Rechercher

[Sad11] Problèmes de couverture en nombres entiers : génération de colonnes, heuristiques d'approximation garantie et schémas hybrides. Applications en transport ferroviaire et en planification de production.

Mémoire de Thèse : Soutenue le: 06 July 2011, pp. 198, pp.: Directeur:Anass Nagih
Co-encadrants : Laurent Alfandari et Agnès Plateau
Rapporteur 1: Yves Crama
Rapporteur 2: Dominique Feillet
Membre du jury: Olivier Hudry
Membre du jury: Gérard Plateau
Membre du jury: Roberto Wolfler Calvo, : Problèmes de couverture en nombres entiers : génération de colonnes, heuristiques d'approximation garantie et schémas hybrides. Applications en transport ferroviaire et en planification de production.,

Auteurs: J. Sadki

motcle:
Résumé: Les programmes de couverture en nombres entiers (CIP) modélisent de nombreux problèmes industriels réels. Dans le cadre de cette thèse, nous nous intéressons aux CIP de grande taille, programmes qui apparaissent souvent comme problèmes maîtres issus d'une décomposition de type Dantzig-Wolfe. Les approches de résolution de problèmes de grande taille, et plus spécifiquement, la méthode de génération de colonnes, connaissent un intérêt grandissant ces dernières années. Nous présentons dans un premier temps un tour d'horizon autour de la méthode de génération de colonnes, et des approches de résolution entière (exactes ou approchées) basées sur cette méthode. Nous étudions ensuite les heuristiques d'approximation dédiées aux CIP, puis nous proposons une adaptation de l'heuristique gloutonne de Dobson aux CIP de grande taille, engendrant la résolution d'un sous-problème fractionnaire. Nous revisitons à l'issue de cette étude la preuve du rapport d'approximation de l'heuristique de Dobson à l'aide d'une reformulation originale permettant d'étendre cette preuve à de nouvelles variantes. À l’issue des deux études précédentes, nous proposons de nouvelles approches de résolution approchée pour les CIP de grande taille qui font coopérer l'heuristique d'approximation gloutonne et la méthode de génération de colonnes. Des coopérations séquentielles et hybrides sont alors mises en oeuvre et évaluées sur des instances de problèmes réels. Les résultats obtenus montrent que l'heuristique gloutonne constitue un générateur efficace de colonnes et de solutions diversifiées permettant d'améliorer différents aspects du schéma de génération de colonnes : d'une part, en diminuant le nombre d'itérations ainsi que le temps de résolution, et d'autre part, en améliorant la valeur du majorant (les CIP étant des problèmes de minimisation) dans un schéma de résolution en nombres entiers. La validation expérimentale de l'ensemble des approches proposées est finalement réalisée sur deux applications types issues des domaines du transport ferroviaire et de la production agricole.

Equipe:
Collaboration: LIPN

BibTeX

@phdthesis {
Sad11,
title="{Problèmes de couverture en nombres entiers : génération de colonnes, heuristiques d'approximation garantie et schémas hybrides. Applications en transport ferroviaire et en planification de production.}",
author="J. Sadki",
year=2011,
pages="198",
address="{CEDRIC Laboratory, Paris, France}",
note="{
Directeur:Anass Nagih
Co-encadrants : Laurent Alfandari et Agnès Plateau
Rapporteur 1: Yves Crama
Rapporteur 2: Dominique Feillet
Membre du jury: Olivier Hudry
Membre du jury: Gérard Plateau
Membre du jury: Roberto Wolfler Calvo}",
}