Rechercher

[PSH10a] The NIPALS Algorithm for Missing Functional Data

Revue Nationale avec comité de lecture : Journal Revue Roumaine de Mathématiques Pures et Appliquées, vol. 55(4), pp. 315-326, 2010

Mots clés: functional data, missing data, principal components, partial least squares, functional regression models

Résumé: Time-average approximation and principal component analysis of the stochastic process underlying the functional data are the main tools for adapting NIPALS algorithm to estimate missing data in the functional context. The influence of the amount of missing data in the estimation of linear regression models is studied using the PLS method. A simulation study illustrates our methodology.

Equipe: msdma

BibTeX

@article {
PSH10a,
title="{The NIPALS Algorithm for Missing Functional Data}",
author="C. Preda and G. Saporta and M. Hadj Mbarek",
journal="Revue Roumaine de Mathématiques Pures et Appliquées",
year=2010,
volume=55,
number=4,
pages="315-326",
}