

i=1
αiΦi(x|θi)

• Φi une loi normale paramétrisée par θi,

• αi le poids de la composante i, avec
∑

i αi = 1,
• m le nombre de composantes du mélange.

Hypothèse raisonnable car pour toute variable aléatoire X, il existe
une séquence X1,X2, . . . ,Xn de mélange gaussien tel que Xn → f.
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Le modèle de mélange gaussien : un modèle génératif
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Mélange gaussien : génération

Une fois les paramètres du mélange fixés, on peut échantillonner la
nouvelle variable aléatoire X̂ de probabilité :

P(X̂) =

m∑
i=1

αiN (µi, σi)

Il est également possible d’échantillonner sur une composante (= une
classe) spécifique suivant la loi :

P(X|Y = i) = N (µi, σi)
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Mélange gaussien : classification

La classe de x est la valeur de i pour laquelle P(Y = i|X = x) est la
plus élevée. Par le théorème de Bayes :

argmax
i

[logP(Y = i|X = x)] = argmax
i

[
log

P(X = x|Y = i) · P(Y = i)
P(X = x)

]
= argmax

i
[logP(X = x|Y = i) + log P(Y = i)]

= argmax
i

[log Φi(x|θi) + logαi]

(1)
où αi et θi sont respectivement le poids et les paramètres de la ie
composante du mélange.

Interprétation
La classe de x est la composante pour laquelle x a la plus haute
(log) vraisemblance.
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Chaînes de Markov



Chaîne de Markov

Définition
Un processus de Markov (à temps discret) est une séquence
(Xi)1≤i≤... où X est une variable aléatoire qui prend ses valeurs dans
un espace d’états E. On dit que Xn est l’état du processus à l’instant
n.

Si |E| est fini, on parle de chaîne de Markov.

Propriété de Markov
La prédiction du futur ne nécessite pas de connaître le passé,
seulement le présent :

P(Xn+1 = j|X0 = i0,X1 = i1, . . . ,Xn = i) = P(Xn+1 = j|Xn = i)

Modèle autorégressif analogue à AR(1)
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Probabilités de transition

Homogénéité
Généralement, on suppose que la probabilité de passer d’un état i à
un état j ne dépend pas du temps :

P(Xn+1 = j|Xn = i) = P(Xn = j|Xn−1 = i)

On note
pi,j := P(X1 = j|X0 = i)

la probabilité de transition de l’état i à l’état j.

Si n est entier, on peut construire M = (pi,j)1≤i≤n,1≤j≤n la matrice de
transition.
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La chaîne de Markov comme modèle génératif

Estimation de la matrice de transition

À partir de séquences observées, on peut estimer la matrice de
transition P(Xt = j|Xt−1 = i).

• Approche fréquentiste
• on compte les nombres d’occurrences des paires d’états (i, j)

Échantillonnage
Connaissant X0 et M, on peut générer la séquence X1,X2, . . . ,Xn la
plus probable :

• Xt = i
• à chaque t, Xt+1 = argmaxj pi,j (déterministe)

• on peut aussi échantillonner de façon stochastique en pondérant
selon pi,j
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Chaîne de Markov d’ordre k

On parle de chaîne de Markov d’ordre k lorsque la prédiction du futur
ne nécessite pas de connaître plus de k pas de temps dans le passé :

P(Xn+1 = j|X0 = i0, . . . ,Xn = i) = P(Xn+1 = j|Xn = i, . . . ,Xn−k = in−k) .

Dans ce cas, la matrice de transition est multidimensionnelle et on
cherche à estimer

pi1,i2,...,ik = P(Xt = ik|Xt−1 = ik−1,Xt−2 = ik−2, . . . ,Xt−k = i1) .

Attention
La complexité du problème est exponentielle selon k. Si le cardinal
de l’espace d’états E est grand, la matrice de transition complète est
énorme (on peut parfois s’en sortir si beaucoup de transitions sont
impossibles, i.e. pi,j = 0).
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Génération de texte

Une phrase est une séquence de mots.

• Xi : le ie mot de la phrase,

• E : n mots du dictionnaire,

• M : matrice de transition n × n.

Modélisation par une chaîne de Markov
On suppose que l’occurrence d’un mot ne dépend que des k mots qui
le précèdent (on s’intéresse aux transitions dans les « k-grammes »).

=⇒ chaîne de Markov d’ordre k
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Exemple

Jeu de données (“corpus”)

• « Ali est ici. »

• « Ali aime le bleu. »

• « Le vélo d’Ali est bleu. »

• « Qui est Ali ? »

Vocabulaire : E = {Ali, est, ici, “.”, aime, le, bleu, vélo, d’, qui, “ ?”}

Bi-grammes commençant par Ali :

• “Ali, est” (2 fois),
• “Ali, aime” (1 fois),
• “Ali, ?” (1 fois).

pi,j Ali est ici “.” aime le bleu vélo d’ qui “?”

Ali 0 0.5 0 0 0.25 0 0 0 0 0 0.25
… …
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Quiz

Considérons le corpus où les suites de mots :

• (1) « j’aime l’intelligence artificielle »

• (2) « machine learning »

n’apparaîssent jamais.

En utilisant une chaîne de Markov (d’ordre 1), laquelle de ces
propositions est vrai :

1. Je peux générer (1) et (2)

2. Je peux générer (1) mais pas (2)

3. Je peux générer (2) mais pas (1)

4. Je ne peux générer ni (1), ni (2)
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Auto-encodeurs



Définition

Soit une variable aléatoire X à valeurs dans Rn. Un réseau de
neurones artificiels auto-encodeur modélise une fonction H telle
que :

∥H(x)− x∥ ≤ ϵ

L’auto-encodeur se décompose en deux parties :

• un encodeur, i.e. une fonction E : Rn → Rd,
• un décodeur, i.e. une fonction D : Rd → Rn.

avec H = D ◦ E .

L’objectif de déterminer E et D tels que D ◦ E ≈ Id.
Réduction de dimension
En principe, d ≤ n : l’encodeur réduit la dimension de x.

On note z = E(x) le code associé à x.
27



Apprentissage

L’auto-encodeur H apprend à reconstruire l’entrée x. On cherche donc
les poids θ tels que :

θ∗ = argmin
θ

L(x, x̂) = ∥D(E(x))− x∥

où L est une fonction de coût de régression (typiquement, erreur
quadratique moyenne ou erreur absolue).

Encodeur
L’encodeur réduit la dimension de x.

Décodeur
Le décodeur reconstruit x à partir du code réduit z.
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Structure visuelle
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Exemple sur MNIST

Encodeur :

• FC (28 × 28, 1024) + ReLU

• FC (1024, 256) + ReLU

• FC (256, 128)

Décodeur :

• FC (128, 256) + ReLU

• FC (256, 1024) + ReLU

• FC (1024, 28 × 28)
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Auto-encodeur entièrement connecté à une couche

Le perceptron à une seule couche cachée forme un auto-encodeur
simple :

z = σ(Wx + b)

x̂ = σ′(W′z + b′)

avec W,W′ les matrices de poids, b, b′ les vecteurs de biais et σ la
non-linéarité.

Lien avec l’analyse en composantes principales
Dans le cas où σ = Id, alors l’auto-encodeur réalise une opération
analogue à l’analyse en composantes principales (sans
l’orthogonalité).

31



Intérêt des auto-encodeurs

Les auto-encodeurs réalisent une réduction de dimension avec perte
minimale d’information.

Comparaison avec l’analyse en composantes principales

• Si σ = Id, AE ≈ ACP,

• Sinon, AE ≈ kernel-ACP où le noyau est appris automatiquement.

L’AE non-linéaire est plus riche que l’ACP.
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Intérêt des auto-encodeurs

Les auto-encodeurs réalisent une réduction de dimension avec perte
minimale d’information.

Comparaison d’une projection par ACP (à gauche) et par auto-encodeur + t-SNE (à
droite) sur MNIST.
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Auto-encodeurs et modèles génératifs

L’espace des codes Z = Rd est appelé espace latent.

Génération
Le décodeur D est un modèle génératif P(X|z).

=⇒ Échantillonner dans Z permet de produire des observations
x ∈ Rn.
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Espace latent

Définition
Un espace latent est un espace caché qui explique bien les données.

Des différences importantes dans l’espace des observations
peuvent être expliquée par de faibles variations dans l’espace latent
du fait de régularités (par exemple, même sémantique).

Exemples
Plongements lexicaux (Word2Vec…), feature maps d’un CNN, espace
intermédiaire d’un auto-encodeur, projection par t-SNE.
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Mélanges

Interpolation dans l’espace latent
Considérons deux observations x1 et x2 et leurs codes z1 et z2. Elles
peuvent être par exemple de classes différentes y1 et y2.

Il est possible de “reconstruire” une observation x à mi-chemin en
reconstruisant le code moyen :

xmoy = D
(

z1 + z2
2

)

Plus généralement, il est possible d’interpoler linéairement entre x1
et x2 :

xα = D (α · z1 + (1 − α) · z2)
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Limites des auto-encodeurs

• On ne connaît pas la distribution P(z) qui sous-tend l’espace
latent Z

• on ne peut donc pas échantillonner directement
P(X) = P(X|z) · P(z)

• (on pourrait l’estimer)

• Quelle dimension d donner à Z ?

• L’encodeur n’est généralement pas injectif : deux observations
x1 ̸= x2 peuvent avoir des projections z1 ≈ z2

• Aucune garantie que les codes z se situant dans des « trous »
dans Z (zones de faible densité) aient du sens une fois décodés.
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Quiz

Quel est l’avantage principal d’un auto-encodeur par rapport à une
analyse en composantes principales?

1. L’auto-encodeur est plus rapide

2. L’auto-encodeur a une plus grande capacité

3. L’auto-encodeur a moins de paramètres

4. L’auto-encodeur a une meilleure reconstruction
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