
Computer Systems Modeling and Verification
(USEEN1)

Binary Trees

Recall the type tree[A] of generic binary trees where each leaf contains a value (seen in class):

type tree[A] = Leaf[A] | Node[A]

@dataclass
class Leaf[A]:

value: A

@dataclass
class Node[A]:

left: tree[A]
right: tree[A]

Here is an example of tree of type tree[int] containing 4 nodes and 5 leaves:

Node(
Node(

Leaf(1),
Node(

Leaf(2),
Leaf(3))),

Node(
Leaf(4),
Leaf(5)))

The tree could also be displayed as the following drawing:

Node
left right

Node
left right

Leaf
value

1

Node
left right

Leaf
value

2

Leaf
value

3

Node
left right

Leaf
value

4

Leaf
value

5

Exercises.

1. Define the type tree[int] given above and check that the given example is well typed.
Test your code by printing this tree (using the standard print function).

2. Define a function display_inline[A](t: tree[A]) -> str which displays a tree as a
string on a single line (similarly to what the print function does).

3. Define a function display[A](t: tree[A], depth: int = 0) -> str which displays a
tree as a string as in the example above (using the depth parameter as indentation level).

1



4. Define a function traversal[A](t: tree[A]) -> list[A] which builds the list of leaves
of a tree traversed from left to right.

5. Define a function tmap[A, B](f: Callable[[A], B], t: tree[A]) -> tree[B] such
that tmap(f, t) returns the tree obtained by applying the function f to the values con-
tained in the leaves of tree t.

6. Check on some example that list(map(f, traversal(t))) = traversal(tmap(f, t))
(where map is the predefined function that returns an iterable).

2


	Exercises.

