Programmation Fonctionnelle : des concepts aux applications web
(NFP119)

Principales bibliotheques

Tristan Crolard

Laboratoire CEDRIC
Equipe « Systémes Sirs »

tristan.crolard@cnam.fr

cedric.cnam.fr/sys/crolard

Les principales bibliothéques (downloads)

npmtrends.com @

A Home lecnam CNAM v CCP WebMail Sciences v Google

angular vs react vs vue | npm trends

angular vs react vs vue

angular react vue + @angular/core + ember-source

Downloads in past 6 Months ~

@ o react (@ wue
12,000,000
10,000,000
8,000,000
6,000,000

4,000,000

—
2,000,000 V’——\/

v—\/

0

Dec 2020 Jan 2021 Feb 2021 Mar 2021 Apr 2021 May 2021

2

Les principales bibliothéques (jobs)

& trends.google.com ¢

A Home lecnam CNAM v

Q Angular vs React vs Vue: Which Framework to Choose in 2021

GoogleTrends

Compare

CCP WebMail

Sciences v Google

" Vue jobs, React jobs, Angular jobs - Explore - Google Trends

Programming ¥

Vue jobs
Search term
Worldwide , Past 12 mont...

Web Search ¥

React jobs
Search term
Worldwide , Past 12 mont...

Angular jobs
Search term
Worldwide , Past 12 mont...

+ Add comparison

Interest over time

I«

o<

L AN\/\/\/\/\

Average May 17,2020 Sep 20,2020

ANV GRANAN _LAAJ_ /

Jan 24,2021

La bibliotheque React

B
(o]
i

Docs Tutorial

reactjs.org

A Home lecnam CNAM v CCP WebMail Sciences v

Blog Community Q Search

React

§ React — A JavaScript library for building user interfaces

Google

V1702 Mp Languages GitHub

A JavaScript library for building user interfaces

Declarative

React makes it painless to create interactive Uls.
Design simple views for each state in your

application, and React will efficiently update and
render just the right components when your data

changes.

Get Started Take the Tutorial

Component-Based

Build encapsulated components that manage their
own state, then compose them to make complex
Uls.

Since component logic is written in JavaScript

instead of templates, you can easily pass rich data

Learn Once, Write Anywhere

We don't make assumptions about the rest of your
technology stack, so you can develop new features
in React without rewriting existing code.

React can also render on the server using Node

and power mobile apps using React Native.

2

a

e0e <> m

Principe de base (React-Redux)

(=)
i

& redux.js.org ¢

A Home lecnam CNAM v CCP WebMail Sciences v Google

@) Redux Essentials, Part 1: Redux Overview and Concepts | Redux

]

a

|T

&,‘) Redux

Introduction v
Getting Started with Redux
Installation
Core Concepts
Learning Resources
Ecosystem
Examples

Tutorials v
Tutorials Index
Redux Essentials v

Redux Overview and
Concepts

Redux App Structure
Basic Redux Data Flow
Using Redux Data

Async Logic and Data
Fetching

Performance and
Normalizing Data

Redux Fundamentals >

Recipes >

Getting Started Tutorial API FAQ Best Practices GitHub
This is a small example of "one-way data flow":

e State describes the condition of the app at a specific point in time
e The Ulis rendered based on that state

o When something happens (such as a user clicking a button), the state is updated based on what
occurred

e The Ulre-renders based on the new state

Need help? Q Search [#](k]

Introduction
How to Read This Tutorial
What is Redux?
Why Should | Use Redux?
When Should | Use Redux?
Redux Libraries and Tools
Redux Terms and Concepts
State Management
Immutability
Terminology
Redux Application Data Flow
What You've Learned

What's Next?

React Hooks

]
@
N\
B
(w)
i

reactjs.org ¢ \'I'l =)

A Home lecnam CNAM v CCP WebMail Sciences v Google

Hooks API Reference - React +

&> React Docs Tutorial Blog Community Q Search V1702 Xp Languages GitHub

INSTALLATION v

Hooks API| Reference

MAIN CONCEPTS v

ADVANCED GUIDES v
Hooks are a new addition in React 16.8. They let you use state and other React

features without writing a class. GIA A AT ©

HOOKS A
This page describes the APIs for the built-in Hooks in React.
1. Introducing Hooks
If you’re new to Hooks, you might want to check out the overview first. You may also find 2. Hooks at a Glance
useful information in the frequently asked questions section. 3. Using the State Hook
X 4. Using the Effect Hook
e Basic Hooks
5. Rules of Hooks
* luseSfage 6. Building Your Own Hooks
e useEffect 7. Hooks API Reference
e useContext 8. Hooks FAQ
e Additional Hooks
TESTING Vv

e useReducer

React Hooks : useState

000 M (< 0o B reactjs.org @ ¢ M+

A Home lecnam CNAM v CCP WebMail Google Scholar v

€8] Hooks API Reference - React

Docs Tutorial Blog Community Q Search v17.02 X Languages GitHub

Basic Hooks

useState INSTALLATION v

const [state, setState] = useState(initialState); MAIN CONCEPTS v

ADVANCED GUIDES v
Returns a stateful value, and a function to update it.

APl REFERENCE v

During the initial render, the returned state (state) is the same as the value passed as the

firstargument (initialState). HOOKS A

1. Introducing Hooks
The setState function is used to update the state. It accepts a new state value and 2. Hooks at a Glance
enqueues a re-render of the component. 3. Using the State Hook

4. Using the Effect Hook
setState(newState); 5. Rules of Hooks

6. Building Your Own Hooks
During subsequent re-renders, the first value returned by useState will always be the most B

8. Hooks FAQ

recent state after applying updates.

React Hooks : functional updates

Q00 M (< 0o B @ reactjs.org @& ¢ M+

A Home lecnam CNAM v CCP WebMail Google Scholar v

Hooks API Reference — React

Docs Tutorial Blog Community Q Search v17.02 X Languages GitHub

Functional updates

If the new state is computed using the previous state, you can pass a function to setState. INSTALLATION v
The function will receive the previous value, and return an updated value. Here's an example

of a counter component that uses both forms of setState: MAIN CONCEPTS v

function Counter({initialCount}) { ADVANCED GUIDES ~

const [count, setCount] = useState(initialCount);

return (APl REFERENCE v
<>

Count: {count}

<button onClick={() => setCount(initialCount)}>Reset</button> HOOKS ~
<button onClick={() => setCount(prevCount => prevCount - 1)}>-</button>]
<button onClick={() => setCount(prevCount => prevCount + 1)}>+</button> 1. Introducing Hooks
2. Hooks at a Glance
3. Using the State Hook
4. Using the Effect Hook
5. Rules of Hooks
The "+" and "-" buttons use the functional form, because the updated value is based on the .
6. Building Your Own Hooks
previous value. But the "Reset” button uses the normal form, because it always sets the count
7. Hooks API Reference
back to the initial value.
8. Hooks FAQ

Architecture typique (React-Redux)

L@) Redux

Introduction v
Getting Started with Redux
Installation
Core Concepts
Learning Resources
Ecosystem
Examples

Tutorials v
Tutorials Index
Redux Essentials v

Redux Overview and
Concepts

Redux App Structure
Basic Redux Data Flow
Using Redux Data

Async Logic and Data
Fetching

Performance and

Normalizina Dot

(o]
i

redux.js.org ¢

A Home lecnam CNAM v CCP WebMail Sciences v Google

(& Redux Essentials, Part 1: Redux Overview and Concepts | Redux

Getting Started Tutorial API FAQ Best Practices GitHub

Action
type:
"deposit”,
payload: 1@

Dispatch v

Event Handler .

= */ State]—/

Deposit $10 SO

Withdraw $10

2

Needhelp? (9 Q

Introduction
How to Read This Tutorial
What is Redux?
Why Should | Use Redux?
When Should | Use Redux?
Redux Libraries and Tools
Redux Terms and Concepts
State Management
Immutability
Terminology
Redux Application Data Flow
What You've Learned

What's Next?

a

React Hooks : useReducer (Dispatch)

Q00 M (< 0o B reactjs.org @ ¢ M+

A Home lecnam CNAM v CCP WebMail Google Scholar v

Hooks API Reference — React

Docs Tutorial Blog Community i (A Languages GitHub

Here's the counter example from the useState section, rewritten to use a reducer:

const initialState = {count: 0}; INSTALLATION v

function reducer(state, action) {
switch (action.type) {
case 'increment':

MAIN CONCEPTS v

return {count: state.count + 1}; ADVANCED GUIDES v
case 'decrement':
return {count: state.count - 1};
et API REFERENCE v
throw new Error();
HOOKS ~
‘ 1. Introducing Hooks
function Counter() {
const [state, dispatch] = useReducer(reducer, initialState); 2. Hooks at a Glance
return (3. Using the State Hook
<>
Count: {state.count} 4. Using the Effect Hook
<button onClick={() => dispatch({type: 'decrement'})}>-</button> 5. Rules of Hooks
<button onClick={() => dispatch({type: 'increment'})}>+</button> o
6. Building Your Own Hooks
7. Hooks API Reference
8. Hooks FAQ

10

React JSX (View)

reactjs.org @]]

[]
@
N\
B
(o]
i

A Home lecnam CNAM v CCP WebMail Sciences v Google

Introducing JSX — React aF

Docs Tutorial Blog Community < v17.0.2 Xp Languages GitHub

Introducing JSX

MAIN CONCEPTS ~

Consider this variable declaration: 1. Hello World
2. Introducing JSX
4. Components and Props
5. State and Lifecycle
This funny tag syntax is neither a string nor HTML. 6. Handling Events
7. Conditional Rendering
It is called JSX, and it is a syntax extension to JavaScript. We recommend using it with 8. Lists and Keys
React to describe what the Ul should look like. JSX may remind you of a template 9. Forms
language, but it comes with the full power of JavaScript. 10. Lifting State Up

11. Composition vs Inheritance
JSX produces React “elements”. We will explore rendering them to the DOM in the next 12. Thinking In React

section. Below, you can find the basics of JSX necessary to get you started.
ADVANCED GUIDES v

Why JSX? API REFERENCE v

React embraces the fact that rendering logic is inherently coupled with other Ul logic: HOOKS v
how events are handled, how the state changes over time, and how the data is prepared
for display. TESTING v

11

