
Computer Systems Modeling and Verification
(USEEN1)

Part I: Python ast module

Abstract Syntax Trees (AST) are tree representations of source codes. They are used in every
compiler and bytecode interpreter (or virtual machine), as summarized in the following picture:

Source

parse #" unparse

AST

compile #
Bytecode

eval #
Result

Recall that the parse function converts the source code into a tree structure, and that unparse
is its inverse function.

The Python AST, together with the parse, unparse and dump functions, are defined in module
ast1 from the standard library (while the compile and eval functions are always available).
More information about this module can also be found in the missing Python AST docs2.

1 Arithmetic expressions without variables

>>> import ast

>>> e = ast.parse("(3 + (6 * 5)) * (2 + 7)", mode='eval')

>>> ast.dump(e, indent=4)

Expression(
body=BinOp(

left=BinOp(
left=Constant(value=3),
op=Add(),
right=BinOp(

left=Constant(value=6),
op=Mult(),
right=Constant(value=5))),

op=Mult(),
right=BinOp(

left=Constant(value=2),
op=Add(),
right=Constant(value=7))))

>>> print(ast.unparse(e))

(3 + 6 * 5) * (2 + 7)

1. https://docs.python.org/3/library/ast.html
2. https://greentreesnakes.readthedocs.io

1

https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io
https://greentreesnakes.readthedocs.io

>>> bc = compile(e, filename='<string>', mode='eval')

>>> eval(bc)

297

Remarks (excerpt from the official documentation)3

� The filename argument should give the file from which the code was read; pass some rec-
ognizable value if it wasn't read from a file ('<string>' is commonly used).

� The mode argument specifies what kind of code must be compiled; it can be 'exec' if
source consists of a sequence of statements, 'eval' if it consists of a single expression, or
'single' if it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something other than None will be printed).

2 Arithmetic expressions with variables

>>> e = ast.parse("(3 + (x * 5)) * (y + 7)", mode='eval')

>>> ast.dump(e, indent=4)

Expression(
body=BinOp(

left=BinOp(
left=Constant(value=3),
op=Add(),
right=BinOp(

left=Name(id='x', ctx=Load()),
op=Mult(),
right=Constant(value=5))),

op=Mult(),
right=BinOp(

left=Name(id='y', ctx=Load()),
op=Add(),
right=Constant(value=7))))

>>> print(ast.unparse(e))

(3 + x * 5) * (y + 7)

>>> bc = compile(e, filename='<string>', mode='eval')

>>> eval(bc, {'x': 5, 'y': 9})

448

Remarks

� The context (field ctx) of a Name (an occurence of a variable) is always Load in the AST
of an expression, so you can just ignore this field for the moment.

� Function eval can also invoked directly on strings or files (but not on an AST). Of
course, in that case, the parse and compile functions are called implicitely. More details
can be found in the documentation or using the interactive help command.

Exercises

1. Define a function eval_expr(e: expr) -> int which computes an expr and returns its
integer value (this is the same function as in the previous assignment).

3. https://docs.python.org/3/library/functions.html#compile

2

https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/library/functions.html#compile

2. Test function eval_expr on actual Python expressions using ast.parse and the fol-
lowing helper function:

def eval(e: Expression, m: Mapping[str, int] = {}) -> int:
return eval_expr(e.body, m)

3 Locating expressions and statements

When the evaluation of an expression (or the execution of a program) fails, it is convenient to
be able to locate the origin of the failure in the source code. For that purpose, the location of
each statement and each expression is recorded in the AST.

A simple module error is provided with the code. This module contains the definition of the
type of a region:

type region = tuple[int, int, int | None, int | None]

The first pair of integers corresponds to the beginning of the region: the first integer is the line
number in the file, and the second integer is the column number within the line. Similarly, the
second pair (which is optional) corresponds to the end of the region.

A helper function (called fail) can be used to display the region of some node from the AST,
followed by the error message corresponding to a given exception and then exit. An example of
usage of this function is also provided.

3

	1 Arithmetic expressions without variables
	Remarks

	2 Arithmetic expressions with variables
	Remarks
	Exercises

	3 Locating expressions and statements

