
Computer Systems Modeling and Verification
(USEEN1)

Structural Pattern Matching (Quick Intro)

This intro is taken from the appendix of PEP 636 � Structural Pattern Matching: Tutorial.

A match statement takes an expression and compares its value to successive patterns given as
one or more case blocks. This is superficially similar to a switch statement in C, Java or JavaS-
cript (and many other languages), but much more powerful.

The simplest form compares a subject value against one or more literals:

def http_error(status: int) -> str:
match status:

case 400:
return "Bad request"

case 404:
return "Not found"

case 418:
return "I'm a teapot"

case _:
return "Something's wrong with the Internet"

Note the last block: the �variable name� _ acts as a wildcard and never fails to match.

You can combine several literals in a single pattern using | (�or�):

case 401 | 403 | 404:
return "Not allowed"

Patterns can look like unpacking assignments, and can be used to bind variables:

point is an (x, y) tuple
match point:

case (0, 0):
print("Origin")

case (0, y):
print(f"Y={y}")

case (x, 0):
print(f"X={x}")

case (x, y):
print(f"X={x}, Y={y}")

case _:
raise ValueError("Not a point")

Study that one carefully! The first pattern has two literals, and can be thought of as an exten-
sion of the literal pattern shown above. But the next two patterns combine a literal and a
variable, and the variable binds a value from the subject (point). The fourth pattern captures
two values, which makes it conceptually similar to the unpacking assignment (x, y) = point.

1

https://peps.python.org/pep-0636/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0636/
https://peps.python.org/pep-0636/

If you are using classes to structure your data you can use the class name followed by an argu-
ment list resembling a constructor, but with the ability to capture attributes into variables:

from dataclasses import dataclass

@dataclass
class Point:

x: int
y: int

def where_is(point: Point) -> None:
match point:

case Point(x=0, y=0):
print("Origin")

case Point(x=0, y=y):
print(f"Y={y}")

case Point(x=x, y=0):
print(f"X={x}")

case Point():
print("Somewhere else")

case _:
print("Not a point")

You can use positional parameters with some builtin classes that provide an ordering for their
attributes (e.g. dataclasses). You can also define a specific position for attributes in patterns by
setting the __match_args__ special attribute in your classes. If it's set to ("x", "y"), the follo-
wing patterns are all equivalent (and all bind the y attribute to the var variable):

Point(1, var)
Point(1, y=var)
Point(x=1, y=var)
Point(y=var, x=1)

Patterns can be arbitrarily nested. For example, if we have a short list of points, we could
match it like this:

match points:
case []:

print("No points")
case [Point(0, 0)]:

print("The origin")
case [Point(x, y)]:

print(f"Single point {x}, {y}")
case [Point(0, y1), Point(0, y2)]:

print(f"Two on the Y axis at {y1}, {y2}")
case _:

print("Something else")

We can add an if clause to a pattern, known as a �guard�. If the guard is false, match goes on
to try the next case block. Note that value capture happens before the guard is evaluated:

match point:
case Point(x, y) if x == y:

print(f"Y=X at {x}")
case Point(x, y):

print(f"Not on the diagonal")

2

