| ||||||||||||||||||||||||||||||||||||
[EL14] Recent advances in solving some optimization problems in graphs by quadratic programmingConférence Internationale avec comité de lecture : Ninth International Colloquium on Graphs and Optimization. GO IX, July 2014, pp.1, Italy,
motcle:
Résumé:
We review Quadratic Convex Reformulation (QCR) for quadratic pro-
grams with general integer variables. This solution 2-phase approach
consist in first reformulating the quadratic program into an equivalent
other problem having a convex ob jective function. The second phase
relies on MIP solvers that solve the reformulated problem by standard
branch-and-b ound. Then, we consider some graph partitioning problems
that can be formulated as quadratic programs with binary variables. We
show many enhancements of the standard QCR method that efficiently
solve graph partitioning problems
Equipe:
oc
BibTeX
|
||||||||||||||||||||||||||||||||||||