
Computer Systems Modeling and Verification
(USEEN1)

Part II: Python libraries for testing

Several popular libraries should be considered when testing Python code. We will focus here on
some of these libraries which are currently compatible the last version of Python:

� Pytest-cov library provides code coverage. An extension for VS Code, called Coverage
Gutters, is also recommended in order to display the coverage within the IDE.

� Hypothesis is an advanced property-based testing library.

� Deal is a mature library for design-by-contract (which works well with Hypothesis).

These libraries (together with their dependencies) can be installed from the shell. First activate
your conda environment (if required) and then run the following command from the folder con-
taining the project files:

pip install -r requirements.txt

Using Pytest-cov

Pytest-cov is a plugin for pytest, it should be detected automatically. The plugin is in fact activated
by the options given in the configuration file for the project (pyproject.toml). A new file called
coverage.xml should be generated in the folder, and clicking on �watch� in VS Code satus bar should
be enough to display the code coverage of the source files.

Using Hypothesis

Hypothesis relies on �strategies� in order to generate test data. These strategies can be chosen
explicitely and even customized if required. In most cases however, the static type information (if
provided), is enough to select a reasonable strategy.

For instance, to test the cat function, the annotation @given(...) tells Hypothesis to rely on the
given type information, and thus to provide random strings for the test cases.

@given(...)
def test_cat(left: str, right: str) -> None:

result = cat(left, right)
assert result.startswith(left)
assert result.endswith(right)
assert len(result) == len(left) + len(right)

Note. You can limit the number of test cases by adding the following annotation:

@settings(max_examples=10)

If you need to look at the generated values, you need to also add first this option:

@settings(max_examples=10, verbosity=Verbosity.verbose)

and then you should run command pytest -s directly from the terminal (option -s is required
to prevent the capture of the output by pytest).

1

https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://marketplace.visualstudio.com/items?itemName=ryanluker.vscode-coverage-gutters
https://marketplace.visualstudio.com/items?itemName=ryanluker.vscode-coverage-gutters
https://hypothesis.readthedocs.io/en/latest/
https://pypi.org/project/deal
https://hypothesis.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://hypothesis.readthedocs.io/en/latest/
https://hypothesis.readthedocs.io/en/latest/
https://hypothesis.readthedocs.io/en/latest/

Using Deal
This section is adapted from Deal documentation about Contract-Driven Development.

Can we make it even simpler? Not really. The implementation can produce some values, and the
machine can infer some properties of the result. However, someone else must say which properties
are good and expected, and which are not. However, there is something else about our properties
that we can do better. At this stage we have type annotations and, to be honest, they are just
kind of properties. Annotations say �the result is a text�, and our test properties clarify the length
of the result, it's prefix and suffix. However, the difference is type annotations are the part of the
function itself. It gives some benefits:

1. The machine can check statically, without the actual running of the code.

2. The human can see types (think �possible values set�) for arguments and the result.

And Deal can make the same for function properties:

from deal import ensure

@ensure(lambda left, right, result: result.startswith(left))
@ensure(lambda left, right, result: result.endswith(right))
@ensure(lambda left, right, result: len(result) == len(left) + len(right))
def cat(left: str, right: str) -> str:

return left + right

Ensure is the shining star of property-based testing. It works perfect for complex task when
checking result correctness (even partial checking only for some cases) is much easier than the
calculation itself.

You can also specify preconditions and postconditions.

Precondition: condition that must be true before the function is executed.

@pre(lambda xs: all(x > 0 for x in xs))
def sum_positive(xs: list[int]) -> int:

return sum(args)

sum_positive([1, 2, 3, 4])
10

sum_positive([1, 2, -3, 4])
PreContractError

Postcondition: condition that must be true after the function was executed.

@post(lambda result: result > 0)
def always_positive_sum(xs: list[int]) -> int:

return sum(args)

always_positive_sum([2, -3, 4])
3

always_positive_sum([2, -3, -4])
PostContractError

Post-condition allows you to make additional constraints about a function result. Use type anno-
tations to limit types of results and post-conditions to limit possible values inside given types.

Remark. @ensure should be used for more general postconditions that accept not only the result,
but also the function arguments.

2

https://pypi.org/project/deal
https://pypi.org/project/deal
https://deal.readthedocs.io/basic/motivation.html
https://deal.readthedocs.io/basic/motivation.html
https://deal.readthedocs.io/basic/motivation.html
https://deal.readthedocs.io/basic/motivation.html

Exceptions

@raises: specifies which exceptions the function can raise.

@reason: checks the condition if the exception was raised.

@raises(ZeroDivisionError)
@reason(ZeroDivisionError, lambda a, b: b == 0)
def divide(a: int, b: int) -> int:

return a // b

Generating test cases

Deal can also generate random test cases using Hypothesis. Here is a complete example:

@raises(ZeroDivisionError)
@reason(ZeroDivisionError, lambda a, b: b == 0)
@pre(lambda a, b: a >= 0 and b >= 0)
@ensure(lambda a, b, result: a == result * b + a % b)
def divide(a: int, b: int) -> int:

return a // b

@cases(divide, count=100)
def test_divide_contract(case):

case()

Note. It is possible to display the result of the test cases as follows:

@cases(divide, count=100)
def test_divide_contract(case):

result = case()
print(result)

and then again, you should run command pytest -s directly from the terminal (displaying the
full test case is also possible1 but less trivial).

1. https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example

3

https://pypi.org/project/deal
https://hypothesis.readthedocs.io/en/latest/
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example
https://deal.readthedocs.io/basic/tests.html?highlight=index_of#practical-example

	Using Pytest-cov
	Using Hypothesis
	Using Deal
	Exceptions
	Generating test cases

