
Computer Systems Modeling and Verification
(USEEN1)

Sequences and loops�

Tristan Crolard

Department of Computer Science
CEDRIC lab / SYS team

tristan.crolard@cnam.fr

cedric.cnam.fr/sys/crolard

�. These slides are adapted from Python for Computational Science (2024)

https://www.desy.de/~fangohr/teaching/py4cs2024/pdfs/Introduction-to-Computational-Science-slides.pdf
https://www.desy.de/~fangohr/teaching/py4cs2024/pdfs/Introduction-to-Computational-Science-slides.pdf
https://www.desy.de/~fangohr/teaching/py4cs2024/pdfs/Introduction-to-Computational-Science-slides.pdf
https://www.desy.de/~fangohr/teaching/py4cs2024/pdfs/Introduction-to-Computational-Science-slides.pdf

Sequences � overview

Different types of sequences:

I strings (immutable)

I lists (mutable)

I tuples (immutable)

They share some common primitives.

2

Strings

>>> a = "Hello World"

>>> type(a)

<class 'str'>

>>> len(a)

11

>>> print(a)

Hello World

Different possibilities to delimit strings:
'A string' # not recommended, except a single character
"Another string" # double quotes are perfect for messages
"A string with a ' in the middle" # with single quotes
"""A string with triple quotes
can extend over several
lines"""

3

Strings � exercise

I Define a, b and c at the Python prompt:

>>> a = "One"

>>> b = "Two"

>>> c = "Three"

I Exercise: what do the following expressions evaluate to?

¡ a + b + c

¡ 5 * b # python idiom

¡ a[0], a[1], a[2] # indexing

¡ b[-1] # python idiom

¡ c[1:2] # slicing

4

Lists
>>> [] # the empty list

[]

>>> [42] # a 1-element list

[42]

>>> ['A', 'B', 'C'] # a 3-element list

['A', 'B', 'C']

>>> [[1, 2], [3, 4, 5], [6]] # a list of lists

[[1, 2], [3, 4, 5], [6]]

>>>

I Lists are sequences of items

I Access through index, and slicing (as for strings)

I Lists are mutable

5

Example: accessing and mutating lists
>>> a = [] # creates a list

>>> a += ["dog"] # augmented assignment

>>> a += ["cat", "mouse"]

>>> a

['dog', 'cat', 'mouse']

>>> a[2] = "horse" # re-assign a[2]

>>> a

['dog', 'cat', 'horse']

>>> print(a[0]) # access first element (with index 0)

dog

>>> print(a[-1])

horse

6

Example: mutating lists using slices

>>> a

['dog', 'cat', 'horse']

>>> a += ["mouse", "snake"] # augmented assignment

>>> a

['dog', 'cat', 'horse', 'mouse', 'snake']

>>> a[3:3] = ["fish", "bird"] # insertion

>>> a

['dog', 'cat', 'horse', 'fish', 'bird', 'mouse', 'snake']

>>> a[2:6] = [] # deletion

>>> a

['dog', 'cat', 'snake']

7

List methods

Since Python is also an object-oriented language, primitives are often defined as methods.
In particular, most primitives on lists (and strings) are methods.

The syntax of a method call is:

o.f(x1, . .. ,xn)

where object o is a distinguished argument of method f.

Note. We will not define any method in this course, but you still need to learn how to
use some primitive methods from the standard library.

8

Example: mutating lists using methods

>>> a = ["dog", "cat"]

>>> a.append("horse")

>>> a

['dog', 'cat', 'horse']

>>> a.extend(["mouse", "snake"])

>>> a

['dog', 'cat', 'horse', 'mouse', 'snake']

>>> print(a.pop())

snake

>>> a

['dog', 'cat', 'horse', 'mouse']

9

>>> print(a.pop(2))

horse

>>> a

['dog', 'cat', 'mouse']

10

Example: lists containing lists

>>> a = [[1], [1, 2], [1, 5, 10], [1, 10, 100, 1000]]

>>> a

[[1], [1, 2], [1, 5, 10], [1, 10, 100, 1000]]

>>> a[3]

[1, 10, 100, 1000]

>>> max(a[3])

1000

>>> min(a[3])

1

>>> a[3][2]

100

11

Sequences � ssssssssstttttttttrrrrrrrrr examples

>>> a = "hello world"

>>> print(a[4])

o

>>> print(a[4:7])

o w

>>> len(a)

11

>>> 'd' in a

True

>>> print(a + "!!!")

hello world hello world

12

Strings are immutable

I Strings are immutable:

>>> a = "hello world" # String example

>>> a[3] = 'x'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

I You need to create a new string instead, for instance:

>>> a = a[0:3] + 'x' + a[4:]

>>> a

helxo world

13

Sequences � summary

I lists and strings are sequences.

I sequences share the following operations:
a[i] returns element with index i of a
a[i:j] returns elements i up to j - 1
len(a) returns number of elements in sequence a
min(a) returns smallest value in sequence a
max(a) returns largest value in sequence a
x in a returns True if x is an element in a
a + b concatenates a and b
n * a creates n copies of sequence a

In this table, a and b are sequences, i, j and n are integers, x is an element.

14

Tuples

I tuples are immutable (unchangeable) whereas lists are mutable

I tuples are usually written using parentheses (�round brackets�):

>>> t = (3, True, "bob") # t for Tuple

>>> t

(3, True, 'bob')

>>> type(t)

<class 'tuple'>

15

Tuples are defined by the comma

I tuples are defined by the comma (!), not the parentheses

>>> t = 3, True, "bob"

>>> t

(3, True, 'bob')

>>> type(t)

<class 'tuple'>

I the parentheses are optional (but they should be written anyway)

16

When do we use tuples?

1. use tuples if you want to make sure that a set of values doesn't change.

2. using tuples, we can assign several variables in one line (known as tuple unpacking)

>>> (x, y, z) = (0, 0, 1)

In particular, this allows for �instantaneous swap� of values:

>>> (x, y) = (y, x)

3. functions can return tuples when they need to return several objects:

>>> def f(x: int) -> tuple[int, float]:
return (x*2, x/2)

>>> f(10)

(20, 5.0)

17

Loops � introduction

I Computers are good at repeating tasks (often the same task for many different
sets of data).

I Loops are the way to execute the same (or very similar) tasks repeatedly (�in a
loop�).

I Python provides the �for loop� and the �while loop�.

18

Example program: for-loop

>>> animals = ["dog", "cat", "mouse"]
for animal in animals:

print("This is the " + animal + "!")

This is the dog!
This is the cat!
This is the mouse!

The for-loop iterates through the sequence animals, and for each iteration:

I the next value in the sequence is assigned to variable animal

I the loop body is executed

19

Iterating over integers

Often we need to iterate over a sequence of integers:

>>> for i in [0, 1, 2, 3, 4, 5]:
print("the square of", i, "is", i**2)

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

20

Iterating over integers with range

The expression range(n) can be used to iterate over a sequence of increasing integer
values up to (but not including) n:

>>> for i in range(6):
print("the square of", i, "is", i**2)

the square of 0 is 0
the square of 1 is 1
the square of 2 is 4
the square of 3 is 9
the square of 4 is 16
the square of 5 is 25

21

The range function

range(start: int = 0, stop: int, step: int = 1) -> Sequence[int]
iterates over integers from start to stop (but not including stop) in steps of step.
start is optional (defaults to 0) and step is optional (defaults to 1).

I The range function returns a (lazy) sequence

I Sequences can be used in a for loop
(and in many other places where a sequence is needed)

I You can convert a range expression into a list:

>>> list(range(6))

[0, 1, 2, 3, 4, 5]

22

Iterating over sequences

>>> for i in [0, 3, 4, 19]:
print(i)

0
3
4
19

>>> for i in range(5): # range expressions
print(i) # are sequences

0
1
2
3
4

23

>>> for letter in "Hello World": # strings
print(letter) # are sequences

H
e
l
l
o

W
o
r
l
d

24

Another iteration example

This example generates a list of numbers often used in hotels to label floors (more info)

>>> def skip13(a: int, b: int) -> list[int]:
"""Returns a list of ints from a to b without 13"""
result = []
for k in range(a, b):

if k == 13:
pass # do nothing

else:
result.append(k)

return result

>>> skip13(1, 20)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19]

25

https://en.wikipedia.org/wiki/Thirteenth_floor
https://en.wikipedia.org/wiki/Thirteenth_floor

Exercise: rrrrrrrrraaaaaaaaannnnnnnnngggggggggeeeeeeeee_________dddddddddooooooooouuuuuuuuubbbbbbbbbllllllllleeeeeeeee

Write a function range_double(n: int) -> list[int] that generates a list of
numbers similar to list(range(n)). In contrast to list(range(n)), each value in
the list should be multiplied by 2. For instance:

>>> range_double(4)

[0, 2, 4, 6]

>>> range_double(10)

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
For comparison, the behaviour of range:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

26

For loop � summary

I use for loops to iterate over sequences (such as lists or strings)

I can use range to generate sequences of integers

I actually possible to iterate over any iterable (no just sequences)

27

While loops

I Reminder: a for loop iterates over a given sequence or iterator

I A while loop iterates while a condition is fulfilled

Example

>>> x = 64
while x > 10:

x = x // 2
print(x)

32
16
8

28

What are variables?

I Variables are names given to �objects�

I Variables can be assigned (initialized) and then re-assigned

(there is no constant in Python)

I An object can be immutable (always the same value) or mutable
(its value can change).

I For instance, an integer is an immutable object (hence it is a value) and a list
is a mutable object.

29

Variables and mutable objects

>>> a = [0, 2, 4, 6] # bind name 'a' to list

>>> a # object [0,2,4,6]

[0, 2, 4, 6]

>>> b = a # bind name 'b' to the same

>>> b # list object

[0, 2, 4, 6]

>>> b[1] = 10 # modify second element (via b)

>>> b # show b

[0, 10, 4, 6]

>>> a # show a

[0, 10, 4, 6]

30

�id�, �==� and �is�

I Two objects a and b are the same object if they live in the same place in memory.

I Python provides the id function that returns the identity of an object
(its �location� or its �memory address�).

I We check with id(a) == id(b) or a is b wether a and b are the same object.

I Two different objects can have the same value: we check with ==.

31

Example 1

>>> a = [1, 2, 3]

>>> b = [1, 2, 3]

>>> id(a) # some location in memory

4493008000

>>> id(b) # another location in memory

4494273088

>>> a is b # i.e. not the same objects

False

>>> a == b # but carry the same value

True

32

Example 2

>>> a = [1, 2, 3]

>>> b = a # b is reference to object of a

>>> a is b # thus they are the same

True

>>> a == b # the value is thus (of course) the same

True

33

Objects, values and types � summary

https://docs.python.org/3/reference/datamodel.html

Objects are Python's abstraction for data. All data in a Python program is represented
by objects or by relations between objects.

Every object has an identity, a type and a value. An object's identity never changes once
it has been created; you may think of it as the object's address in memory. The `is'
operator compares the identity of two objects; the id() function returns an integer
representing its identity.

An object's type determines the operations that the object supports (e.g., �does it have a
length?�) and also defines the possible values for objects of that type. The type() func-
tion returns an object's type [...]. Like its identity, an object's type is also unchangeable.

34

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3/reference/expressions.html#is
https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#id
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type

The value of some objects can change. Objects whose value can change are said
to be mutable; objects whose value is unchangeable once they are created are
called immutable. [. . .] An object's mutability is determined by its type; for instance,
numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Types affect almost all aspects of object behavior. Even the importance of object identity
is affected in some sense: for immutable types, operations that compute new values may
actually return a reference to any existing object with the same type and value, while
for mutable objects this is not allowed.

E.g., after a = 1; b = 1, a and b may or may not refer to the same object with the
value one, depending on the implementation, but after c = []; d = [], c and d are
guaranteed to refer to two different, unique, newly created empty lists.

35

	Sequences – overview
	Strings
	Strings – exercise
	Lists
	Example: accessing and mutating lists
	Example: mutating lists using slices
	List methods
	Example: mutating lists using methods
	Example: lists containing lists
	Sequences – str examples
	Strings are immutable
	Sequences – summary
	Tuples
	Tuples are defined by the comma
	When do we use tuples?
	Loops – introduction
	Example program: for-loop
	Iterating over integers
	Iterating over integers with range
	The range function
	Iterating over sequences
	Another iteration example
	Exercise: range_double
	For loop – summary
	While loops
	What are variables?
	Variables and mutable objects
	“id”, “==” and “is”
	Objects, values and types – summary

