
Computer Systems Modeling and Verification
(USEEN1)

Part I: Abstract Syntax Trees

Abstract Syntax Trees (AST) are tree representations of source codes. They are used in every
interpreter, as summarized in the following picture:

Source

parse #" unparse

AST

eval #
Result

The parse function converts the source code into a tree structure. It is usually also be possible
to unparse an AST into source code form.

Most tools that perform some kind of static analysis of the code (such as linters or type
checkers) actually work on the AST.

1 Arithmetic expressions without variables

The definition of Python AST for simple arithmetic expressions (without variables) is similar to
what follows (the actual definition is slightly different in order to be compatible with older
Python versions).

First, there is an enumerated type for binary operators similar to the following one (with the
corresponding empty classes):

type operator = Add | Sub | Mult # ...

The type for arithmetic expressions is then similar to the following one:

type expr = Constant | BinOp # ...

@dataclass
class Constant:

value: int # ...

@dataclass
class BinOp:

left: expr
op: operator
right: expr

1

For instance, you can define the AST for (3 + (6 * 5)) * (2 + 7) like this:

BinOp(
BinOp(

Constant(3),
Add(),
BinOp(

Constant(6),
Mult(),
Constant(5))),

Mult(),
BinOp(

Constant(2),
Add(),
Constant(7)))

This AST could also be displayed as the following drawing:

BinOp

BinOp

Constant

3

Add BinOp

Constant

6

Mult Constant

5

Mult BinOp

Constant

2

Add Constant

7

Exercises

1. Define a function display_inline(e: expr) -> str which displays an expression as a
string on a single line (similarly to what the print function does).

2. Define a function display(e: expr, indent: int, depth: int = 0) -> str which
displays an expression as a string as in the example above (using the depth parameter as
indentation level).

3. Define a function dump(e: expr, indent: int | None = None) -> str which displays
an expression as a string using display_inline if indent is None and display otherwise.

4. Define a function unparse(e: expr) -> str which displays an expr as a string (using
the usual syntax with infix operators).

5. Define a function eval_expr(e: expr) -> int which computes an expr and returns its
integer value.

2 Arithmetic expressions with variables
Let us add variables to type expr in order to account for variables in expressions:

type expr = Name | Constant | BinOp # ...

@dataclass
class Name:

id: str

...

2

For instance, you can define the AST for (3 + (x * 5)) * (y + 7) like this:

BinOp(
BinOp(

Constant(3),
Add(),
BinOp(

Name("x"),
Mult(),
Constant(5))),

Mult(),
BinOp(

Name("y"),
Add(),
Constant(7)))

This AST could also be displayed as the following drawing:

BinOp

BinOp

Constant

3

Add BinOp

Name

"x"

Mult Constant

5

Mult BinOp

Name

"y"

Add Constant

7

Exercises

1. Define and check that the given example is well typed. Test your code by printing this
expression (using the standard print function).

2. Modify function display_inline(e: expr) -> str in order to deal with variables.

3. Modify function display(e: expr, indent: int, depth: int = 0) -> str in order
to deal with variables.

4. Check that function dump(e: expr, indent: int | None = None) -> str still works
as expected.

5. Modify function unparse(e: expr) -> str in order to deal with variables.

6. Modify function eval_expr(e: expr) -> int in order to deal with variables. You need
add a new parameter to provide the value of variables. A mapping is well suited for this
purpose, and the new prototype is thus:

eval_expr(e: expr, m: Mapping[str, int]) -> int

3

	1 Arithmetic expressions without variables
	Exercises

	2 Arithmetic expressions with variables
	Exercises

