| ||||||||||||||||||||||||||||||||||||||||||||
[SS10] Conjoint Use of Variables Clustering and PLS Structural Equations ModelingChapitres de Livre : Titre du livre: "Handbook of Partial Least Squares,", January 2010, Springer, pp. 235-246, (doi: DOI 10.1007/978-3-540-32827-8 11,) (isbn: 978-3-540-32825-4)Mots clés: Cluster analysis, PLS, Structural equations
Résumé:
In PLS approach, it is frequently assumed that the blocks of variables satisfy the assumption of unidimensionality. In order to fulfill at best this hypothesis,we use clustering methods of variables. We illustrate the conjoint use of variables
clustering and PLS structural equations modeling on data provided by PSA Company (Peugeot Citroën) on customers’ satisfaction. The data are satisfaction scores on 32 manifest variables given by 2,922 customers.
Commentaires:
V. Esposito Vinzi et al. (eds.), Handbook of Partial Least Squares, Springer Handbooks of Computational Statistics,
Equipe:
msdma
BibTeX
|
||||||||||||||||||||||||||||||||||||||||||||