
Programmation Fonctionnelle : des concepts aux applications web
(NFP119)

Fonctions, procédures et effets�

Tristan Crolard

Laboratoire CEDRIC
Equipe � Systèmes Sûrs �

tristan.crolard@cnam.fr

cedric.cnam.fr/sys/crolard

�. Ces supports sont adaptés de Python for Computational Science (2024)

https://www.desy.de/~fangohr/teaching/py4cs2024/pdfs/Introduction-to-Computational-Science-slides.pdf
https://www.desy.de/~fangohr/teaching/py4cs2024/pdfs/Introduction-to-Computational-Science-slides.pdf
https://www.desy.de/~fangohr/teaching/py4cs2024/pdfs/Introduction-to-Computational-Science-slides.pdf
https://www.desy.de/~fangohr/teaching/py4cs2024/pdfs/Introduction-to-Computational-Science-slides.pdf


Effects

When a function has some unexpected effects, we talk about side effects. Example:

>>> def sum(xs: list[int]) -> int:
s = 0
for i in range(len(xs)):

s = s + xs.pop()
return s

>>> xs = [10, 20, 30]

>>> print("xs =", xs)

xs = [10, 20, 30]

>>> print("sum(xs) =", sum(xs))

sum(xs) = 60

>>> print("xs =", xs)

xs = []

2



Effect-free functions

Better ways to compute the sum of a list xs (or sequence in general):

I use indices to iterate over list

>>> def sum(xs: list[int]) -> int:
s: int = 0
for i in range(len(xs)):

s = s + xs[i]
return s

I or better: iterate over the elements directly

>>> def sum(xs: list[int]) -> int:
s: int = 0
for elem in xs:

s = s + elem
return s

3



Mutable and immutable sequences

Effects can be made explicit using the type hints: collection interfaces (called Abstract
Base Classes1 in Python) may be used to provide types to arguments instead of concrete
implementations.

For instance, instead of list[A], use:

I Sequence[A] whenever the argument is not modified by the function

I MutableSequence[A] otherwise.

Moreover, the type checker will ensure that a Sequence[A] is not modified.

1. https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes

4

https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes
https://docs.python.org/3/library/collections.abc.html#collections-abstract-base-classes


Sequences types: llllllllliiiiiiiiisssssssssttttttttt

Abstract Base Class: Iterable[A]

"extends

Abstract Base Class: Sequence[A]

"extends

Abstract Base Class: MutableSequence[A]

"implements

Concrete Class: list[A]

Note. You cannot create an instance of an Abstract Base Class, but they are useful for
typing variables and parameters.

5



Sequences types: ssssssssstttttttttrrrrrrrrr

Abstract Base Class: Iterable[str]

"extends

Abstract Base Class: Sequence[str]

"implements

Concrete Class: str

Note. It should really be Iterable[char] and Sequence[char], but there is no char
type in Python.

6



Functions, procedures and effects

I A function that exits through the return keyword, will return the object given
after return.

I A function that does not use the return keyword, implicitly returns the special
object None. Such a function is also called a procedure.

I Procedure should either modify their arguments or perform some other effect
(such as printing).

I Functions should not modify their arguments but they should return a value.
Such regular functions are sometimes called effect-free.

I Functions that both modify their arguments and return a value are called effectful.

Note. Calling functions from the prompt can cause some confusion here: if the function
returns a value, it will also be printed (even if the function is effect-free).

7



Function and procedure � examples
>>> from collections.abc import Sequence, MutableSequence

I Function

>>> def count_zeros(xs: Sequence[int]) -> int:
count: int = 0
for elem in xs:

if elem == 0:
count = count + 1

return count

I Procedure

>>> def remove_zeros(xs: MutableSequence[int]) -> None:
i: int = 0
while i < len(xs):

if xs[i] == 0:
xs.pop(i)

else:
i = i + 1

8



Effectful function � example

Sometimes, you might want to do both at the same time:

>>> def count_and_remove_zeros(xs: MutableSequence[int]) -> int:
i: int = 0
count: int = 0
while i < len(xs):

if xs[i] == 0:
xs.pop(i)
count = count + 1

else:
i = i + 1

return count

Note. This is usually not a good idea: you should avoid merging functions and procedure
into a single code like that (you should first check if this optimization is required).

9



Testing functions and procedures � example

I Function

>>> def test_count_zeros() -> None:
expected = 2
actual = count_zeros([1, 0, 7, 0, 9])
assert expected == actual

I Procedure

>>> def test_remove_zeros() -> None:
xs = [1, 0, 7, 0, 9]
remove_zeros(xs)
assert xs == [1, 7, 9]

10



Testing effectful functions � example

>>> def test_count_and_remove_zeros() -> None:
expected = 2
xs = [1, 0, 7, 0, 9]
actual = count_and_remove_zeros(xs)
assert xs == [1, 7, 9]
assert expected == actual

Note. Both effect-free functions and procedures are special cases of effectful functions,
but you should restrict yourselves to those as far as possible: unrestricted effectful
functions are more difficult to write and they are also more difficult to test.

11


	Effects 
	Sequences types: list 
	Sequences types: str 
	Functions, procedures and effects 
	Function and procedure – examples 
	Effectful function – example 
	Testing functions and procedures – example 
	Testing effectful functions – example 

