
Computer Systems Modeling and Verification
(USEEN1)

Part I: Dynamic typing

Python is a dynamically typed language, which means that the python interpreter does not
enforce types at compile-time, only at run-time. Moreover, variables can be reassigned to values1

of different types during run-time, and function arguments can accept values of different types.

On the other hand, values are typed, and type checking is still performed for primitive opera-
tions at run-time: this is called dynamic typing.

1 Mixing integer and string operations

Try to evaluate the following expressions with Python:

100 + 22
"a" + "b"
100 + "b"
"a" + 22

100 - 22
"a" - "b"
100 - "b"
"a" - 22

100 * 22
"a" * "b"
100 * "b"
"a" * 22

Some of the above expressions will fail to evaluate and raise a TypeError.

Let us now consider the fragment of Python AST for integer and string operations, with integer
and string constants. Such a fragment is similar to the AST for simple arithmetic expressions,
but extended with string constants such as Constant("a").

For instance, you can define the AST for "a" * 22 like this:

BinOp(
Constant("a"),
Mult(),
Constant(22))

This AST could also be displayed as the following drawing:

BinOp

Constant

"a"

Mult Constant

22

If we want to evaluate this kind of expressions, we need to define a type for values (where values
can be either integers or strings):

type Value = IntValue | StrValue

@dataclass
class IntValue:

value: int

@dataclass
class StrValue:

value: str

1. A value is the result of an evaluation (which cannot thus be evaluated further). A constant is a value, but a
list of values is also a value, a tuple of values is also a value, and so on.

1

Exercises

1. Define a function eval_expr(e: expr, m: Mapping[str, Value] = {}) -> Value
which computes an expr and returns its value.

2. Modify eval(e: Expression, m: Mapping[str, Value] = {}) -> int | str in order
to return the result contained in the value.

2 Mixing integer, string and boolean operations

Try to evaluate the following expressions with Python:

True + False
True + "b"
True + 22
"a" + False
100 + False

True - False
True - "b"
True - 22
"a" - False
100 - False

True * False
True * "b"
True * 22
"a" * False
100 * False

Some of the above expressions will fail to evaluate and raise a TypeError.

Let us now consider the fragment of Python AST for integer, string and boolean operations,
with integer, string and boolean constants. Such a fragment is similar to the previous AST, but
extended with boolean constants such as Constant(True).

If we want to evaluate this kind of expressions, we need to extends the type for values (where
values can be either integers or strings or booleans):

type Value = IntValue | StrValue | BoolValue

@dataclass
class BoolValue:

value: bool

...

Exercises

1. Modify eval_expr(e: expr, m: Mapping[str, Value] = {}) -> Value in order to
deal with boolean values.

2. Modify eval(e: Expression, m: Mapping[str, Value] = {}) -> int | str | bool
in order to deal with boolean values.

2.1 Adding comparison operators

Python supports chaining of comparison operators. For instance, you can write 0 < x <= 15,
which corresponds to the expression 0 < x and x <= 15.

In the AST of a comparison, you shall thus find the first expression, a list of comparison opera-
tors and a list of comparators. For instance, you can define the AST for 0 < x <= 15 like this:

Compare(
Constant(0),
[Lt(), LtE()],
[Name("x"), Constant(15)])

This AST could also be displayed as the following drawing:

2

Compare

Constant

0

[,]

Lt LtE

[,]

Name

"x"

Constant

15

In the following, we will consider only usual binary comparisons. Of course, in the AST you will
still find a first expression, then a list of comparison operators and finally a list of comparators.
However, we will asume that those two lists always contain only one element.

For instance, you can define the AST for 0 < x like this:

Compare(
Constant(0),
[Lt()],
[Name("x")])

This AST could also be displayed as the following drawing:

Compare

Constant

0

[]

Lt

[]

Name

"x"

We will consider only the following (binary) comparisons operators:

Eq (==), NotEq (!=), Gt (>), Lt (<), GtE (>=), LtE (<=)

Exercises

1. Modify eval_expr(e: expr, m: Mapping[str, Value] = {}) -> Value in order to
deal with these comparisons operators.

2.2 Adding logical operators

Python also supports chaining of logical operators: consecutive operations with the same oper-
ator, such as x and y and z, are collapsed into one And with several values.

For instance, you can define the AST for x and y and z like this:

BoolOp(
And(),
[Name("x"), Name("y"), Name("z")])

This AST could also be displayed as the following drawing:

BoolOp

And [, ,]

Name

"x"

Name

"y"

Name

"z"

3

In the following, we will consider only the usual binary logical operators (in other words, we
assume that boolean expressions are always parenthesized). Of course, in the AST you will still
find first the operator and then a list of expressions. However, we will assume that this list
always contain only two element.

For instance, you can define the AST for x and y like this:

BoolOp(
And(),
[Name("x"), Name("y")])

This AST could also be displayed as the following drawing:

BoolOp

And [,]

Name

"x"

Name

"y"

We will consider only the following (binary) logical operators:

And (and), Or (or)

Exercises

1. Modify eval_expr(e: expr, m: Mapping[str, Value] = {}) -> Value in order to
deal with these boolean operators.

3 Adding user-defined functions

Let us consider simple user-defined functions such as the following one:

def f(x, y):
return x + y

Such a function can then be called inside an expression. For instance, you can define the AST
for f(z, 2) like this:

Call(
Name("f"),
[Name("z"), Constant(2)])

This AST could also be displayed as the following drawing:

Call

Name

"f"

[,]

Name

"z"

Constant

2

4

The function itself is considered a value (since it cannot be evaluated further without actual
arguments). We thus need to extend the type of values:

type Value = IntValue | StrValue | BoolValue | FunValue

@dataclass
class FunValue:

args: list[str]
body: expr

...

You can then create a value for function f as follows:

f = ast.parse("x + y", mode='eval')
v = FunValue(["x", "y"], f.body)

Note. The types of the formal arguments are not available in FunValue, and the types of the
actual arguments cannot thus be (dynamically) checked in a function call. In the Python inter-
preter, these types are not checked either (even if they are explicit in the source code). However,
the interpreter does check that the number of actual arguments is correct.

Exercises

1. Modify eval_expr(e: expr, m: Mapping[str, Value] = {}) -> Value in order to
deal with function calls.

You can then try the evaluation function as follows:

src = "f(z, 2) + 1"
e = ast.parse(src, mode='eval')
print(eval(e, {"z": IntValue(7), "f": FunValue(["x", "y"], f.body)}))

5

	1 Mixing integer and string operations
	Exercises

	2 Mixing integer, string and boolean operations
	Exercises
	2.1 Adding comparison operators
	Exercises

	2.2 Adding logical operators
	Exercises

	3 Adding user-defined functions
	Note.
	Exercises

